Let $ \Omega $ be a homogeneous function of degree zero, integrable, and have a mean value of zero on the unit sphere $ \mathbb S^{n-1} $, $ n \geq 2 $. Let $ T_\Omega $ be the homogeneous convolution singular integral operator with kernel $ \frac{\Omega(x)}{|x|^n} $. In this paper, we proved some quantitative two-weight estimates for the commutator, $ [b, T_\Omega] $, with a $ BMO $ symbol $ b $ and the singular integral operator $ T_\Omega $ under the condition $ \Omega\in L^q(\mathbb{S}^{n-1}) $ for $ q\in (2, \infty) $.
Citation: Peize Lv, Xiangxing Tao. On quantitative weighted bounds for commutators of rough singular integral operators[J]. AIMS Mathematics, 2026, 11(1): 2111-2130. doi: 10.3934/math.2026087
Let $ \Omega $ be a homogeneous function of degree zero, integrable, and have a mean value of zero on the unit sphere $ \mathbb S^{n-1} $, $ n \geq 2 $. Let $ T_\Omega $ be the homogeneous convolution singular integral operator with kernel $ \frac{\Omega(x)}{|x|^n} $. In this paper, we proved some quantitative two-weight estimates for the commutator, $ [b, T_\Omega] $, with a $ BMO $ symbol $ b $ and the singular integral operator $ T_\Omega $ under the condition $ \Omega\in L^q(\mathbb{S}^{n-1}) $ for $ q\in (2, \infty) $.
| [1] |
A. P. Calderón, A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), 85–139. https://doi.org/10.1007/BF02392130 doi: 10.1007/BF02392130
|
| [2] |
A. P. Calderón, A. Zygmund, On singular integrals, Amer. J. Math., 78 (1956), 289–309. https://doi.org/10.2307/2372517 doi: 10.2307/2372517
|
| [3] | F. Ricci, G. Weiss, A characterization of $H^1(\mathbb{S}^{n-1})$, In: S. Wainger and G. Weiss (eds.), Proc. Sympos. Pure Math. Amer. Math. Soc., 35 (1979), 289–294. |
| [4] |
L. Grafakos, A. Stefanov, $L^p$ bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J., 47 (1998), 455–469. https://doi.org/10.48550/arXiv.math/9710205 doi: 10.48550/arXiv.math/9710205
|
| [5] |
X. Tao, G. Hu, A bilinear sparse domination for the maximal singular integral operators with rough kernels, J. Geom. Anal., 34 (2024), 162. https://doi.org/10.1007/s12220-024-01607-8 doi: 10.1007/s12220-024-01607-8
|
| [6] |
R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
|
| [7] |
J. Alvarez, R. Bagby, D. Kurtz, C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209. https://doi.org/10.4064/sm-104-2-195-209 doi: 10.4064/sm-104-2-195-209
|
| [8] |
G. Hu, $L^p$ boundedness for the commutator of a homogeneous singular integral operator, Studia Math., 154 (2003), 13–27. https://doi.org/10.4064/sm154-1-2 doi: 10.4064/sm154-1-2
|
| [9] |
G. Hu, X. Tao, An endpoint estimate for the commutators of singular integral operators with rough kernels, Potential Anal., 58 (2023), 241–262. https://doi.org/10.1007/s11118-021-09939-8 doi: 10.1007/s11118-021-09939-8
|
| [10] |
G. Hu, X. Lai, X. Tao, Q. Xue, An endpoint estimate for the maximal Calderón commutator with rough kernel, Math. Ann., 392 (2025), 2469–2502. https://doi.org/10.1007/s00208-025-03152-3 doi: 10.1007/s00208-025-03152-3
|
| [11] |
J. Chen, G. Hu, X. Tao, $L^p(\mathbb{R}^{d})$ boundedness for a class of nonstandard singular integral operators, J. Fourier Anal. Appl., 30 (2024), 50. https://doi.org/10.1007/s00041-024-10104-z doi: 10.1007/s00041-024-10104-z
|
| [12] |
G. Hu, X. Tao, Z. Wang, Q. Xue, On the boundedness of non-standard rough singular integral operators, J. Fourier Anal. Appl., 30 (2024), 32. https://doi.org/10.1007/s00041-024-10086-y doi: 10.1007/s00041-024-10086-y
|
| [13] |
S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1993), 253–272. https://doi.org/10.2307/2154555 doi: 10.2307/2154555
|
| [14] |
K. Astala, T. Iwaniec, E. Saksman, Beltrami operators in the plane, Duke Math. J., 107 (2001), 27–56. https://doi.org/10.1215/S0012-7094-01-10713-8 doi: 10.1215/S0012-7094-01-10713-8
|
| [15] |
S. Petermichl, A. Volberg, Heating of the Ahlfors-Beurling operator: Weakly quasiregular maps on the plane are quasiregular, Duke Math. J., 112 (2002), 281–305. https://doi.org/10.1215/S0012-9074-02-11223-X doi: 10.1215/S0012-9074-02-11223-X
