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Abstract: Optical solitons in nonlinear fiber optics represent fundamental wave phenomena that
maintain their shape during propagation, yet existing analytical methods often fail to capture the
complex dynamics of models incorporating dual nonlocal nonlinearity effects. Recent studies have
shown significant research gaps in solving Kudryashov’s law with simultaneous refractive index
variations and multiple nonlinear terms, particularly when conformable derivatives are involved.
In this study, we investigate the analytical solutions of Kudryashov’s equation with dual nonlocal
nonlinearity and refractive index effects in optical fibers using the improved modified Sardar Sub-
equation expansion method (IMSSEM). By applying systematic traveling wave transformations and
rigorous mathematical analysis, we derive an extensive collection of novel optical soliton solutions,
including rational, hyperbolic, and trigonometric function families. The solutions exhibit diverse wave
structures encompassing bright, dark, kink, and W-shaped soliton profiles. Through comprehensive 2D
and 3D graphical representations, we demonstrate the wave propagation characteristics under various
parameter conditions. Furthermore, we analyze the influence of different conformable derivative orders
(τ) on soliton behavior, revealing significant variations in wave amplitude, width, and propagation
velocity. These findings provide crucial insights for understanding nonlinear wave dynamics in
optical communication systems, particularly in wavelength-division multiplexing, ultrashort pulse
propagation, and nonlinear photonic devices. The derived solutions offer practical applications in
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designing optical amplifiers, mode-locked lasers, and soliton-based communication protocols. This
work contributes significantly to the mathematical physics community by providing a comprehensive
analytical framework for solving complex nonlinear optical models and advances the field of integrable
systems theory with direct applications to modern fiber optic technology.

Keywords: Kudryashov’s law; optical solitons; conformable derivatives; nonlocal nonlinearity;
refractive index; partial differential equations; IMSSEM; fiber optics; nonlinear wave equations;
traveling wave solutions
Mathematics Subject Classification: 35Q51, 35Q55, 37K10

1. Introduction

Nonlinear partial differential equations (NPDEs) constitute one of the most fundamental and
challenging areas in mathematical physics, representing complex phenomena across diverse scientific
disciplines, including fluid dynamics, plasma physics, quantum mechanics, and nonlinear optics [1–3].
These equations emerge naturally when linear approximations fail to adequately describe physical
systems, particularly in scenarios involving high energy densities, strong field interactions, or complex
wave propagation mechanisms [4, 5].

Fractional calculus provides a natural mathematical framework for modeling optical phenomena
associated with memory effects and anomalous dispersion in complex media. Conformable
fractional derivatives overcome limitations of classical fractional operators while maintaining physical
interpretability [6, 7]. The fractional-order parameter τ ∈ (0, 1] describes the degree of memory
retention in the medium: τ = 1 preserves instantaneous response, and τ < 1 describes temporal
nonlocality due to delayed Raman scattering, phonon interactions, and multiphoton absorption in
realistic fibers [8, 9].

Among fractional derivative operators, the conformable fractional derivative provides unique
benefits for modeling optical fiber dynamics. Although the Caputo and Riemann-Liouville derivatives
involve integral operators with singular kernels and often lack convenient chain-rule formulations,
the conformable derivative retains classical differential properties while remaining analytically and
computationally tractable. Specifically, it preserves the standard chain and product rules needed to
implement traveling wave transformations, naturally reduces to the classical integer-order derivative
as τ → 1, and provides computational efficiency through its local formulation relying on the function
and the scaled temporal variable t1−τ. The fractional-order parameter τ ∈ (0, 1] effectively captures
memory and hereditary effects intrinsic to complex optical media without introducing computational
difficulties imposed by nonlocal singular kernels [7].

Dual nonlocal nonlinearity results from spatial averaging of intensity-dependent refractive index
changes. The first term h1(|u|n)xx represents a conventional nonlocal response from thermal diffusion
and molecular reorientation, and h2(|u|2n)xx captures higher-order effects in nematic liquid crystals,
photorefractive media, and nanocomposite-doped fibers [10]. Both terms are essential for accurately
modeling next-generation high-capacity optical communication systems.

The mathematical complexity inherent in NPDEs has motivated researchers to develop sophisticated
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analytical and numerical techniques for obtaining exact and approximate solutions [11,12]. Pioneering
work in the field of NPDEs can be traced back to the fundamental contributions of Scott Russell,
who first observed solitary wave phenomena in shallow water channels, leading to the mathematical
formulation of the Korteweg-de Vries equation [13]. Subsequently, researchers such as Zabusky,
Kruskal, and Gardner developed the inverse scattering transform method, revolutionizing the approach
to solving integrable nonlinear systems [14, 15].

Modern analytical methods for NPDEs include the extended tanh method [16], the Hirota bilinear
method [17], the sine-cosine method [18], the Jacobi elliptic function method [19], and the generalized
Kudryashov method [20, 21].

Recent developments in nonlinear dynamics have incorporated bifurcation theory and chaotic
analysis to explore complex wave phenomena [22–24].

The nonlinear Schrödinger equation (NLSE) represents a cornerstone in the study of quantum
mechanics and nonlinear wave phenomena, describing the evolution of complex wave functions
in dispersive and nonlinear media [25]. Originally formulated by Schrödinger in the context of
quantum mechanics, the nonlinear extensions have found profound applications in diverse fields,
including Bose-Einstein condensates, nonlinear optics, plasma physics, and water wave dynamics [26].
Researchers have extensively employed various analytical techniques to solve different variants of the
NLSE, including the inverse scattering method [27], and the Hirota method [28].

