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Abstract: This paper investigates the spectral radius and energy of the atom-bond sum-connectivity
(ABS) matrix. Through rigorous mathematical analysis, we establish bounds for the ABS spectral
radius across several graph classes and investigate its properties. The ABS energy is defined, and its
calculation methods and properties are studied. Furthermore, by analyzing the correlation between the
ABS spectral radius and the physicochemical properties of octane isomers, it is revealed that the ABS
spectral radius performs well in predicting molecular properties, indicating its potential application
value in chemical structure-property modeling.
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1. Introduction

Consider a graph G = (V(G), E(G)), where the vertex set is by V(G) = {v1, v2, . . . , vn}, and the edge
set is E(G). We use the notation i ∼ j to signify that viv j ∈ E(G). For vertex vi ∈ V(G), its degree
di is defined as the number of edges that are incident to vi. The maximum degree of the graph G is
denoted by ∆, such that ∆ = max{di}, and the minimum degree is denoted by δ, with δ = min{di}.
The cycle, star, and path, each having n vertices, are represented by Cn, S n, and Pn, in that order. The
bipartite semiregular graph is a special type of bipartite graph whose vertex set can be partitioned into
two disjoint subsets such that all vertices within the same subset have the same degree, but the degrees
of the two subsets may differ.

Within mathematical chemistry, the construction of mathematical models to elucidate the
relationships between molecular structures and the physicochemical properties of compounds
represents a prevalent approach for exploring quantitative structure-activity relationships (QSAR) and
quantitative structure-property relationships (QSPR). Consequently, numerous molecular graph-based
structure descriptors have been proposed. In [1], the authors reviewed the use of quantum-chemical
descriptors in QSAR/QSPR studies, highlighting their critical role in establishing correlations with
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biological activity, chemical reactivity, partition coefficients, and other physicochemical
properties. [2] covered statistical modeling methods for molecular descriptors in QSAR/QSPR,
including statistical, information-theoretic, and data analysis techniques for building data-driven
predictive models of molecular properties and structure. Topological indices (TI) are numerical
descriptors associated with the molecular architecture of chemical compounds. Leveraging
mathematical formalisms, these indices offer a quantitative representation of molecular structural
characteristics. They enable a comprehensive understanding of the diverse physicochemical properties
and biological activities of molecules, facilitating a deeper exploration of their behavior and
interactions in various contexts. For example, [3] used graph theory to analyze how the molecular
structure of alternant hydrocarbons determines their total π-electron energy. Thus, in mathematical
chemistry, one can represent a topological index in matrix form (e.g., the weighted adjacency
matrix [4]) and utilize its eigenvalues to predict the physicochemical properties of molecules.

In 1975, Randić [5] proposed a method for characterizing the branching of molecules, which laid
the foundation for subsequent research. Since then, the Randić index and its related theories have been
widely studied and developed. Gutman and Furtula’s summary and review of theoretical advances in
the Randić index [6] further advanced the field. The Randić index is:

R(G) =
∑
i∼ j

1√
did j
.

In addition to the Randić index, other topological indices have also attracted widespread attention.
Proposed by Estrada et al. in 1998 [7], the atom-bond connectivity (ABC) index is intended to predict
the formation of enthalpy of alkanes.

ABC(G) =
∑
i∼ j

√
di + d j − 2

did j
.

The ABC index provides a new perspective on the relationship between molecular structure and
energy properties by considering the interactions between atoms and bonds. Subsequently, Zhou and
Trinajstić [8] introduced a new index, called the sum-connectivity (SC) index, which further enriched
the research of the topological index.

S C(G) =
∑
i∼ j

1√
d1 + d j

.

The atom-bond sum-connectivity (ABS) index was introduced in [9]. [10] investigated the relationship
between the general sum-connectivity index and the connectivity of a graph, establishing new bounds
for the sum-connectivity index.

ABS (G) =
∑
i∼ j

√
di + d j − 2

di + d j
.

To facilitate further analysis, the ABS-matrix is denoted by S = S (G) =
[
ai j

]
n×n

, where

ai j =


√

di+d j−2
di+d j

, viv j ∈ E(G);

0, otherwise.
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We define the eigenvalues of S (G) as ρ1(S (G)) ≥ ρ2(S (G)) ≥ · · · ≥ ρn(S (G)), and denote ABS
eigenvalues of G.Among them, the largest eigenvalue, referred to as the ABS spectral radius, is denoted
by ρ(S (G)).

