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Abstract: In this paper, we present an algebraic description of the derivation classes and multiplicative
Hom-structures of so(3). We also study αk-derivations on multiplicative Hom-structures. Using the
operator-matrix correspondence, explicit matrix representations for derivations, D-derivations, and
(F,D)-derivations are derived by solving linear systems. We show that all nontrivial (F,D)-derivations
comprise scalar and skew-symmetric components. Three different multiplicative Hom-structures are
explicitly parameterized, and, on this basis, we discuss αk-derivations, obtaining the classification of
αk-derivations on the corresponding multiplicative Hom-Lie algebra so(3) in each case. Moreover,
we show how each multiplicative Hom-structure gives rise to a Yau-twisted Hom-Lie bracket, and
our classification of αk-derivations corresponds to derivations of these twisted algebras. These results
combine the algebraic and computational aspects of so(3), providing useful tools for applications in
robotic kinematics and quantum symmetry breaking.
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1. Introduction

Lie algebras, introduced by Sophus Lie in the late 19th century, have become indispensable tools
across mathematics and physics. Of particular importance is the Lie algebra so(3), which is intrinsically
linked to the rotation group SO(3). Its structure underpins three-dimensional rotational symmetry
and, thus, it has found critical applications in robotics [1], quantum mechanics, and geometric control
systems. By linearizing complex rotational dynamics into algebraic frameworks, so(3) provides a
unified language for analyzing rigid body motions, state estimation, and discrete integration. Since
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Bresar’s foundational work [2], derivations of Lie algebras have been generalized and extended to
associative algebras [3–5], ternary Jordan superalgebras [6], and prime algebras [7]. These generalized
derivations reveal connections to algebraic invariants, and generalized derivations of noncentral Lie
ideals [8] and octonion algebras [9] demonstrate their structural flexibility. Derivations are considered
essential tools for derivation hierarchies.

Remarks on Hom-type algebras have been made based on quantum deformation theory [10].
According to Hartwig et al. [11], Hom-Lie algebras have revolutionized q-deformations of Witt and
Virasoro algebras. It is then an interesting question about Hom-Lie algebras: What are all the Hom-
structures of a given Lie algebra? A simpler question is, what are the Hom-Lie algebra structures on
a simple Lie algebra? Research into this question has been underway since 2008. In the paper [12],
it was claimed that those Hom-Lie algebra structures on a simple Lie algebra are all trivial, i.e., they
are all scalar transformations. In 2015, the authors in [13] proved that there is some exception also
for simple Lie algebras, for example, sl(2,C), whose Hom-algebra structure is nontrivial. That, except
for sl(2,C), all Hom-algebra structures on simple Lie algebras are trivial as well was established in
2018 by Makhlouf and Zusmanovich [14] using generalized derivations and homological techniques.
However, all these results are for algebraically closed fields of characteristic zero and do not discuss the
real number field relevant to robotics. Computational characterization of Hom-structures on specific
algebras, such as the real Lie algebra so(3), has been neglected to date.

Derivations of Hom-Lie algebras have also attracted considerable attention. In [15], Sheng
carried out a thorough investigation of Hom-Lie algebras, with particular emphasis on the fact
that the distinguished αk-derivations exist only when the Hom-algebra is multiplicative. Zhou
et al. [16] investigated some fundamental properties of generalized derivations of Hom-Lie algebras
and subsequently further studied problems including generalized derivations on Hom-Lie conformal
algebras [17]. Cohomology [18], representations [15, 19, 20], and extensions [21] have been improved
with the proposal of recent classification theorems for multiplicative Hom-Lie structures [22] and
low-dimension cohomology [23]. The aim of this paper is to study the matrix representations of
αk-derivations of Hom-structures on the real Lie algebra so(3), which plays an important role in
the mechanism of rotation in robotics. Before that, it is necessary to classify the multiplicative
Hom-structures on it. Additionally, matrix representations of derivations, D-derivations, and (F,D)-
derivations are also studied.

The remainder of this paper is structured as follows. Section 2 summarizes the key concepts.
Section 3 details the obtained derivation matrices and provides a classification of Hom-structures.
Section 4 presents the classifications of αk-derivations under different categories. Section 5 discusses
Yau twist constructions that yield further Hom-Lie brackets from our classified multiplicative Hom-
structures and shows how our results on αk-derivations provide derivations of these twisted algebras.

2. Preliminaries

Throughout this paper, we assume that R is the field of real numbers. All definitions are taken
from [15, 24].

Definition 2.1. Let g be an R-vector space and [·, ·] be a bilinear map (Lie bracket)

g × g→ g, (x, y) 7→ [x, y]
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satisfying the identities

(L1) [x, x] = 0 for all x ∈ g (alternating property);

(L2) [[x, y], z] + [[z, x], y] + [[y, z], x] = 0 for all x, y, z ∈ g (Jacobi identity).

Then, the pair (g, [, ]) is called a Lie algebra over R.

The alternating property implies anti-commutativity: [x, y] = −[y, x].

Example 2.1. The general linear real Lie algebra gl(n,R) is defined as the vector space of all n × n
matrices with real entries, equipped with the Lie bracket given by the matrix commutator:

gl(n,R) =
{
A ∈ Rn×n}, with Lie bracket [A, B] = AB − BA.

