The aim of this study is to extract new exact solutions for the Kadomtsev–Petviashvili (KP) equation in three spatial dimensions and one time dimension, which is widely used in quantum field theory and plasma physics. This research refers to two separate methods–the generalized Arnous (GA) method and the $ \dfrac{G^{\prime}}{bG^{\prime}+G+a} $ expansion method to uncover various new soliton solutions for the given model. These solutions are usually expressed as rational, trigonometric, and hyperbolic functions, which increase the usefulness of the method for practical applications. In addition, the conditions certifying that these solutions remain valid are also identified. The behavior of these solutions is shown through a visual representation. The recorded results are new and show how both methods are effective and robust, making them valuable tools for solving various differential equations in applied sciences and engineering.
Citation: Saud Owyed. Construction of new wave patterns for the (3+1)-dimensional Kadomtsev–Petviashvili equation using a couple of integrating architectures[J]. AIMS Mathematics, 2026, 11(1): 2088-2110. doi: 10.3934/math.2026086
The aim of this study is to extract new exact solutions for the Kadomtsev–Petviashvili (KP) equation in three spatial dimensions and one time dimension, which is widely used in quantum field theory and plasma physics. This research refers to two separate methods–the generalized Arnous (GA) method and the $ \dfrac{G^{\prime}}{bG^{\prime}+G+a} $ expansion method to uncover various new soliton solutions for the given model. These solutions are usually expressed as rational, trigonometric, and hyperbolic functions, which increase the usefulness of the method for practical applications. In addition, the conditions certifying that these solutions remain valid are also identified. The behavior of these solutions is shown through a visual representation. The recorded results are new and show how both methods are effective and robust, making them valuable tools for solving various differential equations in applied sciences and engineering.
| [1] |
M. A. Abdou, An analytical method for space-time fractional nonlinear differential equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 288292. https://doi.org/10.1016/j.joes.2017.09.002 doi: 10.1016/j.joes.2017.09.002
|
| [2] |
L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. Khater, A. Jhangeer, et al., Nonlinear dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411. https://doi.org/10.1016/j.rinp.2021.104411 doi: 10.1016/j.rinp.2021.104411
|
| [3] |
C. Qiao, X. Long, L. Yang, Y. Zhu, W. Cai, Calculation of a dynamical substitute for the real earth-moon system based on Hamiltonian analysis, Astrophys. J., 991 (2025), 46. https://doi.org/10.3847/1538-4357/adf73a doi: 10.3847/1538-4357/adf73a
|
| [4] |
M. Tanaka, The stability of solitary waves, Phys. Fluids, 29 (1986), 650–655. https://doi.org/10.1063/1.865459 doi: 10.1063/1.865459
|
| [5] |
J. E. Allen, The early history of solitons (solitary waves), Phys. Scr., 57 (1998), 436. https://doi.org/10.1088/0031-8949/57/3/016 doi: 10.1088/0031-8949/57/3/016
|
| [6] |
K. K. Ali, M. S. Mohamed, M. Maneea, Optimal homotopy analysis method for (2+1) time-fractional nonlinear biological population model using-transform, AIMS Math., 9 (2024), 32757–32781. https://doi.org/10.3934/math.20241567 doi: 10.3934/math.20241567
|
| [7] |
N. Raza, A. Javid, Dynamics of optical solitons with Radhakrishnan–Kundu–Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566. https://doi.org/10.1016/j.ijleo.2018.09.133 doi: 10.1016/j.ijleo.2018.09.133
|
| [8] |
A. M. Wazwaz, The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467–1475. https://doi.org/10.1016/j.amc.2006.11.013 doi: 10.1016/j.amc.2006.11.013
|
| [9] | M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, Philadelphia, 1981. https://doi.org/10.1137/1.9781611970883 |
| [10] |
M. A. Noor, S. T. Mohyud-Din, A. Waheed, E. A. Al-Said, Exp-function method for traveling wave solutions of nonlinear evolution equations, Appl. Math. Comput., 216 (2010), 477–483. https://doi.org/10.1016/j.amc.2010.01.042 doi: 10.1016/j.amc.2010.01.042
|
| [11] |
R. Conte, M. Musette, Link between solitary waves and projective Riccati equations, J. Phys. A, 25 (1992), 5609. https://doi.org/10.1088/0305-4470/25/21/019 doi: 10.1088/0305-4470/25/21/019
|
| [12] |
A. T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl. Math., 235 (2011), 4117–4127. https://doi.org/10.1016/j.cam.2011.03.002 doi: 10.1016/j.cam.2011.03.002
|
| [13] |
S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving di erence scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