Kudryashov’s law, representing a sophisticated extension of traditional nonlinear Schrödinger
equations, incorporates complex nonlinearity structures that more accurately model real-world optical
phenomena in fiber systems [29,30]. This equation has attracted significant attention from researchers
due to its ability to describe dual nonlocal nonlinearity effects and refractive index variations
simultaneously. Notable contributions to the study of Kudryashov’s law include the work of Biswas
and colleagues [31–33], and other researchers who utilized various analytical techniques [34, 35].

In this study, we investigate the analytical solution of Kudryashov’s law with dual nonlocal
nonlinearity and refractive index effects in optical fibers, mathematically expressed as

i
∂τu
∂tτ

+ auxx +
(
c1|u|n + c2|u|2n + c3|u|3n + c4|u|4n)u +

(
h1(|u|n)xx + h2(|u|2n)xx

)
u

=i
(
α1(|u|2mu)x + α2(|u|2m)xu + α3(|u|2m)ux

)
,

(1.1)

where u(x, t) is the complex wave envelope, and τ ∈ (0, 1] is the conformable derivative parameter
accounting for fractional-order temporal effects. The coefficient a represents the group-velocity
dispersion, and ci (i = 1, 2, 3, 4) describe nonlinear refractive index contributions associated with
Kerr, higher-order, and ultra-high-intensity nonlinear responses. The parameters h1 and h2 characterize
nonlocal effects arising from delayed material responses such as thermal diffusion and photorefractive
interactions. The coefficients αi (i = 1, 2, 3) account for self-steepening and higher-order dispersive
corrections. The exponents n and m define the power-law structure of the nonlinear terms, and the
constraint m = n is imposed to ensure consistent coupling between local self-phase modulation and
nonlocal refractive index contributions within the adopted wave framework.

Our investigation differs significantly from previous studies in several fundamental aspects. First,
we employ the improved modified Sardar sub-equation expansion method (IMSSEM), which provides
a more systematic and comprehensive approach compared to traditional methods used in earlier works.

Our study represents a significant advance over existing work through several key innovations.
First, our work is the first to incorporate conformable fractional derivatives (τ-dependent temporal
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evolution), dual nonlocal nonlinearity terms (h1(|u|n)xx and h2(|u|2n)xx), and fourth-order refractive
index effects (up to c4|u|4n) in a unified analytical framework for Kudryashov’s law. These features
have been studied separately in previous literature but not combined. Second, we derive 34 distinct
analytical solutions covering seven soliton types (bright, dark, kink, W-shaped, dark-bright, rational,
and trigonometric), substantially broadening the solution space. Third, we systematically examine the
effects of the conformable derivative parameter τ ∈ (0, 1] on soliton dynamics under dual nonlocal
nonlinearity, demonstrating previously unexplored memory-induced wave localization mechanisms.
Fourth, solutions u2, u4, u6, and u25 describe completely new soliton configurations arising from
the interaction between dual nonlocal terms and fractional-order derivatives which are not present
in previous literature.

The primary objectives of our investigation include developing a systematic analytical framework
for solving the generalized Kudryashov equation using IMSSEM, deriving comprehensive families of
optical soliton solutions with different mathematical structures, analyzing the influence of conformable
derivative parameters on soliton behavior, providing detailed graphical representations of solution
dynamics, and discussing the physical interpretations and practical applications of the obtained results
in optical fiber communication systems.

This paper is organized as follows: Section 2 presents the mathematical methodology and describes
the implementation of the improved modified Sardar sub-equation expansion method for solving the
governing equation. Section 3 provides the comprehensive application of IMSSEM to derive various
families of optical soliton solutions. Section 4 presents a detailed graphical analysis and discusses
the physical characteristics of the obtained solutions under different parameter configurations. Finally,
Section 5 concludes the paper with a summary of key findings and suggestions for future research
directions.

2. Description of the methods

Applying the traveling wave transformation is a prerequisite to solving Eq (1.1),

u(x, t) = U(ξ)eiψ(x,t), ψ(x, t) = −kx + w
tτ

τ
+ θ, ξ = x − v

tτ

τ
. (2.1)

Substituting the transformations from Eq (2.1) into Eq (1.1) yields the following:

(
−U2mkα1 − U2mkα3 − a k2 + Unc1 + U2nc2 + U3nc3 + U4nc4 − w

)
U2

+
((
−2iU2mmα1−2iU2mmα2−iU2mα1−iU2mα3−2iak−iv

)
Uξ+

(
Unnh1+2U2nnh2+a

)
Uξξ

)
U

+
(
Unn2h1 + 4U2nn2h2 − Unnh1 − 2U2nnh2

)
U2
ξ = 0.