Definition 2.2. Let (g, [·, ·]) be a Lie algebra over R, where

• g is a three-dimensional vector space with ordered basis B = {e1, e2, e3};

• the Lie bracket [·, ·] : g × g→ g is defined on basis vectors by

[ei, e j] =
3∑

k=1

ϵi jkek for 1 ≤ i, j ≤ 3, (2.1)

where ϵi jk is the Levi–Civita symbol

ϵi jk =


+1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if it is an odd permutation,
0 otherwise.

Equivalently, the bracket satisfies the explicit relations:

[e1, e2] = +e3, [e2, e3] = +e1, [e3, e1] = +e2, (2.2)
[e j, ei] = −[ei, e j] ∀i, j.

This algebra is isomorphic to the Lie algebra of the rotation group SO(3), and is denoted by so(3).

According to the definitions of matrix representations and subalgebras in [24], it is evident that
so(3) is isomorphic to the Lie algebra of 3 × 3 real skew-symmetric matrices equipped with the matrix
commutator, and hence it can also be regarded as a subalgebra of gl(3,R).

Definition 2.3. Let g be a Lie algebra over R. A Lie algebra homomorphism of g is an R-linear map
φ : g→ g satisfying

φ([x, y]) = [φ(x), φ(y)] ∀x, y ∈ g. (2.3)

Definition 2.4. Let (g, [·, ·]) be a Lie algebra over R. A Lie derivation of g is an R-linear map D ∈
EndR(g) satisfying the Lie Leibniz rule

D
(
[x, y]

)
= [D(x), y] + [x,D(y)] ∀x, y ∈ g. (2.4)

The space of Lie derivations is denoted as DerLie(g).
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Definition 2.5. Let (g, [·, ·]) be a Lie algebra over R, and let EndR(g) denote the space of R-linear maps
on g.

(i) A map F ∈ EndR(g) is called a D-derivation if there exists a Lie derivation D ∈ DerLie(g) such
that

F
(
[x, y]

)
= [F(x), y] + [x,D(y)] ∀x, y ∈ g. (2.5)

(ii) A map E ∈ EndR(g) is called an (F,D)-derivation if there exists

• a D-derivation F as defined in (i);

• a Lie derivation D ∈ DerLie(g)

satisfying the compatibility condition

E
(
[x, y]

)
= [F(x), y] + [x,D(y)] ∀x, y ∈ g. (2.6)

The space of D-derivations is denoted as DerD(g), and (F,D)-derivations form a subspace
Der(F,D)(g) ⊆ EndR(g).

Proposition 2.2. The spaces DerLie(so(3)), DerD(so(3)) and Der(F,D)(so(3)) are Lie subalgebras of
EndR(so(3)).

Proof. We only provide the proof that Der(F,D)(so(3)) is a Lie subalgebra of EndR(so(3)), as the other
proofs are similar.

Clearly, Der(F,D)(so(3)) is a linear subspace of EndR(so(3)). Next, we prove that Der(F,D)(so(3)) is
closed under the Lie bracket product [·, ·]. For ∀x, y ∈ so(3) and ∀E1, E2 ∈ Der(F,D)(so(3)), we know
that ∃D1,D2 ∈ DerLie(so(3)) and F1, F2 ∈ DerD(so(3)) such that

E1([x, y]) = [F1(x), y] + [x,D1(y)],

E2([x, y]) = [F2(x), y] + [x,D2(y)].

At this time, we have

[E1, E2]([x, y]) = (E1 ◦ E2 − E2 ◦ E1)([x, y])
= E1 ◦ E2([x, y]) − E2 ◦ E1([x, y])
= E1([F2(x), y] + [x,D2(y)]) − E2([F1(x), y] + [x,D1(y)])
= [F1 ◦ F2(x), y] + [F2(x),D1(y)] + [F1(x),D2(y)] + [x,D1 ◦ D2(y)]
− [F2 ◦ F1(x), y] − [F1(x),D2(y)] − [F2(x),D1(y)] − [x,D2 ◦ D1(y)]
= [(F1 ◦ F2 − F2 ◦ F1)(x), y] + [x, (D1 ◦ D2 − D2 ◦ D1)(y)]
= [[F1, F2](x), y] + [x, [D1,D2](y)].

As x and y were arbitrarily chosen, we know that [E1, E2] ∈ Der(F,D)(so(3)); that is, Der(F,D)(so(3))
forms a Lie subalgebra. □

Proposition 2.3. Let so(3) be the Lie algebra defined over R with ordered basis B = {e1, e2, e3}.
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(i) For any derivation D ∈ DerLie(so(3)), its matrix representation [D]B = (a ji) ∈ gl(3,R) relative to
B is uniquely determined by

D(ei) =
3∑

j=1

a jie j for i = 1, 2, 3. (2.7)

(ii) For any D-derivation F ∈ DerD(so(3)), its matrix representation [F]B = (b ji) ∈ gl(3,R) relative
to B satisfies

F(ei) =
3∑

j=1

b jie j for i = 1, 2, 3. (2.8)

(iii) For any (F,D)-derivation E ∈ Der(F,D)(so(3)), its matrix representation [E]B = (d ji) ∈ gl(3,R)
relative to B is given by

E(ei) =
3∑

j=1

d jie j for i = 1, 2, 3. (2.9)

Here, a ji, b ji, and d ji denote the ( j, i)-entries of the matrices [D]B, [F]B, and [E]B, respectively.