|
| [16] |
T. P. Hytönen, L. Roncal, O. Tapiola, Quantitative weighted estimates for rough homogeneous singular integrals, Israel. J. Math, 218 (2017), 133–164. https://doi.org/10.1007/s11856-017-1462-6 doi: 10.1007/s11856-017-1462-6
|
| [17] |
D. Chung, M. C. Pereyra, C. Pérez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc., 364 (2012), 1163–1177. https://doi.org/10.1090/S0002-9947-2011-05534-0 doi: 10.1090/S0002-9947-2011-05534-0
|
| [18] |
C. Pérez, I. P. Rivera-Ríos, L. Roncal, $A_1$ theory of weights for rough homogeneous singular integrals and commutators, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (2019), 169–190. https://doi.org/10.48550/arXiv.1607.06432 doi: 10.48550/arXiv.1607.06432
|
| [19] |
K. Li, C. Pérez, I. P. Rivera-Ríos, L. Roncal, Weighted norm inequalities for rough singular integral operators, J. Geom. Anal., 29 (2019), 2526–2564. https://doi.org/10.1007/s12220-018-0085-4 doi: 10.1007/s12220-018-0085-4
|
| [20] |
M. C. Reguera, C. Thiele, The Hilbert transform does not map $L^1(Mw)$ to $L^{1, \infty}(w)$, Math. Res. Lett., 19 (2012), 1–7. https://dx.doi.org/10.4310/MRL.2012.v19.n1.a1 doi: 10.4310/MRL.2012.v19.n1.a1
|
| [21] | F. Nazarov, A. Reznikov, V. Vasyunin, A. Volberg, A Bellman function counterexample to the $A_1$ conjecture: The blow-up of the weak norm estimates of weighted singular operators, arXiv: 1506.04710, 2015. https://doi.org/10.48550/arXiv.1506.04710 |
| [22] |
A. K. Lerner, S. Ombrosi, C. Pérez, Sharp $A_1$ bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden, Int. Math. Res. Not. IMRN., 14 (2008), rnm161. https://doi.org/10.1093/imrn/rnm161 doi: 10.1093/imrn/rnm161
|
| [23] |
R. Rivera, P. Israel, Improved $A_1$–$A_\infty$ and related estimates for commutators of rough singular integrals, Proc. Edinb. Math. Soc., 61 (2018), 1069–1086. https://doi.org/10.1017/S0013091518000238 doi: 10.1017/S0013091518000238
|
| [24] | N. Fujii, Weighted bounded mean oscillation and singular integrals, Math. Japon., 22 (1978), 529–534. |
| [25] |
J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic $A_\infty$, Duke Math. J., 55 (1987), 19–50. https://doi.org/10.1215/s0012-7094-87-05502-5 doi: 10.1215/s0012-7094-87-05502-5
|
| [26] |
T. P. Hytönen, C. Pérez, Sharp weighted bounds involving $A_\infty$, Anal. PDE, 6 (2013), 777–818. https://doi.org/10.2140/APDE.2013.6.777 doi: 10.2140/APDE.2013.6.777
|
| [27] |
S. Wang, P. Lv, X. Tao, Quantitative weighted estimates of the $L^q$-type rough singular integral operator and its commutator, Mathematics, 13 (2025), 3434. https://doi.org/10.3390/math13213434 doi: 10.3390/math13213434
|
| [28] |
A. K. Lerner, On pointwise estimates involving sparse operators, New York. J. Math., 22 (2016), 341–349. https://doi.org/10.48550/arXiv.1512.07247 doi: 10.48550/arXiv.1512.07247
|
| [29] |
T. P. Hytönen, K. Li, Weak and strong $A_p-A_\infty$ estimates for square function and related operators, Proc. Amer. Math. Soc., 146 (2016), 2497–2507. http://dx.doi.org/10.1090/proc/13908 doi: 10.1090/proc/13908
|
| [30] | L. Grafakos, Classical Fourier analysis, 3Eds., New York: Springer, 2014. https://doi.org/10.1007/978-1-4939-1194-3 |
| [31] |
A. K. Lerner, S. Ombrosi, I. P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., 319 (2017), 153–181. https://doi.org/10.1016/j.aim.2017.08.022 doi: 10.1016/j.aim.2017.08.022
|
| [32] |
C. Ortiz-Caraballo, Quadratic $A_1$ bounds for commutators of singular integrals with BMO functions, Indiana Univ. Math. J., 60 (2011), 2107–2130. https://doi.org/10.1512/iumj.2011.60.4494 doi: 10.1512/iumj.2011.60.4494
|
| [33] | J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, Amsterdam: North-Holland Publishing Co., 1985. https://doi.org/10.1016/s0304-0208(08)x7154-3 |
| [34] | D. Cruz-Uribe, J. M. Martell, C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Basel, Birkhäuser, 2011. https://doi.org/10.1007/978-3-0348-0072-3 |
| [35] | J. Bergh, J. Löfström, Interpolation spaces: An introduction, Berlin, Heidelberg, Springer, 1976. https://doi.org/10.1007/978-3-642-66451-9 |