(2.2)

From Eq (2.2), separate the real and imaginary parts as follows:(
U2mkα1+U2mkα3+ak2−Unc1−U2nc2−U3nc3−U4nc4+w

)
U2+

(
−Unnh1−2U2nnh2−a

)
UξξU

+
(
−Unn2h1 − 4U2nn2h2 + Unnh1 + 2U2nnh2

)
U2
ξ = 0,

(2.3)

and (
((2m + 1)α1 + 2mα2 + α3) U2m + 2ak + v

)
UξU = 0. (2.4)
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From Eq (2.4), separate the coefficient U2m+1Uξ and UUξ, obtaining

v = −2ak, α3 = −2mα1 − 2mα2 − α1. (2.5)

Substituting Eq (2.5) into Eq (2.3), we acquire

U2
(
ak2+w

)
−UUξξa+

(
−4

(
n−

1
2

)
nh2U2n−h1Unn (n−1)

)
U2
ξ +

(
−2nh2U1+2n−nh1U1+n

)
Uξξ

− 2km (α2 + α1) U2+2m − c2U2+2n − c3U2+3n − c4U2+4n − c1Un+2 = 0.
(2.6)

We now apply the transformation U(ξ) = V(ξ)
1
n with the constraint m = n. This constraint arises from

the physical requirement that nonlinear self-phase modulation terms (∝ |u|2m) and nonlocal refractive
index contributions (∝ |u|n) must operate at commensurate energy scales for the traveling wave ansatz
to yield consistent phase evolution. Under this constraint, we obtain

Vn
(
2h2n V2 + h1nV + a

)
Vξξ +

(
2h2V2n2 − a (n − 1)

)
V2
ξ

− V2n2
(
−c4V4 − c3V3 + (−2k (α2 + α1) n − c2) V2 − Vc1 + a k2 + w

)
= 0.

(2.7)

From Eq (2.7), examining the homogeneous balance between VξξV3 and V6 , we derive the balance
number N = 1.

IMSSEM is a type of powerful analytical technique for strongly nonlinear PDEs. Potential
alternative methods include the unified Riccati equation expansion method [36], the enhanced modified
extended tanh-function method [37], and dynamical system bifurcation analysis [38]. Riccati methods
provide a method of systematic polynomial construction, and dynamical ones allow us to reveal
phase-space structures, but IMSSEM has particular advantages: systematic handling of multiple
nonlinear powers (|u|n through |u|4n); efficient incorporation of rational, hyperbolic, and trigonometric
solution families; and natural accommodation of conformable fractional derivatives via traveling wave
transformations. Such a balance between generalization and tractability allows IMSSEM to be most
suitable for Kudryashov’s law with dual nonlocal nonlinearity.

3. Application of IMSSEM

In this section, we present several novel optical soliton solutions for the current model. We assume
that the solution to Eq (2.7) can be expressed as the following series:

V(ξ) =

N∑
i=0

δi(G)i, (3.1)

where δi, (i = 0, 1, 2, . . . ,N) are unknown constants, and N is a balancing parameter. In Eq (2.7), the
balancing principle leads to N = 1. Here, from Eq (3.1), the following is obtained:

V(ξ) = δ0 + δ1G. (3.2)

Following the balancing principle N = 1 from Eq (2.7), the solution structure reduces to Eq (3.2). The
auxiliary function G(ξ) satisfies the generalized Riccati equation Eq (3.3), whose parameter-dependent
solutions yield comprehensive solution families.

G2
ξ = C G4 + B G2 + A. (3.3)
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Case 1. Rational solutions: When A = 0, B = 0, and C > 0, the solutions of Eq (3.3) are

G(ξ) = ±
1

√
C (ξ + ξ0)

. (3.4)

Case 2. Hyperbolic trigonometric function solutions: When A = 0, B > 0, and C > 0, the solutions of
Eq (3.3) are

G(ξ) = ±
4B

(
cosh

(√
B (ξ + ξ0)

)
+ sinh

(√
B (ξ + ξ0)

))
cosh

(
2
√

B (ξ + ξ0)
)

+ sinh
(
2
√

B (ξ + ξ0)
)
− 4BC

, (3.5)

G(ξ) = ±
4B

(
cosh

(√
B (ξ + ξ0)

)
+ sinh

(√
B (ξ + ξ0)

))
1 − 4BC

(
cosh

(
2
√

B (ξ + ξ0)
)

+ sinh
(
2
√

B (ξ + ξ0)
)) . (3.6)

When A = 0, B > 0, and C , 0, the solutions of Eq (3.3) are

G(ξ) = ±

√
−

B
C

sech
(√

B (ξ + ξ0)
)
, (3.7)

G(ξ) = ±

√
B
C

csch
(√

B (ξ + ξ0)
)
. (3.8)

When A = B2

4C , B < 0, and C > 0, the solutions of Eq (3.3) are

G(ξ) = ±

√
−2B

C tanh
( √
−2B (ξ+ξ0)

2

)
2

, (3.9)

G(ξ) = ±

√
−2B

C coth
( √
−2B (ξ+ξ0)

2

)
2

, (3.10)

G(ξ) = ±

√
−2B

C

(
tanh

(√
−2B (ξ + ξ0)

)
+ i sech

(√
−2B (ξ + ξ0)

))
2

, (3.11)

G(ξ) = ±

√
−2B

C

(
coth

(√
−2B (ξ + ξ0)

)
+ csch

(√
−2B (ξ + ξ0)

))
2

, (3.12)

G(ξ) = ±

√
−2B

C

(
tanh

( √
−2B (ξ+ξ0)

4

)
+ coth

( √
−2B (ξ+ξ0)

4

))
4

. (3.13)

Case 3. Trigonometric function solutions: When A = 0, B < 0, and C , 0, the solutions of Eq (3.3)
are