Definition 2.6. A Hom-Lie algebra is a triple (g, [·, ·], α), where

• g is an R-vector space;

• [·, ·] : g × g→ g is a skew-symmetric bilinear map

[x, y] = −[y, x] ∀x, y ∈ g; (2.10)

• α ∈ EndR(g) satisfies the Hom–Jacobi identity

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0 ∀x, y, z ∈ g. (2.11)

If α additionally preserves the bracket

α([x, y]) = [α(x), α(y)] ∀x, y ∈ g, (2.12)

then the Hom-Lie algebra is called multiplicative.

Proposition 2.4. Let so(3) be the Lie algebra with ordered basis B = {e1, e2, e3}. For any Hom-
structure α ∈ EndR(so(3)), its matrix representation [α]B = (ci j) ∈ gl(3,R) relative to B satisfies

α(e j) =
3∑

i=1

ci jei for j = 1, 2, 3 (2.13)

or, equivalently, in matrix form:

α(e1 e2 e3) = (α(e1) α(e2) α(e3)) = (e1 e2 e3)


c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (2.14)
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Let (g, [·, ·], α) be a multiplicative Hom-Lie algebra. For any non-negative integer k, denote by αk

the k-times composition of α; that is,

αk = α ◦
k times
· · · ◦ α.

In particular, α0 = Id and α1 = α.

Definition 2.7. For any nonnegative integer k, a linear map τ : g → g is called an αk-derivation of the
multiplicative Hom-Lie algebra (g, [·, ·], α) if

[τ, α] = 0, i.e., τ ◦ α = α ◦ τ

and
τ[u, v]g = [τ(u), αk(v)]g + [αk(u), τ(v)]g, ∀u, v ∈ g.

3. Derivations and multiplicative Hom-structures on so(3)

This section presents the algebra structures of derivations, D-derivations, and (F,D)-derivations on
so(3) by establishing matrix representations of these derivations and solving linear systems derived
from the bracket structure provided in Definition 2.2.

Let B = {e1, e2, e3} be the given ordered basis of so(3). For any linear map T ∈ EndR(so(3)) with
matrix [T ]B = (ti j) with respect to B, the matrix representations of these derivations can be obtained
through the following procedure:

(1) Apply T to the Lie bracket relations [ei, e j] =
∑3

k=1 ϵi jkek;

(2) Expand both sides using the Leibniz rule (Definition 2.4);

(3) Compare coefficients to generate linear constraints on ti j;

(4) Solve the resulting system to characterize [T ]B.

As the proofs for derivations and D-derivations follow analogous steps, only the (F,D)-derivation case
is detailed in this paper.

Theorem 3.1. The derivation of the Lie algebra so(3) is isomorphic to itself over the field of real
numbers R; that is, DerLie(so(3)) � so(3).

Theorem 3.2. The algebraic structure of the D-derivation of the Lie algebra so(3) over the field of real
numbers R is DerD(so(3)) � so(3) ⊕ R.

Theorem 3.3. The algebraic structure of the (F,D)-derivation algebra of the Lie algebra so(3) over
the field of real numbers R is Der(F,D)(so(3)) � so(3) ⊕ R.

Proof. Let E be an (F,D)-derivation with [E]B = (di j). Applying Definition 2.5(ii) to the basis brackets,
we have

E([e1, e2]) = [F(e1), e2] + [e1,D(e2)], (3.1)
E([e2, e3]) = [F(e2), e3] + [e2,D(e3)], (3.2)
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E([e3, e1]) = [F(e3), e1] + [e3,D(e1)]. (3.3)

Substituting D(ei) =
∑

j a jie j, F(ei) =
∑

j b jie j, and E(ei) =
∑

j d jie j into (3.1)–(3.3) and matching
coefficients yields 

d11 = b11, d12 = a12, d13 = a13,

d21 = −a12, d22 = b11, d23 = a23,

d31 = −a13, d32 = −a23, d33 = b11.

(3.4)

Then,

[E]B = λI + A =


λ −a12 −a13

a12 λ −a23

a13 a23 λ

 , λ, ai j ∈ R, (3.5)

where λ = b11 and A is skew-symmetric.
From the obtained matrix representation, up to isomorphism, the algebraic structure of the (F,D)-

derivation algebra of the Lie algebra so(3) over the field of real numbers R is Der(F,D)(so(3)) � so(3) ⊕
R. □

Remark 3.4. The results in Theorems 3.1–3.3 align with the well-known fact that for a semisimple Lie
algebra over R (like so(3)), all derivations are inner. In particular, DerLie(so(3)) � so(3) confirms that
every Lie derivation is inner, and the direct sum with R in the generalized cases corresponds to the
inclusion of scalar multiples of the identity map.

Corollary 3.5. All (F,D)-derivations of so(3) are either scalar multiples of the identity or inherit skew-
symmetric perturbations. There are no nontrivial (F,D)-derivations that are not of this form under B.

Theorem 3.6. Every Hom-structure α on so(3) with respect to the given basis B = {e1, e2, e3} has a
symmetric matrix representation; that is, [α]B = [α]⊤

B
.