In [11], the ABC index was combined with matrix theory to reveal the structural features of graphs
through spectral analysis, thus providing insight into the potential relationship between
graph-theoretic properties and molecular structure. [12] discussed corrections to previously reported
bounds on the ABC index of graphs, addressing errors in earlier publications. [13] examined the ABC
index of trees with a fixed number of leaves. [14] reviewed the extremal results and bounds of the
ABC index in graph theory, as well as its applications in chemistry. [15] examined the ABC index in
chemical trees, focusing on its minimum and maximum values and their significance. [16] discussed
the extremality of the ABC spectral radius of a tree, proving that for any tree of order n ≥ 3, the ABC
spectral radius satisfies a specific inequality if and only if the tree is isomorphic to a particular path or
star graph. [17] discussed the ABS Estrada index of trees. [18] discussed the ABC index of chemical
trees and its structural properties, focusing on trees with different degree sequences and specific
vertex conditions. [19] introduced and examined the properties of the Laplacian ABC-matrix of
graphs, focusing on its eigenvalues and their differences from those of standard Laplacian
matrices. [20] introduced some useful graph transformations, and presented some properties of
n-optimal trees. In recent years, the ABS index has become a research hotspot, which is obtained
from the ABC index. Ali et al. in [21] contrasted the disparities between the ABC index and the ABS
index. They demonstrated that for a graph satisfying δ ≥ 2, the value of the ABS index is invariably
larger than that of the ABC index. Ali et al. in [22] conducted a comprehensive investigation of the
ABS index of unicyclic graphs and their applications. Their work not only uncovered the inherent
properties of the ABS index in the domain of unicyclic graphs but also expounded on its potential
value for applications within this particular graph class. [23] studied the chemical significance of the
ABS spectral radius and found that it is superior to the ABS index in predicting certain
physicochemical properties of molecules. The reference [24] studies the spectral properties of
matrices that depend on the ABS index, including the ABS -matrix, the Laplacian ABS -matrix, and
the S α matrix. [25] introduced the ABS index, and presented upper and lower bounds for this index in
terms of graph parameters and other graph indices. [26] discussed the Sombor index of chemical
graphs, characterizing these graphs based on this index across different molecular structures such as
connected chemical graphs, chemical trees, and hexagonal systems. [27] introduced extremal
problems related to the Sombor index of unicyclic graphs with a specified diameter, extending
previous work on trees to determine the maximum Sombor indices for such graphs. [28] explored the
Sombor index, and evaluated its application across various graph transformations. [29] focused on
graph theory’s Sombor index, finding its limits and noting how cycle graph Cn minimizes it among
certain graphs.

In this paper, we have obtained some results of ABS spectral radius, and combined with some
properties of octane isomers, to conduct a series of studies on the ability of the ABS spectral radius
to predict molecular properties. In Section 2, several lemmas are presented that lay the theoretical
foundation for the subsequent proofs. In Section 3, we focus on the ABS spectral radius and explore
several bounds applicable to the ABS spectral radius. and their properties in various graph classes (e.g.,
trees, unicyclic graphs, complete bipartite, etc.). In Section 4, by analyzing the correlation between
the ABS spectral radius and the physicochemical properties of octane isomers, the predictive ability of
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the spectral radius of ABS in the modeling of chemical structure activity is verified, and the potential
application value of the spectral radius of ABS in the chemical field is demonstrated. In Section 5,
ABS energy and its related properties are studied.

2. Preliminaries

Lemma 2.1. Let ρ1(R(G)) be the Randić spectral radius of a connected graph G. Then, ρ1(R(G)) = 1.

Lemma 2.2. Let M1 and M2 be nonnegative n×n matrices. The notation M1 ⪯ M2 denotes the element
relation where (M1)i j ≥ (M2)i j for all indices i, j. If M1 ⪯ M2, then for their spectral radius ρ(M1) and
ρ(M2), the inequality ρ(M1) ≤ ρ(M2) holds. Moreover, when M1 is irreducible, and M1 , M2, we can
state that ρ(M1) < ρ(M2).

Lemma 2.3. Let P be a nonnegative irreducible matrix. Denote by r the average of the row sums
of P and by R the maximum row sum of P. Then, the spectral radius ρ(P) satisfies the inequality
r ≤ ρ(P) ≤ R. Moreover, equality in either bound holds if and only if all row sums of P are equal.

Lemma 2.4. Let M be a nonnegative irreducible matrix with an eigenvalue θ. Let α ∈ R and a
nonnegative vector Y ∈ Rn. Suppose that MY ≤ αY; it follows that θ ≤ α.

Lemma 2.5. Let G be a graph and n ≥ 3 without isolated vertices. Then, S (G) has a single distinct
eigenvalue if and only if n is even, and G =

(
n
2

)
K2.

Lemma 2.6. Suppose M is an n-order nonnegative symmetric matrix, and it denotes the adjacency
matrix of a connected graph. Denote by ρ1, ρ2, . . . , ρk the eigenvalues of matrix M for which |ρi| = ρ(M)
(i = 1, 2, . . . , k), where ρ(M) denotes the spectral radius of M. Then, k > 1 if and only if the length of
every closed walk in graph G is a multiple of k.

Lemma 2.7. Assuming that A is a nonsingular square matrix, then

det
(
A B
C D

)
= det(A) det(D −CA−1B).

3. ABS spectral radius

Theorem 3.1. Let G be a connected graph. Then,

min
i∼ j

√
did j(di + d j − 2)

di + d j
≤ ρ(S (G)) ≤ max

i∼ j

√
did j(di + d j − 2)

di + d j
; (3.1)

the equality holds if and only if G is regular or bipartite regular.