G(ξ) = ±

√
−

B
C

sec
(√
−B (ξ + ξ0)

)
, (3.14)

G(ξ) = ±

√
−

B
C

csc
(√
−B (ξ + ξ0)

)
. (3.15)

When A = B2

4C , B > 0, and C > 0, the solutions of Eq (3.3) are
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G(ξ) = ±

√
2

√
B
C tan

( √
2
√

B (ξ+ξ0)
2

)
2

, (3.16)

G(ξ) = ±

√
2

√
B
C cot

( √
2
√

B (ξ+ξ0)
2

)
2

, (3.17)

G(ξ) = ±

√
2

√
B
C

(
tan

(√
2
√

B (ξ + ξ0)
)

+ sec
(√

2
√

B (ξ + ξ0)
))

2
, (3.18)

G(ξ) = ±

√
2

√
B
C

(
cot

(√
2
√

B (ξ + ξ0)
)

+ csc
(√

2
√

B (ξ + ξ0)
))

2
, (3.19)

G(ξ) = ±

√
2

√
B
C

(
tan

( √
2
√

B (ξ+ξ0)
4

)
− cot

( √
2
√

B (ξ+ξ0)
4

))
4

. (3.20)

Substitute Eqs (3.2) and (3.3) into Eq (2.7) to obtain a polynomial with the argument G(ξ)i (i = 0, ..., 6).
An algebraic equation system is formed by equating the coefficients of this polynomial to zero and
solving the system of algebraic equations with the help of algebraic software Maple. We obtain the
following results:
Result 1.

n=1,w=
4ACδ2

1h2−B2δ2
1h2−2Cak2−4BCa
2C

, δ0 =

√
−2CBδ1

2C
, δ1 =δ1, c1 =

2Bδ1h1+3
√
−2CBa

δ1
,

c2 =
8Bδ2

1h2−2kδ2
1α2−2kδ2

1α1+3
√
−2CBδ1h1−2Ca

δ2
1

, c3 =

2C
(

5
√
−2CBδ1h2

C −h1

)
δ2

1

, c4 =−
6Ch2

δ2
1

,

(3.21)

where C , 0 and δ1 , 0.
From Eqs (2.1), (2.6), (3.2), (3.4), and Eq (3.21), we obtain the following soliton solution:

u1(x, t) =


√
−2CB δ1

2C
+

δ1
√

C
(
x + 2ak tτ

τ
+ ξ0

) e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.22)

From Eqs (2.1), (2.6), (3.2), (3.5), and Eq (3.21), we obtain the following soliton solution:

u2(x, t) =


√
−2CB δ1

2C
+

4δ1B
(
cosh

(√
B

(
x + 2ak tτ

τ
+ ξ0

))
+ sinh

(√
B

(
x + 2ak tτ

τ
+ ξ0

)))
cosh

(
2
√

B
(
x + 2ak tτ

τ
+ ξ0

))
+ sinh

(
2
√

B
(
x + 2ak tτ

τ
+ ξ0

))
− 4CB


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.23)

From Eqs (2.1), (2.6), (3.2), (3.6), and Eq (3.21), we obtain the following soliton solution:

u3(x, t) =


√
−2CB δ1

2C
+

4δ1B
(
cosh

(√
B

(
x + 2ak tτ

τ
+ ξ0

))
+ sinh

(√
B

(
x + 2ak tτ

τ
+ ξ0

)))
1 − 4BC

(
cosh

(
2
√

B
(
x + 2ak tτ

τ
+ ξ0

))
+ sinh

(
2
√

B
(
x + 2ak tτ

τ
+ ξ0

)))
× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.24)
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From Eqs (2.1), (2.6), (3.2), (3.7), and Eq (3.21), we obtain the following soliton solution:

u4(x, t) =

 √−2CB δ1

2C
+ δ1

√
−

B
C

sech
(
√

B
(
x +

2ak tτ

τ
+ ξ0

)) e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.25)

From Eqs (2.1), (2.6), (3.2), (3.8), and Eq (3.21), we obtain the following soliton solution:

u5(x, t) =

 √−2CB δ1

2C
+ δ1

√
B
C

csch
(
√

B
(
x +

2ak tτ

τ
+ ξ0

)) e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.26)

From Eqs (2.1), (2.6), (3.2), (3.9), and Eq (3.16), we obtain the following soliton solution:

u6(x, t) =


√
−2CB δ1

2C
+

δ1

√
−2B

C tanh
( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

2

)
2

 e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.27)

From Eqs (2.1), (2.6), (3.2), (3.10), and Eq (3.21), we obtain the following soliton solution:

u7(x, t) =


√
−2CB δ1

2C
+

δ1

√
−2B

C coth
( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

2

)
2

 e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.28)

From Eqs (2.1), (2.6), (3.2), (3.11), and Eq (3.21), we obtain the following soliton solution:

u8(x, t) =


√
−2CB δ1

2C
+
δ1

√
−2B

C

(
tanh

(√
−2B

(
x+ 2aktτ

τ
+ξ0

))
+Isech

(√
−2B

(
x+ 2aktτ

τ
+ξ0

)))
2


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.29)

From Eqs (2.1), (2.6), (3.2), (3.12), and Eq (3.21), we obtain the following soliton solution:

u9(x, t) =


√
−2CBδ1

2C
+
δ1

√
−2B

C

(
coth

(√
−2B

(
x+ 2aktτ

τ
+ξ0

))
+csch

(√
−2B

(
x+ 2aktτ

τ
+ξ0

)))
2


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.30)