Proof. Let α ∈ EndR(so(3)) satisfy the Hom-Jacobi identity. Expanding

[α(e1), [e2, e3]] + [α(e2), [e3, e1]] + [α(e3), [e1, e2]] = 0

and using α(ei) =
∑3

j=1 c jie j, we obtain:

(c23 − c32)e1 + (c31 − c13)e2 + (c12 − c21)e3 = 0.

Then, ci j = c ji follows from the linear independence of B. Therefore, we obtain that [α]B is symmetric.
□

Theorem 3.7. Up to isomorphism, the multiplicative Hom-structures on so(3) are partitioned into
three distinct equivalence classes of nontrivial matrix representations with respect to any basis, which
are as follows:

I,


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 ,


ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1

 ,
where a, b, c ∈ R such that c ∈ [−1, 1], a, b , 0, a2 + b2 ⩽ 1, and Γ = ab+

√
a2b2(1−a2−b2)
a2+b2 .
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Proof. According to Definition 2.6, the multiplicative Hom-structure α satisfies

α([e1, e2]) = [α(e1), α(e2)], (3.6)
α([e2, e3]) = [α(e2), α(e3)], (3.7)
α([e3, e1]) = [α(e3), α(e1)], (3.8)

where α(e1), α(e2), and α(e3) are as defined in Proposition 2.4. Comparing the coefficients on both
sides of Eqs (3.6)–(3.8), we obtain that

c22c33 − c2
23 = c11, (3.9)

c11c33 − c2
13 = c22, (3.10)

c11c22 − c2
12 = c33, (3.11)

c12(c33 + 1) = c13c23, (3.12)
c13(c22 + 1) = c12c23, (3.13)
c23(c11 + 1) = c12c13. (3.14)

Case I: c13 = 0.
It follows from Eq (3.12) that c12 = 0 or c33 = −1.

(a) If c12 = 0, then it follows from Eqs (3.10), (3.11), and (3.14) that

c22 = c11c33, (3.15)
c33 = c11c22, (3.16)
c23 = −c11c23. (3.17)

According to Eqs (3.15) and (3.16), we get c22 = c2
11c22. Thus, there are two cases:

(a1) When c22 = 0, we have c11c33 = 0 and c33 = 0. By Eq (3.9), c11 = −c2
23. Then, Eq (3.17)

implies c23 = 0 or c23 = ±1.
When c23 = 0, we have P1 = 0.
When c23 = 1, then c11 = −1, denoted by

P2 =


−1 0 0
0 0 1
0 1 0

 .
When c23 = −1, then c11 = −1, denoted by

P3 =


−1 0 0
0 0 −1
0 −1 0

 .
(a2) When c22 , 0, we have c2

11 = 1. If c11 = 1, then c23 = 0 and the matrices are as follows:

P4 =


1 0 0
0 1 0
0 0 1

 , P5 =


1 0 0
0 −1 0
0 0 −1

 .
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If c11 = −1, then c22 = −c33. Let c = c23 ∈ [−1, 1], and we get

P6 =


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 , P7 =


−1 0 0
0
√

1 − c2 c
0 c −

√
1 − c2

 .
(b) If c33 = −1, then it follows from (3.9)–(3.14) that

c23 = 0, c11 = ±

√
1 − c2

12.

Letting c = c12 ∈ [−1, 1], the matrices are obtained as follows:

P8 =


√

1 − c2 c 0
c −

√
1 − c2 0

0 0 −1

 , P9 =


−
√

1 − c2 c 0
c

√
1 − c2 0

0 0 −1

 .
Case II: c13 , 0.

(a) If c23 = 0, then Eq (3.9) yields
c11 = c22c33. (3.18)

According to Eqs (3.12)–(3.14), we have

c12(c33 + 1) =0, (3.19)
c13(c22 + 1) =0, (3.20)

c12c13 =0. (3.21)

As c13 , 0, we obtain that c22 = −1 and c12 = 0. Then, Eq (3.18) implies c11 = −c33. It follows

from Eq (3.10) that c33 = ±

√
1 − c2

13. Letting c = c13 ∈ [−1, 0) ∪ (0, 1], we obtain the matrices

P10 =


−
√

1 − c2 0 c
0 −1 0
c 0

√
1 − c2

 ,

P11 =


√

1 − c2 0 c
0 −1 0
c 0 −

√
1 − c2

 .
(b) If c23 , 0, according to c13 , 0 and Eq (3.12), then we get c12 , 0. Equations (3.12)–(3.14) imply

c33 =
c13c23

c12
− 1, (3.22)

c22 =
c12c23

c13
− 1, (3.23)

c11 =
c12c13

c23
− 1. (3.24)
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Substituting these into Eq (3.9), we can check that c23 =
c12c13±∆

c2
12+c2

13
, where

∆ =

√
c2

12c2
13 − c4

12c2
13 − c2

12c4
13.

As c12, c13, and c23 are all nonzero, we obtain the matrices

P12 =


c12c13(c12

2+c13
2)

c12c13+∆
− 1 c12 c13

c12
c12(c12c13+∆)
c13(c122+c132) − 1 c12c13+∆

c122+c132

c13
c12c13+∆

c122+c132
c13(c12c13+∆)
c12(c122+c132) − 1

 ,
P13 =


c12c13(c12

2+c13
2)

c12c13−∆
− 1 c12 c13

c12
c12(c12c13−∆)
c13(c122+c132) − 1 c12c13−∆

c122+c132

c13
c12c13−∆

c122+c132
c13(c12c13−∆)
c12(c122+c132) − 1

 ,
where ∆ =

√
c2

12c2
13(1 − c2

12 − c2
13).

