In this paper, we introduced a novel class of superquadraticity, termed multiplicatively (superquadratic interval-valued functions) superquadratic $ {{\mathcal{IVF}}} $s and investigated their unique properties using interval order relations and (Riemann-Liouville) $ {{\mathcal{R.L}}} $-fractional integral operators. By employing the framework of multiplicative calculus, we established new fractional integral inequalities specifically of Hermite-Hadamard ($ \mathcal{H.H} $) type, for these superquadratic $ {{\mathcal{IVF}}} $. Furthermore, we extended our analysis to derive fractional inequalities for the product and quotient of multiplicatively superquadratic and subquadratic $ {{\mathcal{IVF}}} $ functions within the same calculus setting. By setting $ \ell = 1 $, the results naturally reduced to their corresponding integer-order forms for multiplicatively superquadratic $ {{\mathcal{IVF}}} $. To validate our theoretical findings, we present numerical computations and graphical illustrations based on several illustrative examples, showcasing the practical utility and robustness of the results. In addition, we explored potential applications of these inequalities, particularly in the context of linear combinations of special means. This provides a fresh perspective on superquadratic $ {{\mathcal{IVF}}}s $ and expands the scope of multiplicative convex analysis. The results presented in this work are entirely new within the framework of fractional multiplicative calculus and have not been previously reported in the literature. We believe that this study will pave the way for future research, offering a deeper understanding of convexity phenomena and powerful tools for mathematical modeling involving $ {{\mathcal{IVF}}}s $.
Citation: Ghulam Jallani, Saad Ihsan Butt, Dawood Khan, Youngsoo Seol. Fractional inclusions of superquadraticity via multiplicative calculus[J]. AIMS Mathematics, 2026, 11(1): 2046-2087. doi: 10.3934/math.2026085
In this paper, we introduced a novel class of superquadraticity, termed multiplicatively (superquadratic interval-valued functions) superquadratic $ {{\mathcal{IVF}}} $s and investigated their unique properties using interval order relations and (Riemann-Liouville) $ {{\mathcal{R.L}}} $-fractional integral operators. By employing the framework of multiplicative calculus, we established new fractional integral inequalities specifically of Hermite-Hadamard ($ \mathcal{H.H} $) type, for these superquadratic $ {{\mathcal{IVF}}} $. Furthermore, we extended our analysis to derive fractional inequalities for the product and quotient of multiplicatively superquadratic and subquadratic $ {{\mathcal{IVF}}} $ functions within the same calculus setting. By setting $ \ell = 1 $, the results naturally reduced to their corresponding integer-order forms for multiplicatively superquadratic $ {{\mathcal{IVF}}} $. To validate our theoretical findings, we present numerical computations and graphical illustrations based on several illustrative examples, showcasing the practical utility and robustness of the results. In addition, we explored potential applications of these inequalities, particularly in the context of linear combinations of special means. This provides a fresh perspective on superquadratic $ {{\mathcal{IVF}}}s $ and expands the scope of multiplicative convex analysis. The results presented in this work are entirely new within the framework of fractional multiplicative calculus and have not been previously reported in the literature. We believe that this study will pave the way for future research, offering a deeper understanding of convexity phenomena and powerful tools for mathematical modeling involving $ {{\mathcal{IVF}}}s $.
| [1] | S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
| [2] | J. E. Nápoles-Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne's thread or Charlotte's Spiderweb?, Adv. Math. Model. Appl., 5 (2020), 176–191. |
| [3] |
M. Vivas-Cortez, P. Kérus, J. E. Nápoles-Valdés, Some generalized Hermite-Hadamard-Fejér inequality for convex functions, Adv. Differ. Equ., 2021 (2021), 1–11. https://doi.org/10.1186/s13662-021-03351-7 doi: 10.1186/s13662-021-03351-7
|
| [4] |