From Eqs (2.1), (2.6), (3.2), (3.13), and Eq (3.21), we obtain the following soliton solution:

u10(x, t) =


√
−2CB δ1

2C
+

δ1

√
−2B

C

(
tanh

( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

4

)
+ coth

( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

4

))
4


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.31)
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From Eqs (2.1), (2.6), (3.2), (3.14), and Eq (3.21), we obtain the following soliton solution:

u11(x, t)=

 √−2CBδ1

2C
+δ1

√
−

B
C

sec
(
√
−B

(
x +

2aktτ

τ
+ξ0

)) e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.32)

From Eqs (2.1), (2.6), (3.2), (3.15), and Eq (3.21), we obtain the following soliton solution:

u12(x, t)=

 √−2CBδ1

2C
+δ1

√
−

B
C

csc
(
√
−B

(
x+

2aktτ

τ
+ξ0

)) e
i
−kx+

(4ACδ21h2−B2δ21h2−2Cak2−4BCa)tτ

2Cτ +θ


. (3.33)

From Eqs (2.1), (2.6), (3.2), (3.16), and Eq (3.21), we obtain the following soliton solution:

u13(x, t) =


√
−2CB δ1

2C
+

δ1
√

2
√

B
C tan

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

2

)
2

 e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.34)

From Eqs (2.1), (2.6), (3.2), (3.17), and Eq (3.21), we obtain the following soliton solution:

u14(x, t) =


√
−2CB δ1

2C
+

δ1
√

2
√

B
C cot

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

2

)
2

 e
i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


. (3.35)

From Eqs (2.1), (2.6), (3.2), (3.18), and Eq (3.21), we obtain the following soliton solution:

u15(x, t)=


√
−2CBδ1

2C
+
δ1
√

2
√

B
C

(
tan

(√
2
√

B
(
x+ 2aktτ

τ
+ξ0

))
+sec

(√
2
√

B
(
x+ 2aktτ

τ
+ξ0

)))
2


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Cak2−4BCa)tτ

2Cτ +θ


.

(3.36)

From Eqs (2.1), (2.6), (3.2), (3.19), and Eq (3.21), we obtain the following soliton solution:

u16(x, t)=


√
−2CBδ1

2C
+
δ1
√

2
√

B
C

(
cot

(√
2
√

B
(
x+ 2aktτ

τ
+ξ0

))
+csc

(√
2
√

B
(
x + 2aktτ

τ
+ξ0

)))
2


e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.37)

From Eqs (2.1), (2.6), (3.2), (3.20), and Eq (3.21), we obtain the following soliton solution:

u17(x, t) =


√
−2CB δ1

2C
+

δ1
√

2
√

B
C

(
tan

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

4

)
− cot

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

4

))
4


× e

i
−kx+

(4ACδ21h2−B2δ21h2−2Ca k2−4BCa)tτ

2Cτ +θ


.

(3.38)
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Result 2.

n = 1,w = −
12ACh2

2 + a k2c4 − Bac4

c4
, δ0 = 0, δ1 =

√
−6c4Ch2

c4
, c1 = −Bh1,

c2 = −
12Bh2

2 + 6kα1h2 + 6kα2h2 − ac4

3h2
, c3 =

h1c4

3h2
,

(3.39)

where c4 , 0 and h2 , 0.
From Eqs (2.1), (2.6), (3.2), (3.4), and Eq (3.39), we obtain the following soliton solution:

u18(x, t) =

√
−6c4Ch2 e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


c4
√

C
(
x + 2ak tτ

τ
+ ξ0

) . (3.40)

From Eqs (2.1), (2.6), (3.2), (3.5), and Eq (3.39), we obtain the following soliton solution:

u19(x, t)=
4
√
−6c4Ch2B

(
cosh

(√
B
(
x+ 2aktτ

τ
+ξ0

))
+sinh

(√
B
(
x+ 2aktτ

τ
+ξ0

)))
e

i
−kx−

(12ACh2
2+ak2c4−Bac4)tτ

c4τ
+θ


c4

(
cosh

(
2
√

B
(
x+ 2aktτ

τ
+ξ0

))
+sinh

(
2
√

B
(
x+ 2aktτ

τ
+ξ0

))
−4CB

) . (3.41)

From Eqs (2.1), (2.6), (3.2), (3.6), and Eq (3.39), we obtain the following soliton solution:

u20(x, t)=
4
√
−6c4Ch2B

(
cosh

(√
B
(
x+ 2aktτ

τ
+ξ0

))
+sinh

(√
B
(
x+ 2aktτ

τ
+ξ0

)))
e

i
−kx−

(12ACh2
2+ak2c4−Bac4)tτ

c4τ
+θ


c4

(
1 − 4BC

(
cosh

(
2
√

B
(
x + 2aktτ

τ
+ ξ0

))
+ sinh

(
2
√

B
(
x + 2aktτ

τ
+ ξ0

)))) . (3.42)

From Eqs (2.1), (2.6), (3.2), (3.7), and Eq (3.39), we obtain the following soliton solution:

u21(x, t) =

√
−6c4Ch2

√
− B

C sech
(√

B
(
x + 2ak tτ

τ
+ ξ0

))
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


c4

.
(3.43)