Next, we let c12 = a, c13 = b, and Γ = ab+∆
a2+b2 . By calculating the eigenvalues of the matrix, the above-

obtained matrices can be classified. In summary, up to isomorphism, the nontrivial multiplicative
Hom-structures on so(3) in any set of bases can be divided into the following three categories:

I,


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 ,


ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1

 ,
where a, b, c ∈ R such that c ∈ [−1, 1], a, b , 0, a2 + b2 ⩽ 1, and Γ = ab+

√
a2b2(1−a2−b2)
a2+b2 . □

4. αk-derivations of multiplicative Hom-Lie algebra so(3)

In this section, we classify αk-derivations on the multiplicative Hom-Lie algebra so(3).
Based on conclusions derived from Theorem 3.7, we discuss the three multiplicative Hom-structures

on so(3) in sequence and determine the corresponding classification of αk-derivations in each case. In
this section, we denote by B = {e1, e2, e3}, a basis of the Lie algebra so(3), and by α, a multiplicative
Hom-structure on it. The matrix corresponding to the linear map αk-derivation under the basis B is
denoted by [τ] = (h(k)

ji ), where i, j = 1, 2, 3 and h(k)
ji ∈ R. In particular, α0 = Id and α1 = α.

Theorem 4.1. If the matrix corresponding to the multiplicative Hom-structure on the Lie algebra so(3)
under the basisB is the identity matrix I, then the matrix corresponding to the αk-derivation on it under
the basis B is an antisymmetric matrix.

Proof. Suppose the matrix corresponding to the multiplicative Hom-structure on the Lie algebra so(3)
under the basis B is the identity matrix I. In this case, for all u, v ∈ so(3), the expressions in
Definition 2.7 become

[τ, Id] = 0,
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τ([u, v]) = [τ(u), v] + [u, τ(v)].

Obviously, this is the same as the definition of a derivation.
Therefore, for all k ∈ R, the matrix corresponding to the αk-derivation on the Lie algebra so(3) in

this case under the basis B is an antisymmetric matrix. □

Theorem 4.2. If the matrix corresponding to the multiplicative Hom-structure on the Lie algebra so(3)
under the basis B is 

−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 , where c ∈ [−1, 1],

then

(i) The matrix corresponding to the α0-derivation on it under the basis B is as follows:

(1) If c = 0, 
0 m 0
−m 0 0
0 0 0

 , for m ∈ R;

(2) If c ∈ [−1, 1] \ {0}, 
0 m

√
1−c2−1

c m
−m 0 0

−
√

1−c2−1
c m 0 0

 , for m ∈ R.

(ii) The matrix corresponding to the α1-derivation on it under the basis B is as follows:

(1) If c = ±1, 
0 m −m
−m 0 0
m 0 0

 , for c = 1 and m ∈ R,


0 m m
m 0 0
m 0 0

 , for c = −1 and m ∈ R;

(2) If c ∈ [−1, 1] \ {±1} (i.e., c , ±1), it is the zero matrix.

Proof. Suppose the matrix corresponding to the multiplicative Hom-structure on the Lie algebra so(3)
under the basis B is 

−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 , where c ∈ [−1, 1];
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that is, we have

α(e1) = −e1,

α(e2) = −
√

1 − c2e2 + ce3,

α(e3) = ce2 +
√

1 − c2e3.

(1) α0-derivations
In this case, for all u, v ∈ so(3), the expressions in Definition 2.7 become

[τ, α] = 0, (4.1)
τ([u, v]) = [τ(u), v] + [u, τ(v)]. (4.2)

From Theorem 3.1, the matrix corresponding to the map τ satisfying Eq (4.2) under the basis B is
0 h(0)

12 h(0)
13

−h(0)
12 0 h(0)

23
−h(0)

13 −h(0)
23 0

 , where h(0)
i j ∈ R.

Next, we consider [τ, α] = 0 and let
0 h(0)

12 h(0)
13

−h(0)
12 0 h(0)

23
−h(0)

13 −h(0)
23 0



−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2


−


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2




0 h(0)
12 h(0)

13
−h(0)

12 0 h(0)
23

−h(0)
13 −h(0)

23 0

 = 0.

Thus, we obtain

h(0)
12 =

√
1 − c2h(0)

12 − ch(0)
13 ,

h(0)
13 = −

√
1 − c2h(0)

13 − ch(0)
13 ,

2ch(0)
23 = 0,

2
√

1 − c2h(0)
23 = 0.

Next, we discuss the value of c.
If c = 0, then we have h(0)

13 = h(0)
23 = 0. Letting h(0)

12 = m, we obtain the matrix
0 m 0
−m 0 0
0 0 0

 ,where m ∈ R.

As c , 0, it follows from 2ch(0)
23 = 0 that h(0)

23 = 0. Meanwhile, rearranging the above equation gives
h(0)

13 =
√

1−c2−1
c h(0)

12 . In this case, we obtain the matrix
0 m

√
1−c2−1

c m
−m 0 0

−
√

1−c2−1
c m 0 0

 , where m ∈ R, c ∈ [−1, 1] \ {0}.
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Therefore, in this case, the matrix corresponding to the α0-derivation on the real Lie algebra so(3)
under the basis B is as follows:

• If c = 0, 
0 m 0
−m 0 0
0 0 0

 , where m ∈ R.