|
| [14] |
E. M. Zayed, K. A. Gepreel, R. M. Shohib, M. E. Alngar, Y. Yildirim, Optical solitons for the perturbed Biswas-Milovic equation with Kudryashovs law of refractive index by the unified auxiliary equation method, Optik, 230 (2021), 166286. https://doi.org/10.1016/j.ijleo.2021.166286 doi: 10.1016/j.ijleo.2021.166286
|
| [15] |
T. A. Sulaiman, A. Yusuf, Dynamics of lump-periodic and breather waves solutions with variable coecients in liquid with gas bubbles, Waves Random Complex Media, 33 (2014), 1085–1098. https://doi.org/10.1080/17455030.2021.1897708 doi: 10.1080/17455030.2021.1897708
|
| [16] |
A. Zafar, M. Shakeel, A. Ali, L. Akinyemi, H. Rezazadeh, Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes, Opt. Quant. Electron., 54 (2022), 5. https://doi.org/10.1007/s11082-021-03393-x doi: 10.1007/s11082-021-03393-x
|
| [17] |
I. S. O'Keir, E. J. Parkes, The derivation of a modified Kadomtsev–Petviashvili equation and the stability of its solutions, Phys. Scr., 55 (1997), 135. https://doi.org/10.1088/0031-8949/55/2/003 doi: 10.1088/0031-8949/55/2/003
|
| [18] |
S. F. Tian, P. L. Ma, On the quasi-periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation, Commun. Theor. Phys., 62 (2014), 245. https://doi.org/10.1088/0253-6102/62/2/12 doi: 10.1088/0253-6102/62/2/12
|
| [19] |
M. J. Ablowitz, H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691–715. https://doi.org/10.1017/S0022112079000835 doi: 10.1017/S0022112079000835
|
| [20] | G. P. Agrawal, Nonlinear fiber optics, In: P. L. Christiansen, M. P. Sørensen, A. C. Scott, Nonlinear science at the dawn of the 21st century, Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0_9 |
| [21] | R. Grimshaw, Internal solitary waves, In: R. Grimshaw, Environmental stratified flows, Springer, 2001. https://doi.org/10.1007/0-306-48024-7_1 |
| [22] |
B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys., 27 (1986), 2848–2852. https://doi.org/10.1063/1.527260 doi: 10.1063/1.527260
|
| [23] |
T. Alagesan, A. Uthayakumar, K. Porsezian, Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev–Petviashvili equation, Chaos Solitons Fract. 8 (1997), 893–895. https://doi.org/10.1016/S0960-0779(96)00166-X doi: 10.1016/S0960-0779(96)00166-X
|
| [24] |
W. X. Ma, Comment on the (3+1)-dimensional Kadomtsev–Petviashvili equations Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2663–2666. https://doi.org/10.1016/j.cnsns.2010.10.003 doi: 10.1016/j.cnsns.2010.10.003
|
| [25] |
G. Q. Xu, A. M. Wazwaz, A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions, Nonlinear Dyn., 111 (2023), 9495–9507. https://doi.org/10.1007/s11071-023-08343-8 doi: 10.1007/s11071-023-08343-8
|
| [26] |
Y. Li, F. Li, M. Tian, Y. Yao, (3+1)-dimensional-modified Kadomtsev–Petviashvili equation and its $\partial$-formalism, Proc. Soc., 481 (2025), 20250342. https://doi.org/10.1098/rspa.2025.0342 doi: 10.1098/rspa.2025.0342
|
| [27] |
W. Alhejaili, A. Wazwaz, S. El-Tantawy, New extended (3+1)-dimensional KP-type equations: Painlevé integrability, multi-solitons, and lump solutions, Rom. Reports Phys., 77 (2025), 109. https://doi.org/10.59277/romrepphys.2025.77.109 doi: 10.59277/romrepphys.2025.77.109
|
| [28] |
J. M. A. Ahamed, R. Sinuvasan, Exploring the (3+1)-generalized Kadomtsev–Petviashvili equation: symmetries, reductions, and exact solutions, Phys. Scr., 100 (2025), 055210. https://doi.org/10.1088/1402-4896/adc638 doi: 10.1088/1402-4896/adc638
|
| [29] |
W. Mohammed, A. Khalifa, H. Alshammari, H. Ahmed, M. Algolam, R. Elbarougy, et al., Innovative solitary wave solutions for the (3+1)-dimensional Boussinesq Kadomtsev–Petviashvili–type equation derived via the improved modified extended tanh-function method, Eur. J. Pure Appl. Math., 18 (2025), 3. https://doi.org/10.29020/nybg.ejpam.v18i3.6490 doi: 10.29020/nybg.ejpam.v18i3.6490
|
| [30] |
W. Alhejaili, A. M. Wazwaz, S. A. El-Tantawy, On the multiple soliton and lump solutions to the (3+1)-dimensional Painlevé integrable Boussinesq-type and KP-type equations, Rom. Reports Phys., 76 (2024), 115. https://doi.org/10.59277/romrepphys.2024.76.115 doi: 10.59277/romrepphys.2024.76.115
|
| [31] |
C. Bhan, R. Karwasra, S. Malik, S. Kumar, A. H. Arnous, N. A. Shah, et al., Bifurcation, chaotic behavior and soliton solutions to the KP-BBM equation through new Kudryashov and generalized Arnous methods, AIMS Math., 9 (2024), 8749–8767. https://doi.org/10.3934/math.2024424 doi: 10.3934/math.2024424
|
| [32] |
N. Raza, S. S. Kazmi, G. A. Basendwah, Dynamical analysis of solitonic, quasi-periodic, bifurcation and chaotic patterns of Landau–Ginzburg–Higgs model, J. Appl. Anal. Comput., 14 (2024), 197–213. https://doi.org/10.11948/20230137 doi: 10.11948/20230137
|