Proof. If G is connected, then R(G) and S (G) are both nonnegative irreducible matrices. We have

min
i∼ j

√
did j(di + d j − 2)

di + d j
R(G) ⪯ ρ(S (G)) ⪯ max

i∼ j

√
did j(di + d j − 2)

di + d j
R(G). (3.2)

By Lemmas 2.1 and 2.2, (3.1) can be derived.
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Next, we will discuss the situation where the equality holds in (3.1). We assume that

α = min
i∼ j

√
did j(di + d j − 2)

di + d j
and β = max

i∼ j

√
did j(di + d j − 2)

di + d j
.

First, assume that ρ(S (G)) = α. Then, from Eq (3.2) and Lemma 2.2, it follows that S (G) = αR(G).
This equality implies that for all viv j ∈ E(G), the equation√

did j(di + d j − 2)
di + d j

= α

holds. Let vi be a vertex with degree δ. Then,

α =

√
δd j(d j + δ − 2)

d j + δ
≤

√
δ∆(∆ + δ − 2)
∆ + δ

.

Let vi be a vertex with degree ∆. Then,

α =

√
∆d j(d j + ∆ − 2)

d j + ∆
≥

√
δ∆(∆ + δ − 2)
∆ + δ

.

Thus,

α =

√
δ∆(∆ + δ − 2)
∆ + δ

.

In this case, every neighbor of a minimum degree vertex is a maximum degree vertex, and the reverse
is also true; it follows that G is regular or bipartite semiregular. Likewise, the treatment of the situation
in which ρ(S (G)) = β is quite similar.

On the contrary, for all edges viv j ∈ E(G), when G is a regular graph or a bipartite semiregular
graph, we have √

did j(di + d j − 2)
di + d j

= α = β ;

then,
S (G) = αR(G) = βR(G).

By the Lemma 2.1, we observe that ρ(S (G)) = α = β. □

Corollary 3.2. Let G be connected. Then,√
δ(δ − 1) ≤ ρ(S (G)) ≤

√
∆(∆ − 1).

If and only if G is a regular graph, the equalities for both inequalities are satisfied.

Theorem 3.3. Let G be a triangle-free connected graph, and n ≥ 3. Then,

ρ(S (G)) ≤
n
2

√
1 −

2
n
,

there is equality if and only if G � K n
2 ,

n
2
.
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Proof. Let G be triangle-free. For all viv j ∈ E(G), the set of the neighborhoods of vi and v j, denoted
as NG(vi) and NG(v j), have an empty intersection; therefore, NG(vi) ∩ NG(v j) = ∅. Moreover, in
view of the fact that the union of the two neighborhoods is included in the vertex set of G, we obtain∣∣∣NG(vi) ∪ NG(v j)

∣∣∣ ≤ n, where n = |V(G)|. We then have

di + d j = |NG(vi)| + |NG(v j)| = |NG(vi) ∪ NG(v j)| + |NG(vi) ∩ NG(v j)| ≤ n.

By this inequality, we can infer that did j ≤
n2

4 . Therefore, by Theorem 3.1, we obtain

ρ(S (G)) ≤ max
i∼ j

√
did j −

2did j

di + d j
≤

√
did j −

2did j

n
≤

n
2

√
1 −

2
n
.

It is obvious that if G � K n
2 ,

n
2
, we have ρ(S (G)) = n

2

√
1 − 2

n . Conversely, assuming that ρ(S (G)) =

n
2

√
1 − 2

n , all of the inequalities mentioned above must hold as equalities and G is either regular or
bipartite semiregular. Next, we assume that

da + db = max
i∼ j

(di + d j) = n.

As a result, every vertex within NG(va) has a degree of db = |NG(vb)|, and every vertex in NG(vb) has a
degree of da = |NG(va)|. Furthermore, due to the fact that G is triangle-free, both NG(va) and NG(vb) are
independent sets. Consequently, every vertex in NG(va) has an edge to each vertex within NG(vb), and
symmetrically, each vertex in NG(vb) has an edge to each vertex within NG(va). If |NG(va)|+|NG(vb)| = n,
we have G � K n

2 ,
n
2
. □

Theorem 3.4. Let G be a unicyclic graph with n vertices. Then,

ρ(S (G)) ≥
4
∆

√
∆ − 1
∆
,

equality holds if and only if G � Cn.

Proof. As G is a unicyclic graph which consists of n vertices, we have
∑n

i=1 di = 2n. By Lemma 2.3,
we obtain

ρ(S (G)) ≥
2
n

∑
i∼ j

√
di + d j − 2

di + d j
=

2
n

∑
i∼ j

√
di + d j − 2
(di + d j)3 (di + d j)

≥
1
n

√
∆ − 1
∆3

∑
i∼ j

(di + d j) =
1
n

√
∆ − 1
∆3

n∑
i=1

d2
i .

(3.3)

Using the Cauchy-Schwarz inequality, we can infer that
(∑n

i=1 di
)2
≤ n

∑n
i=1 d2

i , where the equality holds
if and only if d1 = d2 = · · · = dn. Thus,

ρ(S (G)) ≥
1
n

√
∆ − 1
∆3

n∑
i=1

d2
i ≥

1
n2

√
∆ − 1
∆3 (

n∑
i=1

di)2

=
1
n2

√
∆ − 1
∆3 4n2 = 4

√
∆ − 1
∆3 =

4
∆

√
∆ − 1
∆
.