• If c ∈ [−1, 1] \ {0}, 
0 m

√
1−c2−1

c m
−m 0 0

−
√

1−c2−1
c m 0 0

 , where m ∈ R.

(2) α1-derivations
In this case, for all u, v ∈ so(3), the expressions in Definition 2.7 become

[τ, α] = 0, (4.3)
τ([u, v]) = [τ(u), α(v)] + [α(u), τ(v)]. (4.4)

We substitute the corresponding expressions for α(ei) and τ(ei) into Eq (4.4), then set the corresponding
coefficients on both sides to be equal. In this way, we obtain the following system of equations:

h(1)
13 = ch(1)

21 +
√

1 − c2h(1)
31 , (4.5)

h(1)
23 = h(1)

32 − ch(1)
11 , (4.6)

h(1)
33 = −h(1)

22 −
√

1 − c2h(1)
11 , (4.7)

h(1)
12 = ch(1)

31 −
√

1 − c2h(1)
21 , (4.8)

h(1)
22 =

√
1 − c2h(1)

11 − h(1)
33 , (4.9)

h(1)
32 = h(1)

23 − ch(1)
11 , (4.10)

h(1)
11 =

√
1 − c2h(1)

22 −
√

1 − c2h(1)
33 − ch(1)

23 − ch(1)
32 , (4.11)

h(1)
21 = ch(1)

13 −
√

1 − c2h(1)
12 , (4.12)

h(1)
31 = ch(1)

12 +
√

1 − c2h(1)
13 . (4.13)

Next, we discuss the value of c.
(1) If c = 1.
In this case, the above system of equations becomes

h(1)
13 = h(1)

21 ,

h(1)
23 = h(1)

32 − ch(1)
11 ,

h(1)
33 = −h(1)

22 ,

h(1)
12 = h(1)

31 ,

h(1)
32 = h(1)

23 − h(1)
11 ,
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h(1)
11 = −h(1)

23 − h(1)
32 .

Through calculation, we obtain h(1)
11 = h(1)

23 = h(1)
32 = 0, and the matrix is now

0 h(1)
12 h(1)

13
h(1)

13 h(1)
22 0

h(1)
12 0 −h(1)

22

 , where h(1)
22 , h

(1)
12 , h

(1)
13 ∈ R.

Next, we consider [τ, α] = 0 and let
0 h(1)

12 h(1)
13

h(1)
13 h(1)

22 0
h(1)

12 0 −h(1)
22



−1 0 0
0 0 1
0 1 0

 −

−1 0 0
0 0 1
0 1 0




0 h(1)
12 h(1)

13
h(1)

13 h(1)
22 0

h(1)
12 0 −h(1)

22

 = 0.

By calculation, we have h(1)
12 + h(1)

13 = 0 and h(1)
22 = 0; that is, h(1)

13 = −h(1)
12 .

In conclusion, when c = 1, the matrix corresponding to the α1-derivation on the multiplicative
Hom-Lie algebra so(3) under the basis B in this case is

0 m −m
−m 0 0
m 0 0

 , where m ∈ R.

It can similarly be shown that, when c = −1, the corresponding matrix is
0 m m
m 0 0
m 0 0

 , where m ∈ R.

(2) If c , ±1; that is, c ∈ (−1, 1).
Substituting Eq (4.7) into Eq (4.9), we have

√
1 − c2h(1)

11 = 0. As
√

1 − c2 , 0, we get h(1)
11 = 0.

Further, from Eq (4.7), we obtain h(1)
33 = −h(1)

22 , and from Eq (4.6), we obtain h(1)
23 = h(1)

32 . Substituting the
above results into Eq (4.11) gives

√
1 − c2h(1)

22 − ch(1)
23 = 0, and so h(1)

22 =
c

√
1−c2

h(1)
23 . Therefore, the matrix

is obtained as 
0 h(1)

12 h(1)
13

ch(1)
13 −

√
1 − c2h(1)

12
c

√
1−c2

h(1)
23 h(1)

23

ch(1)
12 +

√
1 − c2h(1)

13 h(1)
23 − c

√
1−c2

h(1)
23

 , where h(1)
12 , h

(1)
13 ∈ R.

Denote this matrix by H. Next, let

H


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 −

−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 H = 0.

Rearranging gives
√

1 − c2h(1)
12 − ch(1)

13 = −h(1)
12 ,
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√
1 − c2h(1)

12 − ch(1)
13 = h(1)

12 ,

−ch(1)
12 −

√
1 − c2h(1)

13 = −h(1)
13 ,

−ch(1)
12 −

√
1 − c2h(1)

13 = h(1)
13 ,

2
√

1 − c2
h(1)

23 = 0.

Obviously, we have h(1)
12 = h(1)

13 = h(1)
23 = 0.