From Eqs (2.1), (2.6), (3.2), (3.8), and Eq (3.39), we obtain the following soliton solution:

u22(x, t) =

√
−6c4Ch2

√
B
C csch

(√
B

(
x + 2ak tτ

τ
+ ξ0

))
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


c4

.
(3.44)

From Eqs (2.1), (2.6), (3.2), (3.9), and Eq (3.39), we obtain the following soliton solution:

u23(x, t) =

√
−6c4Ch2

√
−2B

C tanh
( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

2

)
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


2c4

.
(3.45)

From Eqs (2.1), (2.6), (3.2), (3.10), and Eq (3.39), we obtain the following soliton solution:

u24(x, t) =

√
−6c4Ch2

√
−2B

C coth
( √
−2B

(
x+ 2ak tτ

τ +ξ0
)

2

)
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


2c4

.
(3.46)
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From Eqs (2.1), (2.6), (3.2), (3.11), and Eq (3.39), we obtain the following soliton solution:

u25(x, t) =

√
−6c4Ch2

√
−2B

C

(
tanh

(√
−2B

(
x + 2ak tτ

τ
+ ξ0

))
+ i sech

(√
−2B

(
x + 2ak tτ

τ
+ ξ0

)))
2c4

× e
i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


.

(3.47)

From Eqs (2.1), (2.6), (3.2), (3.12), and Eq (3.39), we obtain the following soliton solution:

u26(x, t) =

√
−6c4Ch2

√
−2B

C

(
coth

(√
−2B

(
x + 2ak tτ

τ
+ ξ0

))
+ csch

(√
−2B

(
x + 2ak tτ

τ
+ ξ0

)))
2c4

× e
i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


.

(3.48)

From Eqs (2.1), (2.6), (3.2), (3.13), and Eq (3.39), we obtain the following soliton solution:

u27(x, t)=

√
−6c4Ch2

√
−2B

C

(
tanh

(√
−2B

(
x+2aktτ

τ +ξ0
)

4

)
+coth

(√
−2B

(
x+2aktτ

τ +ξ0
)

4

))
e

i
−kx−

(12ACh2
2+ak2c4−Bac4)tτ

c4τ
+θ


4c4

. (3.49)

From Eqs (2.1), (2.6), (3.2), (3.14), and Eq (3.39), we obtain the following soliton solution:

u28(x, t) =

√
−6c4Ch2

√
− B

C sec
(√
−B

(
x + 2ak tτ

τ
+ ξ0

))
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


c4

.
(3.50)

From Eqs (2.1), (2.6), (3.2), (3.15), and Eq (3.39), we obtain the following soliton solution:

u29(x, t) =

√
−6c4Ch2

√
− B

C csc
(√
−B

(
x + 2ak tτ

τ
+ ξ0

))
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


c4

.
(3.51)

From Eqs (2.1), (2.6), (3.2), (3.16), and Eq (3.39), we obtain the following soliton solution:

u30(x, t) =

√
−6c4Ch2

√
2

√
B
C tan

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

2

)
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


2c4

.
(3.52)

From Eqs (2.1), (2.6), (3.2), (3.17), and Eq (3.39), we obtain the following soliton solution:

u31(x, t) =

√
−6c4Ch2

√
2

√
B
C cot

( √
2
√

B
(
x+ 2ak tτ

τ +ξ0
)

2

)
e

i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


2c4

.
(3.53)

From Eqs (2.1), (2.6), (3.2), (3.18), and Eq (3.39), we obtain the following soliton solution:

u32(x, t) =

√
−6c4Ch2

√
2

√
B
C

(
tan

(√
2
√

B
(
x + 2ak tτ

τ
+ ξ0

))
+ sec

(√
2
√

B
(
x + 2ak tτ

τ
+ ξ0

)))
2c4

× e
i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


.

(3.54)
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From Eqs (2.1), (2.6), (3.2), (3.19), and Eq (3.39), we obtain the following soliton solution:

u33(x, t) =

√
−6c4Ch2

√
2

√
B
C

(
cot

(√
2
√

B
(
x + 2ak tτ

τ
+ ξ0

))
+ csc

(√
2
√

B
(
x + 2ak tτ

τ
+ ξ0

)))
2c4

× e
i
−kx−

(12ACh2
2+a k2c4−Bac4)tτ

c4τ
+θ


.

(3.55)

From Eqs (2.1), (2.6), (3.2), (3.20), and Eq (3.39), we obtain the following soliton solution:

u34(x, t)=

√
−6c4Ch2

√
2
√

B
C

(
tan

(√
2
√

B
(
x+2aktτ

τ +ξ0
)

4

)
−cot

(√
2
√

B
(
x+2aktτ

τ +ξ0
)

4

))
e

i
−kx−

(12ACh2
2+ak2c4−Bac4)tτ

c4τ
+θ


4c4

. (3.56)

3.1. Solution classification and dynamical characteristics

To address the diversity of the obtained analytical solutions and clarify their distinct dynamical
behaviors, we provide a systematic classification of all derived solutions based on their mathematical
structure and corresponding physical wave profiles. This classification highlights genuinely different
solution families rather than purely algebraic variations (See Table 1).

Table 1. Classification of analytical solutions according to their mathematical structure and
dynamical wave behavior.