(3.4)
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If G � Cn, we have ρ(S (G)) = 4
∆

√
∆−1
∆
=
√

2. Conversely, if ρ(S (G)) = 4
∆

√
∆−1
∆

, then di = 2, i =
1, 2, ..., n.; that is, G � Cn. □

Corollary 3.5. Let l(G) be the length of the cycle present in the unicyclic graph G. If l(G) = 3, then

ρ(S (G)) ≤
4

n − 1

√
n − 2
n − 1

.

If l(G) = 4, then

ρ(S (G)) ≤
4

n − 2

√
n − 3
n − 2

.

We can infer that ∆ = n − l(G) − 2; then,

ρ(S (G)) ≤
4

n − l(G) + 2

√
n − l(G) + 1
n − l(G) + 2

.

In the same vein, we know that if G � Cn, then ρ(S (G)) =
√

2.

Theorem 3.6. Let G be a unicyclic graph with n vertices. If γ = max{di + d j|i ∼ j} ≤ n − 1, then,

ρ(S (G)) ≤

√
(n − 3)(n + 1)

n − 1
.

Proof. Let Y = (
√

d1,
√

d2, . . . ,
√

dn)T . Because γ ≤ n − 1, then 1 ≤ di ≤ n − 3, i = 1, 2, ..., n.We can
derive that ∑

v j∈N(vi)

d j = 2n − di −
∑

vk<(N(vi)∪vi)

dk ≤ 2n − di −
∑

vk<(N(vi)∪vi)

1 = n + 1.

(S Y)i =
∑
i∼ j

√
1 −

2
di + d j

√
d j ≤

√
1 −

2
n − 1

∑
i∼ j

√
d j.

By the Cauchy-Schwarz inequality, we have∑
i∼ j

√
d j ≤

√∑
i∼ j

d j

√
di ≤

√
n + 1

√
di.

Thus,

(S Y)i ≤

√
1 −

2
n − 1

√
n + 1

√
di, S Y ≤

√
1 −

2
n − 1

√
n + 1 Y.

From Lemma 2.4, we can see that

ρ(S (G)) ≤

√
1 −

2
n − 1

√
n + 1 =

√
(n − 3)(n + 1)

n − 1
.

□

The following theorem has already been mentioned in [23], and another method is proposed here.
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Theorem 3.7. Let T be an n order tree. Then,

ρ(S (T )) ≤

√
(n − 2)(n − 1)

n
.

The above inequality holds if and only if T � S n.

Proof. For every edge vkvi ∈ E(G), we have di + dk ≤ n. Let mi be the average degree of neighbors of
vi. For any vi ∈ V(T ), it holds that di + mi ≤ di +

n−1
di
≤ n (di ≤ n − 1); thus, dkmk ≤ n − 1 for any

vk ∈ V(T ).
Let x = (x1, x2, . . . , xn)T be the eigenvector corresponding to ρ(S (T )) of S (T ), that is, S (T )x =

ρ(S (T ))x. Let xk = 1, |x j| ≤ 1. Then, for vi ∈ V(T ), we have

ρ(S (T ))xi =
∑

v j∈N(vi)

√
1 −

2
di + d j

x j.

For vk ∈ V(T ), we have

ρ(S (T )) =
∑

vi∈N(vk)

√
1 −

2
di + dk

xi.

Thus,

ρ(S (T ))2 =
∑

vi∈N(vk)

√
1 −

2
di + dk

xi

=
∑

vi∈N(vk)

√
1 −

2
di + dk

∑
v j∈N(vi)

√
1 −

2
di + d j

x j

≤
∑

vi∈N(vk)

√
1 −

2
di + dk

∑
v j∈N(vi)

√
1 −

2
di + d j

=
∑

vi∈N(vk)

√
1 −

2
di + dk

di

√
1 −

2
di + mi

≤ (1 −
2
n

)
∑

vi∈N(vk)

di = (1 −
2
n

)dkmk ≤ (1 −
2
n

)(n − 1).

(3.5)

We can conclude that

ρ(S (T )) ≤

√
(1 −

2
n

)(n − 1) =

√
(n − 2)(n − 1)

n
.

If the equality holds, then dk + di = n for all vivk ∈ E(T ). We can infer that di + mi = n for all
vi ∈ N(vk), and dkmk = n − 1 for all vk ∈ V(T ). For vi ∈ V(T ), di + mi = di +

n−1
di
= n if and only if

di = 1 or di = n − 1, that is, T � S n.
Conversely, if T � S n, we have

S (T ) =

√
n − 2

n
A(T );
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therefore,

ρ(S (T )) =

√
n − 2

n

√
n(n − 1)

n
=

√
(n − 2)(n − 1)

n
.

□

Theorem 3.8. Let Pn be a path with n vertices. Then, −2
√

1
2 < ρi(Pn) < 2

√
1
2 for 1 ≤ i ≤ n.