In conclusion, when c , ±1, the matrix corresponding to the α1-derivation on the multiplicative
Hom-Lie algebra so(3) under the basis B in this case is the zero matrix. □

Theorem 4.3. If the matrix corresponding to the multiplicative Hom-structure on the Lie algebra so(3)
under the basis B is 

ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1

 ,
where a, b ∈ R such that a, b , 0, a2 + b2 ⩽ 1, and Γ = ab+

√
a2b2(1−a2−b2)
a2+b2 , then the matrix corresponding

to the α0- and α1-derivation on it under the basis B is the zero matrix.

Proof. Suppose that the matrix corresponding to the multiplicative Hom-structure on the Lie algebra
so(3) under the basis B is 

ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1

 ,
where a, b ∈ R with a, b , 0, a2 + b2 ⩽ 1, and Γ = ab+

√
a2b2(1−a2−b2)
a2+b2 . That is, we have

α(e1) =
(
ab
Γ
− 1

)
e1 + ae2 + be3,

α(e2) = ae1 +

(
aΓ
b
− 1

)
e2 + Γe3,

α(e3) = be1 + Γe2 +

(
bΓ
a
− 1

)
e3.

(1) α0-derivations
Similar to Theorem 4.2, we first obtain the matrix

0 h(0)
12 h(0)

13
−h(0)

12 0 h(0)
23

−h(0)
13 −h(0)

23 0

 , where h(0)
i j ∈ R.

Next, we consider [τ, α] = 0 and let
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
0 h(0)

12 h(0)
13

−h(0)
12 0 h(0)

23
−h(0)

13 −h(0)
23 0




ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1


−


ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1




0 h(0)
12 h(0)

13
−h(0)

12 0 h(0)
23

−h(0)
13 −h(0)

23 0

 = 0.

Solving the above system of equations, we obtain h(0)
12 = h(0)

13 = h(0)
23 = 0. Therefore, in this case, the

matrix corresponding to the α0-derivation on the multiplicative Hom-Lie algebra so(3) under the basis
B is the zero matrix.

(2) α1-derivations
By analogy with the proof of Theorem 4.2, we substitute α(ei) and τ(ei) into the corresponding

equations and set the corresponding coefficients on both sides to be equal, obtaining the following
system of equations:

h(1)
13 − Γh

(1)
21 + bh(1)

22 − h(1)
31 +

aΓh(1)
31

b
− ah(1)

32 = 0,

Γh(1)
11 − bh(1)

12 + h(1)
23 − ah(1)

31 − h(1)
32 +

abh(1)
32

Γ
= 0,

h(1)
11 −

aΓh(1)
11

b
+ ah(1)

12 + ah(1)
21 + h(1)

22 −
abh(1)

22

Γ
+ h(1)

33 = 0,

−h(1)
12 + h(1)

21 −
bΓh(1)

21

a
+ bh(1)

23 + Γh
(1)
31 − ah(1)

33 = 0,

−h(1)
11 +

bΓh(1)
11

a
− bh(1)

13 − h(1)
22 − bh(1)

31 − h(1)
33 +

abh(1)
33

Γ
= 0,

−Γh(1)
11 + ah(1)

13 + bh(1)
21 + h(1)

23 −
abh(1)

23

Γ
− h(1)

32 = 0,

h(1)
11 + h(1)

22 −
bΓh(1)

22

a
+ Γh(1)

23 + Γh
(1)
32 + h(1)

33 −
aΓh(1)

33

b
= 0,

−h(1)
12 +

bΓh(1)
12

a
− Γh(1)

13 + h(1)
21 − bh(1)

32 + ah(1)
33 = 0,

−Γh(1)
12 − h(1)

13 +
aΓh(1)

13

b
+ bh(1)

22 − ah(1)
23 + h(1)

31 = 0.

By elimination, the matrix can be solved as
h(1)

11 h(1)
12 h(1)∗

13

h(1)
12 −

Γ2

b2 h(1)
11 +

2Γ
b

h(1)
12 h(1)∗

23

h(1)∗
13 h(1)∗

23 −
(b2 − Γ2)

b2 h(1)
11 −

2Γ
b

h(1)
12

 ,
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where

h(1)∗
13 := −

a2b2 − a2Γ2 − b2Γ2

2ab2Γ
h(1)

11 −
a
b

h(1)
12 ,

h(1)∗
23 := −

a2b2 − a2Γ2 + b2Γ2

2ab3 h(1)
11 −

(a2 − b2)Γ
ab2 h(1)

12 .

Next, we consider [τ, α] = 0 and let
h(1)

11 h(1)
12 h(1)∗

13

h(1)
12 −

Γ2

b2 h(1)
11 +

2Γ
b

h(1)
12 h(1)∗

23

h(1)∗
13 h(1)∗

23 −
(b2 − Γ2)

b2 h(1)
11 −

2Γ
b

h(1)
12




ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1



−


ab
Γ
− 1 a b
a aΓ

b − 1 Γ

b Γ bΓ
a − 1




h(1)
11 h(1)

12 h(1)∗
13

h(1)
12 −

Γ2

b2 h(1)
11 +

2Γ
b

h(1)
12 h(1)∗

23

h(1)∗
13 h(1)∗

23 −
(b2 − Γ2)

b2 h(1)
11 −

2Γ
b

h(1)
12

 = 0.

