This paper investigates the spectral radius and energy of the atom-bond sum-connectivity (ABS) matrix. Through rigorous mathematical analysis, we establish bounds for the ABS spectral radius across several graph classes and investigate its properties. The ABS energy is defined, and its calculation methods and properties are studied. Furthermore, by analyzing the correlation between the ABS spectral radius and the physicochemical properties of octane isomers, it is revealed that the ABS spectral radius performs well in predicting molecular properties, indicating its potential application value in chemical structure-property modeling.
Citation: Jiangtong Liu, Xiangyu Ren. The spectral radius and energy for atom-bond sum-connectivity matrix[J]. AIMS Mathematics, 2026, 11(1): 2343-2362. doi: 10.3934/math.2026095
This paper investigates the spectral radius and energy of the atom-bond sum-connectivity (ABS) matrix. Through rigorous mathematical analysis, we establish bounds for the ABS spectral radius across several graph classes and investigate its properties. The ABS energy is defined, and its calculation methods and properties are studied. Furthermore, by analyzing the correlation between the ABS spectral radius and the physicochemical properties of octane isomers, it is revealed that the ABS spectral radius performs well in predicting molecular properties, indicating its potential application value in chemical structure-property modeling.
| [1] |
M. Karelson, V. S. Lobanov, A. R. Katritzky, Quantum-chemical descriptors in qsar/qspr studies, Chem. Rev., 96 (1996), 1027–1044. https://doi.org/10.1021/cr950202r doi: 10.1021/cr950202r
|
| [2] | K. Varmuza, M. Dehmer, D. Bonchev, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Hoboken: Wiley Online Library, 2012. |
| [3] |
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. total $\varphi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
|
| [4] |
K. C. Das, I. Gutman, I. Milovanović, E. Milovanović, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl., 554 (2018), 185–204. https://doi.org/10.1016/j.laa.2018.05.027 doi: 10.1016/j.laa.2018.05.027
|
| [5] |
M. Randic, Characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
|
| [6] | I. Gutman, B. Furtula, Recent results in the theory of randic index, Univ, Kragujevac, Kragujevac, 2008. |
| [7] | E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. Sec. A: Inorg. Phys. Theor. Anal., 37 (1998), 849–855. |
| [8] |
B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
|
| [9] |
A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
|
| [10] |
A. Ali, M. Javaid, M. Matejić, I. Milovanović, E. Milovanović, Some new bounds on the general sum-connectivity index, Commun. Comb. Optim., 5 (2020), 97–109. https://doi.org/10.22049/CCO.2019.26618.1125 doi: 10.22049/CCO.2019.26618.1125
|
| [11] |
X. Chen, On abc eigenvalues and abc energy, Linear Algebra Appl., 544 (2018), 141–157. https://doi.org/10.1016/j.laa.2018.01.011 doi: 10.1016/j.laa.2018.01.011
|
| [12] | K. C. Das, S. Elumalai, I. Gutman, On abc index of graphs, MATCH Commun. Math. Comput. Chem., 78 (2017), 459–468. |
| [13] | M. Goubko, C. Magnant, P. S. Nowbandegani, I. Gutman, Abc index of trees with fixed number of leaves, MATCH Commun. Math. Comput. Chem, 74 (2015), 697–702. |
| [14] |
A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: a review over extremal results and bounds, Discrete Math. Lett., 5 (2021), 68–93. https://doi.org/10.47443/dml.2020.0069 doi: 10.47443/dml.2020.0069
|
| [15] |
T. S. Vassilev, L. J. Huntington, On the minimum abc index of chemical trees, Appl. Math., 2 (2012), 8–16. https://doi.org/10.5923/j.am.20120201.02 doi: 10.5923/j.am.20120201.02
|
| [16] |
X. Chen, On extremality of abc spectral radius of a tree, Linear Algebra Appl., 564 (2018), 159–169. https://doi.org/10.1016/j.laa.2018.12.003 doi: 10.1016/j.laa.2018.12.003
|
| [17] |
Z. Lin, T. Zhou, Y. Liu, On abs estrada index of trees, J. Appl. Math. Comput., 70 (2024), 5483–5495. https://doi.org/10.1007/s12190-024-02188-z doi: 10.1007/s12190-024-02188-z
|
| [18] |
X. Wu, L. Zhang, On structural properties of abc-minimal chemical trees, Appl. Math. Comput., 362 (2019), 124570. https://doi.org/10.1016/j.amc.2019.124570 doi: 10.1016/j.amc.2019.124570
|
| [19] | N. Yang, B. Deng, X. Li, Laplacian abc-eigenvalues of graphs, MATCH Commun. Math. Comput. Chem, 85 (2021), 195–206. |
| [20] | Y. Gao, Y. Shao, The smallest abc index of trees with n pendent vertices, MATCH Commun. Math. Comput. Chem, 76 (2016), 141–158. |
| [21] | K. J. Gowtham, I. Gutman, On the difference between atom-bond sum-connectivity and sum-connectivity indices, Bulletin, 47 (2022), 55–66. |
| [22] |
A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math., 5 (2023), 1–7. https://doi.org/10.47443/ejm.2022.039 doi: 10.47443/ejm.2022.039
|
| [23] |
Z. Lin, Y. Liu, T. Zhou, On the atom-bond sum-connectivity spectral radius of trees, Discrete Math. Lett., 13 (2024), 122–127. https://doi.org/10.47443/dml.2024.100 doi: 10.47443/dml.2024.100
|
| [24] |
J. Liu, Y. Hu, X. Ren, Spectral properties of the atom-bond sum-connectivity matrix, Contrib. Math., 10 (2024), 1–10. https://doi.org/10.47443/cm.2024.041 doi: 10.47443/cm.2024.041
|
| [25] | A. Jahanbani, I. Redžepović, On the generalized ABS index of graphs, Filomat, 37 (2023), 10161–10169. |
| [26] |
R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. https://doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018
|
| [27] |
H. Liu, Extremal problems on sombor indices of unicyclic graphs with a given diameter, Comput. Appl. Math., 41 (2022), 138. https://doi.org/10.1007/s40314-022-01852-z doi: 10.1007/s40314-022-01852-z
|
| [28] |
H. S. Ramane, I. Gutman, K. Bhajantri, D. V. Kitturmath, Sombor index of some graph transformations, Commun. Combin. Optim., 8 (2023), 193–205. https://doi.org/10.22049/CCO.2021.27484.1272 doi: 10.22049/CCO.2021.27484.1272
|
| [29] |
T. Réti, T. Došlic, A. Ali, On the sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006
|
| [30] |
L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561–566. https://doi.org/10.1016/j.aml.2011.09.059 doi: 10.1016/j.aml.2011.09.059
|
| [31] | I. Gutman, The energy of a graph: Old and new results, In: Algebraic Combinatorics and Applications: Proceedings of the Euroconference, Algebraic Combinatorics and Applications (ALCOMA), held in Gößweinstein, Germany, September 12–19, 1999, Springer, 2001,196–211. https://doi.org/10.1007/978-3-642-59448-9_13 |