Proof. Let x = (x1, x2, . . . , xn)T be the eigenvector corresponding to ρi of S (Pn). Let xp = 1, |xq| = 1,
and 1 ≤ q ≤ n. We have S (Pn)x = ρi(Pn)x, which implies

ρi(Pn)x1 =

√
1
3 x2

ρi(Pn)x2 =

√
1
3 x1 +

√
1
2 x3

ρi(Pn)x j =

√
1
2 x j−1 +

√
1
2 x j+1 for 3 ≤ j ≤ n − 2

ρi(Pn)xn−1 =

√
1
2 xn−2 +

√
1
3 xn

ρi(Pn)xn =

√
1
3 xn−1.

Let the vertex set S = {v1, v2, vn−1, vn}. If vp ∈ S , then from the above equations, we have:

ρi(Pn) = ρi(Pn)xp < 2

√
1
2

and ρi(Pn) = ρi(Pn)xp > −2

√
1
2
.

If xp ∈ V(Pn) \ S , we set xi < 1 for i = 1, 2, n − 1, n. From the above equations, we obtain

ρi(Pn) = ρi(Pn)xp =

√
1
2

xp−1 +

√
1
2

xp+1 ≤ 2

√
1
2
,

and similarly,

ρi(Pn) = ρi(Pn)xp =

√
1
2

xp−1 +

√
1
2

xp+1 ≥ −2

√
1
2
.

Conversely, we prove that ρi(Pn) < 2
√

1
2 . Let ρi(Pn) < 2

√
1
2 . Then, we have xp−1 = xp+1 = 1.

Similarly, for xp + 1 ∈ V(Pn) \ S , we have

ρi(Pn) = ρi(Pn)xp+1 =

√
1
2

xp +

√
1
2

xp+2;

therefore, xp+2 = 1. Repeating the process, we obtain x2 = x3 = · · · = xp = · · · = xn−1 = 1, which leads

to a contradiction. Likewise, we can show that ρi(Pn) > −2
√

1
2 . □

4. Correlation analysis between octane isomers and ABS spectral radius

In addition to mathematical exploration, establishing chemical connections with graph invariants
represents a contemporary research trend within the realm of computational graph theory. Randić
and Trinajstić proposed several components for probing into the practical application value of graph
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invariants. In order to assess the predictive capacity of an index, it is necessary to establish a correlation
between the theoretical values of indices and the experimental properties of a benchmark data set. The
chemical graphs associated with octane isomers are in the form of trees. These trees have eight vertices,
and for each vertex, the maximum degree is at most four. In chemical graph theory, a “chemical tree”
is a tree-graph model used to represent the topological structure of organic molecular skeletons. Its
fundamental conventions are that vertices correspond to nonhydrogen atoms in the molecule (such as
carbon atoms), edges correspond to chemical bonds between atoms, and hydrogen atoms are typically
omitted. Figure 1 shows the chemical trees of the octane isomers considered in this paper.

Figure 1. Chemical tree of octane isomers.

In chemoinformatics and drug design, molecular descriptors play a crucial role in establishing
quantitative structure–property/activity relationship (QSPR/QSAR) models. Among them, Voronoi
diagram analysis(VDA) accurately describes the three-dimensional surface shape of molecules
through geometric partitioning; Shape matching target intermolecular (SMTI) quantifies the degree of
shape complementarity between a molecule and its biological target; Geometric moment topological
index (GMTI) serves as a comprehensive descriptor integrating the three-dimensional shape and
two-dimensional topological structure of molecules; and Hydrophobic distribution profile (HyDp)
characterizes the spatial distribution of hydrophobicity on the molecular surface. Collectively, these
descriptors digitally represent the interaction mechanisms between molecules and biological targets
from multiple dimensions, including geometric matching, topological structure, and chemical
property distribution. By analyzing the correlation between the ABS spectral radius of octane isomers
and the aforementioned descriptors, this study aims to validate the potential and application value of
the ABS spectral radius in predicting complex molecular properties. Complete experimental data on
the physicochemical properties of octane isomers are available at:
https://web.archive.org/web/20170712072219/http:

//www.moleculardescriptors.eu/dataset/c8.rar.
The ABS spectral radius of the chemical trees in Figure 1 and several properties of octane isomers

are shown in Table 1. The approximate values of correlation coefficients between the VDA, SMTI,
GMTI, and HyDp of octane isomers and ABS spectral radius and ABC spectral radius can be obtained
by calculation, which are shown in Table 2. One can observe that the ABS spectral radius is more
effective than the ABC spectral radius in predicting the VDA, SMTI, GMTI, and HyDp of octane
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isomers. Table 2 also indicates that the ABS spectral radius is a good predictive indicator for the VDA,
SMTI, GMTI, and HyDp of octane isomers. This shows that it is reasonable to introduce ABS spectral
radius as a prediction parameter in chemistry. The values of spectral radius in Tables 1 and 2 were
calculated by MATLAB.

Table 1. Experimental data of VDA, SMTI, GMTI, HyDp, ρABS (S ), ρABC(S ) octane isomers.