Finally, it can be calculated that h(1)
11 = h(1)

12 = 0. Therefore, in this case, the matrix corresponding to the
α1-derivation on the multiplicative Hom-Lie algebra so(3) under the basis B is the zero matrix. □

Remark 4.4. Given that the Hom-structure α in Theorem 4.3 is a real symmetric matrix, it is
orthogonally diagonalizable. Hence, αk is similar to a diagonal matrix with eigenvalues raised to
the power k. Based on the calculations for α0 and α1-derivations, where only the zero derivation
appears, it is plausible that for any nonnegative integer k, the only αk-derivation on this multiplicative
Hom-Lie algebra is the zero map. This conjecture aligns with the observed pattern and can be further
verified by extending the linear system approach to general k, though the computations become more
tedious.

5. Yau twist constructions and further Hom-Lie brackets

The Yau twist is a fundamental method for constructing Hom-Lie algebras from classical Lie
algebras. Given a Lie algebra (g, [·, ·]) and a Lie algebra homomorphism α : g → g (i.e., α([x, y]) =
[α(x), α(y)]), one defines a new skew-symmetric bracket

{x, y} := [α(x), α(y)] ∀x, y ∈ g, (5.1)

which together with the linear map α yields a multiplicative Hom-Lie algebra (g, {·, ·}, α). This
construction, often attributed to Yau [25] and further developed in [11, 26], provides a systematic
way to generate Hom-Lie algebras from classical ones.

The multiplicative Hom-structures classified in Theorem 3.7 provide natural candidates for such
twists on so(3). For each nontrivial α from our classification, the Yau twist produces a Hom-Lie
algebra (so(3), {·, ·}α, α), where

{x, y}α = [α(x), α(y)] ∀x, y ∈ so(3). (5.2)

For the three types of multiplicative Hom-structures identified in Theorem 3.7, we obtain
corresponding families of Hom-Lie brackets:
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(1) For α = I (the identity), the twisted bracket coincides with the original Lie bracket: {x, y}I = [x, y].

(2) For the one-parameter family

αc =


−1 0 0
0 −

√
1 − c2 c

0 c
√

1 − c2

 , c ∈ [−1, 1],

the twisted bracket {·, ·}αc is given explicitly on basis elements by

{e1, e2}αc = αc(e3) = ce2 +
√

1 − c2e3,

{e2, e3}αc = αc(e1) = −e1,

{e3, e1}αc = αc(e2) = −
√

1 − c2e2 + ce3.

(3) For the two-parameter family αa,b with parameters a, b, Γ as in Theorem 3.7, the twisted bracket
can be computed similarly, though the expressions are more involved.

The αk-derivations studied in Section 4 correspond precisely to derivations of these twisted Hom-
Lie algebras. In fact, an αk-derivation τ of (so(3), [·, ·], α) satisfies

τ({x, y}α) = {τ(x), αk(y)}α + {αk(x), τ(y)}α,

where {·, ·}α denotes the Yau-twisted bracket. Our classification in Theorems 4.2 and 4.3 thus provides
a complete description of derivations for these twisted Hom-Lie structures.

This connection highlights that our matrix representations of αk-derivations are not merely algebraic
exercises but provide concrete computational tools for analyzing the derivation algebras of Yau-twisted
Hom-Lie algebras derived from so(3). Future work could explore the cohomology and deformation
theory of these twisted structures, building on the explicit formulas obtained here and extending the
work in [26, 27].

6. Conclusions

This paper investigates multiplicative Hom-structures and their associated αk-derivations on the real
Lie algebra so(3), motivated by the goal of obtaining explicit matrix representations.

The main results include the description and classification of various types of derivations on so(3).
By employing the operator-matrix correspondence and solving linear systems derived from the Leibniz
rules, explicit matrix forms of Lie derivations, D-derivations, and (F,D)-derivations were obtained.
Additionally, as detailed in Section 5, each multiplicative Hom-structure induces a Yau-twisted Hom-
Lie bracket, and the classification of αk-derivations yields a comprehensive account of derivations for
these twisted algebras.

It was established that any Hom-structure on so(3) is represented by a symmetric matrix. A complete
classification of multiplicative Hom-structures on so(3) was achieved, identifying three types: the
trivial (identity) structure, a one-parameter family, and a two-parameter family, each with explicit
parameterization.
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αk-derivations were described for all multiplicative Hom-structures. In the case of the trivial
structure, αk-derivations coincide with the class of antisymmetric classical derivations. For the one-
parameter family, nontrivial α0-derivations exist for all c, whereas α1-derivations are nonzero only at
the boundary points c = ±1. For the two-parameter family, both α0- and α1-derivations are trivial.

The developed matrix representations serve as practical and computable tools, facilitating
connections between algebraic structures and applied problems. The explicit formulas and Hom-
structures are directly applicable in computational contexts, such as analyzing rotational dynamics
in robotic kinematics and investigating symmetry breaking in quantum mechanics on the real line.

We note that the present work focuses specifically on the real Lie algebra so(3); extensions
to algebras over other fields or to higher-dimensional algebras such as so(n) (n > 3) are not
covered here and present natural directions for future research. It would be interesting to generalize
this computational and representation-theoretic argument to other important Lie algebras, real and
complex, such as so(n) with n > 3 and su(n). Studying the cohomology and deformation theory of
these multiplicative Hom-Lie algebras, based on the calculations we made, is a good direction to take.
Furthermore, the physical interpretations and applications for the nontrivial Hom-structures and hence
their derivations in the phantom category presented here can be the basis for such insights.
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