Solution Type Solutions Mathematical Form Physical Profile Key Parameters

Rational u1, u18 ∼
1

C(x + ξ0)
Singular waves C, ξ0

Dark solitons u4, u6, u21, u23 tanh, sech variants Localized intensity dips B > 0, C < 0
Bright solitons u4, u21 sech-type Localized intensity peaks B > 0, C > 0
Kink / Antikink u6, u7, u23, u24 tanh, coth Step-like transitions B < 0, C < 0
W-shaped waves u2, u3, u19, u20 Rational-hyperbolic ratios Double-peaked profiles 4BC ≈ 1
Dark-Bright hybrid u4, u8, u9, u25 Mixed tanh± sech Composite structures Complex δ1

Trigonometric u11–u17, u28–u34 sec, tan, cot Periodic waves B < 0

4. Results and discussion

4.1. Comparative analysis with existing literature

To clearly and convincingly demonstrate the novelty of the present work, we provide a systematic
comparative analysis with closely related studies on Kudryashov-type models and higher-order
nonlinear Schrödinger equations. The comparison focuses on model structure, mathematical
methodology, and the nature of the obtained solutions (See Table 2).

Overall, the comparative study indicates that the work presented here is a significant improvement
over the previous work of our time, as we successfully capture both fractional-order dynamics and
dual nonlocal nonlinear effects in the higher-order refractive index framework. Using the improved
modified Sardar sub-equation expansion method (IMSSEM), we obtained a wide range of optical
soliton solutions for dual nonlocal nonlinearity of Kudryashov’s law. All analytical solutions obtained
in Section 3 have been verified to meet the original time-fractional partial differential equation Eq
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(1.1) and the reduced ordinary differential equation Eq (2.7) by direct substitution. These solutions are
localized wave packets which have a clear temporal coherence based on their graphical convergence
over the propagation interval t ∈ [0, 200] (dimensionless units). Hence, this term ‘stability’ is used
qualitatively and refers to the persistence of the wave profile shape during the numerical evolution, not
some formal linear or spectral stability established using eigenvalue analysis. A simple, if rigorous,
stability investigation will involve a linear perturbation such as the formulation u = usol + εv(x, t)eλt

resulting in an eigenvalue problem over the growth rate λ, a modulational instability analysis that
uses Fourier-space distortions (Benjamin-Feir type), or Lyapunov-based boundedness rules under
perturbations at initial conditions. Such analyses cannot be done today, but they are natural extensions,
specifically for solutions u2, u4, u6, and u25, that display nontrivial structural properties. Although many
of the obtained solutions (that is, u1, u5, u11, and u12) become normal hyperbolic or trigonometric
waveforms under specific parameter restrictions, some derived solutions do indeed depict truly new
soliton configurations that cannot be converted into classical sech or tanh-type profiles. Especially
for solution u2, Eq (3.23) is a nontrivial hyperbolic ratio structure, where the denominator term
cosh(2

√
B ξ)+sinh(2

√
B ξ)−4CB introduces a parameter-dependent singularity-avoidance mechanism

that is lacking in standard Kudryashov solutions. The solution u4 in Eq (3.25) integrates a rational
offset term,

√
−2CB δ1/(2C), with a hyperbolic secant component to produce a hybrid dark-bright

soliton profile which has not been reported in earlier studies based on Kudryashov’s law. Similarly,
solution u6 in Eq (3.27) consists of nesting fractional order dependence as induced by a conformable
derivative to adjust wave amplitude as well as phase, which generates a kink-type transition of τ kind.
In conclusion, solution u25 in Eq (3.47) has complex-valued hyperbolic features (and one coupling
i) which is generated by pairwise nonlocal nonlinear coupling and is not present in models with one
single nonlocal dimension. These solution profiles arise from the composite effects of the dual nonlocal
nonlinearities corresponding to the h1 and h2 terms and the fractional-order derivative, as evidenced by
comparison to the solution catalogs.

Table 2. Comparison of the present study with recent related works.
Study Model Features Method Solutions Fractional nonlocal
Kudryashov [29, 30] Power-law

nonlinearity
Kudryashov method Bright, dark No Single

Biswas et al. [31, 32] Refractive index
terms

Simple equation 6 types No None

Ekici et al. [33] Modified
Kudryashov model

MSE 8 solutions No Single

Yıldırım et al. [34] Birefringent fiber
model

Sine-Gordon 4 types No None

Zayed et al. [35] Generalized
nonlinear model

Extended tanh 12 solutions No Single

Present work Dual nonlocal
+ fourth-order
refractive index

IMSSEM 34 (7 types) Yes (τ ∈ (0, 1]) Dual (h1, h2)

As shown in Figure 1, Re(u2(x, t)) shows remarkable temporal stability (subplots a-c: t = 10, 50, 80)
with τ = 1. Conformable derivative effects (subplots d-f: τ = 1 to 0.2) reveal that smaller τ
enhances wave localization through increased memory effects. Figure 2 demonstrates that W-shaped
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intensity profiles |u2(x, t)|2 maintain structure during propagation (t = 10, 30, 40). Decreasing τ

enhances peak intensities while narrowing spatial extent, enabling wavelength-division multiplexing
applications. In Figure 3, dark-bright soliton pairs in Re(u4(x, t)) demonstrate long-term stability
(t = 10, 150, 210). Varying τ tunes the contrast ratio between dark and bright regions, valuable for
optical switching. Figure 4 illustrates that bright solitons |u4(x, t)|2 exhibit bell-shaped profiles with
exceptional stability. Decreasing τ increases peak intensity and reduces width, crucial for compact
optical devices. As depicted in Figure 5, complex oscillatory behavior in Re(u6(x, t)) reflects multiple
nonlinear interactions while maintaining coherence (t = 20, 50, 100). Figure 6 reveals that kink-type
solitons |u6(x, t)|2 show stable step-like profiles. Conformable derivatives control transition sharpness,
enabling ultrafast optical switches. Figure 7 demonstrates Re(u25(x, t)) exhibits intricate patterns from
full Kudryashov complexity, demonstrating long-term coherence (t = 20, 100, 180).