Molecule VDA SMTI GMTI HyDp ρABS (S ) ρABC(S )
octane 21 306 231 210 1.3076 1.3289
2-methyl-heptane 19.75 288 211 185 1.4102 1.4541
3-methyl-heptane 19 276 199 170 1.4520 1.4462
4-methyl-heptane 18.75 272 195 165 1.4677 1.4543
3-ethyl-hexane 18 260 183 150 1.4922 1.4344
2,2-dimethyl-hexane 17.75 260 179 149 1.6354 1.7000
2,3-dimethyl-hexane 17.5 254 175 143 1.5568 1.5386
2,4-dimethyl-hexane 17.75 258 179 147 1.5195 1.5228
2,5-dimethyl-hexane 18.5 270 191 161 1.4687 1.5082
3,3-dimethyl-hexane 16.75 244 163 131 1.6714 1.6594
3,4-dimethyl-hexane 17 246 167 134 1.5744 1.5229
2-methyl-3-ethyl-pentane 16.75 242 163 129 1.5802 1.5231
3-methyl-3-ethyl-pentane 16 232 151 118 1.6922 1.6143
2,2,3-trimethyl-pentane 15.75 230 147 115 1.7262 1.7251
2,2,4-trimethyl-pentane 16.5 242 159 127 1.6733 1.7234
2,3,3-trimethyl-pentane 15.5 226 143 111 1.7372 1.6973
2,3,4-trimethyl-pentane 16.25 236 155 122 1.6261 1.5933
2,2,3,3-tetramethylbutane 14.5 214 127 97 1.8428 1.8371

Table 2. The correlation coefficient of VDA, SMTI, GMTI, and HyDp of octane isomers
with ρABS (S ) and ρABC(S ).

Property ρABS (S ) ρABC(S )
VDA -0.9662 -0.8660
SMTI -0.9543 -0.8402
GMTI -0.9663 -0.8660
HyDp -0.9524 -0.8434

Next, three types of regression models are studied, which include linear, quadratic, and cubic. Here
are the three regression models.

y = a + b1x1; n,R (Linear) (4.1)
y = a + b1x2 + b2x2

2; n,R (Quadratic) (4.2)
y = a + b1x3 + b2x2

3 + b3x3
3; n,R (Cubic). (4.3)

Let y denote the dependent variable, a be the regression constant, and bi (where i = 1, 2, 3) be the
regression coefficients. The variables xi are the independent variables. The samples are used in the
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formulation of the regression equation. Here, the correlation coefficient is denoted by R, the standard
error of the estimates is denoted by S E, and Fisher’s statistic is represented as F.

The linear regression models are as follows:

VDA = −11.6994 · ρABS + 35.7910, R2 = 0.9337,
SMTI = −165.5314 · ρABS + 514.5946, R2 = 0.9106,
GMTI = −186.3909 · ρABS + 467.6567, R2 = 0.9337,
HyDp = −200.3224 · ρABS + 458.8859, R2 = 0.9071.

The quadratic regression models are as follows:

VDA = 7.3885 · ρ2
ABS − 34.9344 · ρABS + 54.0188, R2 = 0.9434,

SMTI = 140.1581 · ρ2
ABS − 607.3369 · ρABS + 860.3715, R2 = 0.9275,

GMTI = 118.2161 · ρ2
ABS − 559.0307 · ρABS + 759.3010, R2 = 0.9434,

HyDp = 219.6087 · ρ2
ABS − 892.5713 · ρABS + 1000.6711, R2 = 0.9353.

The cubic regression models are as follows:

VDA = −25.5799 · ρ3
ABS + 128.2397 · ρ2

ABS − 224.1620 · ρABS + 152.1861,
R2 = 0.9468,

SMTI = −361.5460 · ρ3
ABS + 18498.2605 · ρ2

ABS − 3281.7949 · ρABS + 2249.0012,
R2 = 0.9308,

GMTI = −409.2779 · ρ3
ABS + 7051.8360 · ρ2

ABS − 3586.5933 · ρABS + 2330.1372,
R2 = 0.9468,

HyDp = −534.5696 · ρ3
ABS + 2749.1649 · ρ2

ABS − 4846.9560 · ρABS + 3032.3946,
R2 = 0.9402.

The correlation between VDA, SMTI, GMTI, HyDp, and ABS spectral radius is shown in
Figure 2. In each subplot of Figure 2, the points (x, y) correspond to the ABS spectral radius and a
physicochemical property of the octane isomers, respectively. The curves represent the fitted
regression lines.

The root mean square error (RMSE) is a key metric for evaluating prediction accuracy. By
accurately measuring the differences between observed and true values, it provides a rigorous basis
for assessing how accurately a model fits the data in a mathematical context. In model assessment, the
relationship between RMSE values and model performance is distinctly negative and significant. A
lower RMSE means a better fit and higher predictive reliability, whereas a higher RMSE indicates
significant deviations. The RMSE is defined as:

RMSE =

√∑n
i=1(yi − ŷi)2

n
,

where n denotes the quantity of samples, yi is the true value of the i-data point, and ŷi is the predicted
value of the i-data point. It is observed from the above data that, in all the regression models considered
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for the ABS spectral radius, the potentially best predictive index for VDA is tabulated in Table 3. It
is readily apparent from Table 3 that in all cases, the RMSE value is the smallest for ABS, and the
coefficient of determination (R2) is closer to 1, which proves that the ABS spectral radius is a good
predictor.