A. P. Jayaraj, K. N. Gounder, J. Rajagopal, Optimizing signal smoothing using HERS algorithm and time fractional diffusion equation, Expert Syst. Appl., 238 (2024), 122250. https://doi.org/10.1016/j.eswa.2023.122250 doi: 10.1016/j.eswa.2023.122250
|
| [5] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
|
| [6] |
J. F. Han, P. O. Mohammed, H. D. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
|
| [7] |
F. Zafar, S. Mehmood, A. Asiri, Weighted Hermite-Hadamard inequalities for r-times differentiable prein vex functions for k-fractional integrals, Demonstr. Math., 56 (2023), 20220254. https://doi.org/10.20944/preprints202208.0322.v1 doi: 10.20944/preprints202208.0322.v1
|
| [8] |
K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. https://doi.org/10.1186/s13660-019-1982-1 doi: 10.1186/s13660-019-1982-1
|
| [9] |
İ, Mumcu, E. Set, A. O. Akdemir, F. Jarad, New extensions of Hermite-Hadamard inequalities via gener alized proportional fractional integral, Numer. Meth. Part Differ. Equ., 40 (2024), e22767. https://doi.org/10.1002/num.22767 doi: 10.1002/num.22767
|
| [10] |
S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions, Math. Meth. Appl. Sci., 44 (2021), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
|
| [11] |
V. Stojiljković, R. Ramaswamy, F. Alshammari, O. A. Ashour, M. L. H. Alghazwani, S. Radenović, Hermite-Hadamard type inequalities involving $(k-p)$-fractional operator for various types of convex functions, Fractal Fract., 6 (2022), 376. https://doi.org/10.3390/fractalfract6070376 doi: 10.3390/fractalfract6070376
|
| [12] |
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
|
| [13] |
M. Bohner, A. Kashuri, P. O. Mohammed, J. E. Nápoles-Valdés, Hermite-Hadamard-type inequalities for conformable integrals, Hacet. J. Math. Stat., 51 (2022), 775–786. https://doi.org/10.15672/hujms.946069 doi: 10.15672/hujms.946069
|
| [14] |
S. I. Butt, A. Khan, New fractal-fractional parametric inequalities with applications, Chaos Soliton. Fract., 172 (2023), 113529. https://doi.org/10.1016/j.chaos.2023.113529 doi: 10.1016/j.chaos.2023.113529
|
| [15] |
D. Zhao, M. A. Ali, H. Budak, Z. Y. He, Some Bullen-type inequalities for generalized fractional integrals, Fractals, 31 (2023), 2340060. https://doi.org/10.1142/s0218348x23400601 doi: 10.1142/s0218348x23400601
|
| [16] |
F. Hezenci, Fractional inequalities of corrected Euler-Maclaurin-type for twice-differentiable functions, Comput. Appl. Math., 42 (2023), 92. https://doi.org/10.1007/s40314-023-02235-8 doi: 10.1007/s40314-023-02235-8
|
| [17] |
M. Merad, B. Meftah, H. Boulares, A. Moumen, M. Bouye, Fractional Simpson-like inequalities with parameter for differential s-tgs-convex functions, Fractal Fract., 7 (2023), 772. https://doi.org/10.3390/fractalfract7110772 doi: 10.3390/fractalfract7110772
|
| [18] |
G. Rahman, M. Vivas-Cortez, $\underset{\scriptscriptstyle\centerdot}{\text{C}}$. Yildiz, M. Samraiz, S. Mubeen, M. F. Yassen, On the generalization of Ostrowski-type integral inequalities via fractional integral operators with application to error bounds, Fractal Fract., 7 (2023), 683. https://doi.org/10.3390/fractalfract7090683 doi: 10.3390/fractalfract7090683
|
| [19] |
Y. X. Zhou, T. S. Du, The Simpson-type integral inequalities involving twice local fractional differentiable generalized $(s, P)$-convexity and their applications, Fractals, 31 (2023), 2350038. https://doi.org/10.1142/s0218348x2350038x doi: 10.1142/s0218348x2350038x
|
| [20] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/tsci160111018a doi: 10.2298/tsci160111018a
|
| [21] | S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen's inequality, Bull. Math. Sc. Math. Roum., 47 (2004), 3–14. Available from: https://www.jstor.org/stable/43678937. |
| [22] | S. Abramovich, G. Jameson, G. Sinnamon, Inequalities for averages of convex and superquadratic functions, J. Inequal. Pure Appl. Math., 5 (2004), 1–14. |
| [23] |
G. Li, F. Chen, Hermite-Hadamard type inequalities for superquadratic functions via fractional integrals, Abstr. Appl. Anal., 2014 (2014), 851271. https://doi.org/10.1155/2014/851271 doi: 10.1155/2014/851271
|
| [24] |
M. W. Alomari, C. Chesneau, On h-superquadratic functions, Afrika Mat., 33 (2022), 41. https://doi.org/10.1007/s13370-022-00984-z doi: 10.1007/s13370-022-00984-z
|
| [25] |