The conformable derivative parameter τ provides universal control over soliton characteristics
across all solution types. Smaller τ values consistently enhance localization, increase peak intensities,
and narrow spatial widths through fractional-order memory effects.

These results enable stable long-haul optical communication, enhanced wavelength-division
multiplexing via W-shaped solitons, all-optical logic gates using dark-bright pairs, optical bistable
devices with kink solitons, and tunable photonic devices through conformable derivative control.

The IMSSEM successfully captures the rich solution space of Kudryashov’s law, providing a
framework for investigating complex nonlinear optical systems and discovering novel soliton classes
for advanced photonic applications.
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Figure 1. The wave profiles of the soliton solution Re(u2(x, t)) for k = −0.4, a = −3.7,
B = 1.3, C = −3.1, θ = 2.2, ξ0 = −5, δ1 = 3.4, and h2 = −5.
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Figure 2. The W-shaped wave profiles of the soliton solution |u2(x, t)|2 for k = 5, a = 0.2,
B = 1.8, C = −3.9, θ = 0, ξ0 = −5, δ1 = 5, and h2 = 2.2.
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Figure 3. The dark–bright wave profiles of the soliton solution Re(u4(x, t)) for k = 0.5,
a = −1.2, B = 2.2, C = 0.9, θ = 2.5, ξ0 = 5, δ1 = 0.9, and h2 = −1.6.
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Figure 4. The bright wave profiles of the soliton solution |u4(x, t)|2 for k = −0.7, a = −1.4,
B = 2.6, C = 5, θ = 1.1, ξ0 = −5, δ1 = −2.1, and h2 = 5.
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Figure 5. The wave profiles of the soliton solution Re(u6(x, t)) for k = 2.3, a = −5, B = −2.1,
C = −3.4, θ = −3.7, ξ0 = −5, and δ1 = 1.3.
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Figure 6. The kink-type wave profiles of the soliton solution |u6(x, t)|2 for k = −1.6, a = 0.4,
B = −1.4, C = −2.6, θ = −2.5, ξ0 = 1.6, and δ1 = 5.
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Figure 7. The wave plots of soliton solutions Re(u25(x, t)) with parameters k = −3.1, a = 0.1,
B = −2.5, C = −1.8, c4 = −3.5, ξ0 = 2.0, δ1, θ = 1.2, and h2 = −1.1.
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5. Conclusions

This study successfully solved Kudryashov’s law with dual nonlocal nonlinearity and refractive
index effects using the improved modified Sardar sub-equation expansion method (IMSSEM). We
derived thirty-four distinct analytical soliton solutions encompassing bright, dark, kink, W-shaped,
and dark-bright configurations, all demonstrating exceptional stability under complex nonlinearity
conditions.

The systematic analytical framework yielded diverse soliton families, including rational, hyperbolic,
and trigonometric forms. Comprehensive conformable derivative analysis revealed that decreasing
fractional orders (τ) consistently enhance wave localization and peak intensities, providing precise
control over soliton characteristics. Graphical validation through two-dimensional and three-
dimensional visualizations confirmed long-term stability and robust propagation across all solution
types.

These results enable practical applications in stable long-haul optical communication, enhanced
wavelength-division multiplexing via W-shaped solitons, all-optical logic gates using dark-bright pairs,
and tunable photonic devices through conformable derivative control. The exceptional stability under
dual nonlocal nonlinearity confirms the robustness of Kudryashov’s law for modeling realistic optical
fiber systems.

Few limitations still exist in this work. First, while the derived analytical solutions satisfy the
governing equation in an exact algebraic sense, they have not yet been validated independently
by direct numerical integration schemes such as split-step Fourier or finite-difference methods, so
future studies should consider numerical simulations to study the dynamical evolution and stability
of these solutions under initial-value problems. Second, the robustness of the obtained solutions
against perturbations has not been systematically investigated: Although graphical profiles indicate
localized and stable behavior, there is no rigorous perturbation analysis (i.e., linear stability analysis
or evaluation of Lyapunov exponents) of the obtained solutions, and the response of the solutions to
small-amplitude perturbations remains an open problem. Finally, all the current findings from this
analysis are limited to a (1 + 1)-dimensional deterministic model with homogeneous parameters, a
single polarization, and some specific algebraic constraints, and do not consider transverse effects,
stochastic noise, birefringence, and higher-order nonlinear effects (including Raman scattering and
self-steepening), or generalizability to more realistic, more general fiber systems.

This investigation establishes IMSSEM as a powerful tool for solving complex nonlinear optical
equations and provides a foundation for developing next-generation optical communication and
signal processing systems. The conformable derivative framework offers new design flexibility for
adaptive optical devices with tunable soliton properties, advancing both fundamental understanding
and practical applications in nonlinear optics.
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