(a) ρABS (S (G)) vs. VDA (b) ρABS (S (G)) vs. SMTI

(c) ρABS (S (G)) vs. GMTI (d) ρABS (S (G)) vs. HyDp

Figure 2. Scatter plots of ABS spectral radius with various molecular descriptors.

Table 3. Statistical parameters of different regression models for ABS spectral radius and
VDA.

R2 F SE RMSE
Linear 0.9337 225.1933 0.4168 0.4051
Quadratic 0.9434 124.9284 0.3852 0.3743
Cubic 0.9468 83.0238 0.3734 0.3628

5. ABS energy

For graph G, the ABS energy EABS (G) is obtained by summing up the absolute values of all ABS
eigenvalues of graph G.

Proposition 5.1. Let G = G1 ∪G2 ∪G3 ∪ · · · ∪Gp. Then,

EABS (G) = EABS (G1) + EABS (G2) + · · · + EABS (Gp).
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The ABS eigenvalues of a graph are the result of combining the eigenvalues of each of the components
of the graph.

Proposition 5.2. Let G be a graph with the order n ≥ 3 and without isolated vertices.

(i) If G is a r-regular graph, and r ≥ 2, we obtain

EABS (G) =

√
r − 1

r
E(G).

If r = 0 or 1, then EABS (G) = 0. In particular,

EABS (Kn) = 2
√

(n − 2)(n − 1).

(ii) If G is an (r, s)-semiregular bipartite graph, then EABS (G) =
√

r+s−2
r+s E(G). Subsequently, we can

also deduce

EABS (Ka,b) = 2

√
n − 2

n

√
ab ≤ 2

√
n − 2

n
n
2
=

√
n(n − 2),

(where a + b = n).

The harmonic index [30] is

H(G) =
∑

viv j∈E(G)

2
di + d j

.

Proposition 5.3. Let G be a graph of order n ≥ 3 with no isolated vertices. Then,

EABS (G) ≥ 2
√

m − H(G).

Equality holds if and only if G =
(

n
2

)
K2 or n − a − b is even, and G = n−a−b

2 K2 ∪ Ka,b, where a + b ≥ 3.

Proof. It is known that

n∑
i=1

ρi(G) = 0,
n∑

i=1

ρ2
i (G) = 2(m − H(G)), H(G) =

2
n

∑
i< j

1
di + d j

.

We have

EABS (G)2 =

n∑
i=1

|ρi(G)|2 + 2
∑

1≤i< j≤n

|ρi(G)ρ j(G)|

≥

n∑
i=1

|ρi(G)|2 + 2

∣∣∣∣∣∣∣
n∑

i=1

ρi(G)ρ j(G)

∣∣∣∣∣∣∣
= 2(m − H(G)) + 2|H(G) − m|

= 4(m − H(G)).

(5.1)

Hence, EABS (G) ≥ 2
√

m − H(G).
If EABS (G) = 2

√
m − H(G), because

∑n
i=1 ρi(G) = 0, it follows that ρ1(S (G)) = · · · = ρn(S (G)) = 0,

or ρ1(S (G)) = −ρn(S (G)) , 0, and ρ2(S (G)) = · · · = ρn−1(S (G)) = 0. For the first case, by Lemma 2.5,
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we know that n is even, and G = n
2 K2. For the second case, according to Lemma 2.6, we can see that

all closed walks in G have lengths that are multiples of k, which means that G is a bipartite graph.
Additionally, we find that G has a bipartite connected component C′, |V(C′)| ≥ 3. G has three

distinct eigenvalues, and C′ does, as well; otherwise, we would have C′ = n
2 K2 or C′ = Kn, a

contradiction. Therefore, C′ = Ka,b, a + b = n′ ≥ 3, n − a − b is even, and G = n−a−b
2 K2 ∪ Ka,b.

Conversely, if n is even, and G = n
2 K2, or n − a − b is even, and G = n−a−b

2 K2 ∪ Ka,b, it is easy to
derive that EABS (G) = 2

√
m − H(G). □

Theorem 5.4. For n ≥ 2, the following two conclusions can be obtained.

(i) The ABS characteristic polynomial of S n = K1,n−1 is

φABS(S n, ρ) = ρn−2(ρ2 −
(n − 2)(n − 1)

n
).

(ii) The ABS energy of S n is

EABS (S n) = 2

√
(n − 2)(n − 1)

n
.

Proof. (i) We know that S (K1,n−1) is

S (K1,n−1) = S (S n) =

√
n − 2

n

(
01×1 J1×(n−1)

J(n−1)×1 0(n−1)×(n−1)

)
.

Then,

det(ρI − S (S n)) = det

 ρ −

√
n−2

n J1×(n−1)

−

√
n−2

n J(n−1)×1 ρIn−1

 .
By Lemma2.7, we have

det(ρI − S (S n)) = ρdet(ρIn−1 −

√
n − 2

n
J(n−1)×1

1
ρ

(

√
n − 2

n
J1×(n−1))).

Therefore,

det(ρI − S (S n)) = ρ det
(
ρIn−1 −

1
ρ

n − 2
n

Jn−1

)
= ρ2−n det

(
ρ2In−1 −

n − 2
n

Jn−1

)
.

And we know that the eigenvalues of Jn−1 are n − 1, 0, 0, . . . , 0, so

φABS(S n, ρ) = ρn−2(ρ2 −
(n − 2)(n − 1)

n
).

(ii) From (i), we conclude that the eigenvalues of the matrix S (S n) are√
(n−2)(n−1)

n ,−
√

(n−2)(n−1)
n , 0, 0, . . . , 0. By our definition of energy, we have

EABS (S n) = 2

√
(n − 2)(n − 1)

n
.

□

It can be seen from [23] that the unicyclic graph with the largest spectral radius is shown in Figure 3.
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Figure 3. unicyclic graph U.

Corollary 5.5. For the star graph S n, connecting two pendant vertices yields a unicyclic graph U, so

EABS (U) > EABS (S n) = 2

√
(n − 2)(n − 1)

n
.

Proof. By Theorem 5.4, we know that the eigenvalues of S (S n) are
√

(n−2)(n−1)
n , −

√
(n−2)(n−1)

n , 0, · · · , 0.
Because U is derived from adding an edge to the star graph S n, by the Courant-Fisher theorem, we
have ρ(S n) < ρ(Un). We have the matrix

B =



0 0 0 0 · · · 0
0 0 1 0 · · · 0
0 1 0 0 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 0


,

and we have
tr(S (S n) + B) = tr(S (S n)) + tr(B) = 0.

In summary, an increase in the spectral radius is accompanied by a decrease in the other eigenvalues.
Consequently, the sum of the absolute values of the zero and negative eigenvalues increases. Therefore,

EABS (U) > EABS (S n)2

√
(n − 2)(n − 1)

n
.

□

Theorem 5.6. Let m, n , 1 and Km,n be a complete bipartite graph.

(i) The ABS characteristic polynomial of Km,n is

φABS(Km,n, ρ) = ρm+n−2(ρ2 − mn
m + n − 2

m + n
).

(ii) The ABS energy of Km,n is

EABS (Km,n) = 2(m + n)

√
mn

m + n − 2
m + n

.
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Proof. (i) The ABS matrix of Km,n is

S (Km,n) =

√
m + n − 2

m + n

(
0m×m Jm×n

Jn×m 0n×n

)
.

We have

det(ρI − S (Km,n)) = det

 ρIm −

√
m+n−2

m+n Jm×n

−

√
m+n−2

m+n Jn×m ρIn

 .
Then, by Lemma 2.7,

det(ρI − S (Km,n)) = ρdet(ρIn −

√
m + n − 2

m + n
Jn×m

1
ρ

Im(

√
m + n − 2

m + n
Jm×n)).

Therefore,

det(ρI − S (Km,n)) = ρm det
(
ρIn −

1
ρ

m
m + n − 2

m + n
Jn−1

)
= ρm−n det

(
ρ2In − m

m + n − 2
m + n

Jn

)
.

We know that the eigenvalues of Jn are n, 0, 0, . . . , 0, so

φABS(Km,n, ρ) = ρm+n−2(ρ2 − mn
m + n − 2

m + n
).

(ii) It follows from Part (i).

□

Similarly to the ABS spectral radius, ABS energy also finds applications in the field of chemistry.
In [31], the physicochemical properties of benzenes were shown. It demonstrated that the boiling point
and π-electron energy could be modeled by employing ABS energy, thus revealing the applicability of
ABS energy in the field of chemistry.

6. Conclusions

This paper is dedicated to exploring the spectrum of the ABS index. First, the bound of the ABS
spectral radius is clarified and the characteristics of ABS spectral radius are explored for several
common types of graph. Using the octane isomer as the starting point, the correlation between the
ABS spectral radius and the physicochemical properties, was analyzed extensively using linear,
quadratic, and cubic regression models. The correlation between the ABS spectral radius and these
physicochemical properties was confirmed to be substantially significant. Our analysis demonstrates
that the ABS index exhibits superior performance compared to the ABC index in predicting the
physicochemical properties of the studied molecules. Additionally, the ABS energy was methodically
analyzed, revealing a profound relationship between the ABS energy and graph structure. Future
research could explore the application of ABS spectral radius and energy in other fields, such as
material science and bioinformatics, to further validate its versatility.

AIMS Mathematics Volume 11, Issue 1, 2343–2362.



2360

Author contributions

Xiangyu Ren: Conceptualization, Methodology, Project Administration; Jiangtong Liu:
Conceptualization, Methodology, Data curation, Formal analysis, Software, Visualization,
Writing-original draft. All authors have read and approved the final version of the manuscript for
publication.

Use of Generative-AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant
numbers, 12501490].

Conflict of interest

The authors hereby declare that, to the best of their knowledge, there are no competing financial
interests or personal relationships that could potentially bias or influence the findings and presentation
of the work reported in this paper.

References

1. M. Karelson, V. S. Lobanov, A. R. Katritzky, Quantum-chemical descriptors in qsar/qspr studies,
Chem. Rev., 96 (1996), 1027–1044. https://doi.org/10.1021/cr950202r

2. K. Varmuza, M. Dehmer, D. Bonchev, Statistical Modelling of Molecular Descriptors in
QSAR/QSPR, Hoboken: Wiley Online Library, 2012.
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