M. Krnić, H. R. Moradi, M. Sababheh, On superquadratic and logarithmically superquadratic functions, Mediterr. J. Math., 20 (2023), 2–18. https://doi.org/10.1007/s00009-023-02514-y doi: 10.1007/s00009-023-02514-y
|
| [26] |
D. Khan, S. I. Butt, Superquadraticity and its fractional perspective via center-radius cr-order relation, Chaos Soliton. Fract., 182 (2024), 114821. https://doi.org/10.1016/j.chaos.2024.114821 doi: 10.1016/j.chaos.2024.114821
|
| [27] |
S. I. Butt, D. Khan, Integral inequalities of $h$-superquadratic functions and their fractional perspective with applications, Math. Method. Appl. Sci., 2024, 1–30. https://doi.org/10.1002/mma.10418 doi: 10.1002/mma.10418
|
| [28] |
D. Khan, S. I. Butt, Y. Seol, Analysis of $(P, m)$-superquadratic function and related fractional integral inequalities with applications, J. Inequal. Appl., 2024 (2024), 137. https://doi.org/10.1186/s13660-024-03218-x doi: 10.1186/s13660-024-03218-x
|
| [29] | S. I. Butt, D. Khan, S. Jain, G. I. Oros, P. Agarwal, S. Momani, Fractional integral inequalities for superquadratic functions Via Atangana-Baleanu's operator with applications, Fractals, 2024, https://doi.org/10.1142/S0218348X25400687 |
| [30] |
D. Khan, S. I. Butt, A. Fahad, Y. Wang, B. B. Mohsin, Analysis of superquadratic fuzzy interval valued function and its integral inequalities, AIMS Math., 10 (2025), 551–583. https://doi.org/ 10.3934/math.2025025 doi: 10.3934/math.2025025
|
| [31] |
S. Banić, J. Pečarić, S. Varošanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc., 45 (2008), 513–525. https://doi.org/10.4134/jkms.2008.45.2.513 doi: 10.4134/jkms.2008.45.2.513
|
| [32] |
D. Khan, S. I. Butt, Y. Seol, Analysis on multiplicatively (P, m)-superquadratic functions and related fractional inequalities with applications, Fractals, 33 (2025), 2450129, 1–27. https://doi.org/10.1142/s0218348x24501299 doi: 10.1142/s0218348x24501299
|
| [33] |
M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial, R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Res. J. Math., 12 (2019), 1–11. https://doi.org/10.9734/arjom/2019/v12i330084 doi: 10.9734/arjom/2019/v12i330084
|
| [34] |
H. Kadakal, M. Kadakal, Multiplicatively preinvex P-functions, J. Sci. Arts., 23 (2023), 21–32. https://doi.org/10.46939/J.Sci.Arts-23.1-a02 doi: 10.46939/J.Sci.Arts-23.1-a02
|
| [35] |
S. $\ddot{O}$zcan, S. I. Butt, Hermite-Hadamard type inequalities for multiplicatively harmonic convex functions, J. Inequal. Appl., 2023 (2023), 120. https://doi.org/10.1186/s13660-023-03020-1 doi: 10.1186/s13660-023-03020-1
|
| [36] |
H. Budak, K. Özçelik, On Hermite-Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes., 21 (2020), 91–99. https://doi.org/10.18514/MMN.2020.3129 doi: 10.18514/MMN.2020.3129
|
| [37] |
H. Fu, Y. Peng, T. S. Du, Some inequalities for multiplicative tempered fractional integrals involving the $\lambda$-incomplete gamma functions, AIMS Math., 6 (2021), 7456–7478. https://doi.org/10.3934/math.2021436 doi: 10.3934/math.2021436
|
| [38] |
Y. Peng, T. S. Du, Hermite-Hadamard-type inequalities for ${^*}$differentiable multiplicative m-preinvexity and $(s, m)$-preinvexity via the multiplicative tempered fractional integrals, J. Math. Inequal., 17 (2023), 1179–1201. https://doi.org/10.7153/jmi-2023-17-77 doi: 10.7153/jmi-2023-17-77
|
| [39] | Y. Peng, H. Fu, T. S. Du, Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Commun. Math. Stat., 2022, https://doi.org/10.1007/s40304-022-00285-8 |
| [40] |
M. Merad, B. Meftah, A. Moumen, M. Bouye, Fractional Maclaurin-type inequalities for multiplicatively convex functions, Fractal Fract., 7 (2023), 879. https://doi.org/10.3390/fractalfract7120879 doi: 10.3390/fractalfract7120879
|
| [41] |
A. Lakhdari, W. Saleh, Multiplicative fractional Hermite-Hadamard-type inequalities in G-calculus, Mathematics, 13 (2025), 3426. https://doi.org/10.3390/math13213426 doi: 10.3390/math13213426
|
| [42] |
W. Saleh, B. Meftah, M. U. Awan, A. Lakhdari, On Katugampola fractional multiplicative Hermite-Hadamard-type inequalities, Mathematics, 13 (2025), 1575. https://doi.org/10.3390/math13101575 doi: 10.3390/math13101575
|
| [43] | T. Abdeljawad, M. Grossman, On geometric fractional calculus, J. Semigroup Theory Appl., 2016 (2016), 2. |
| [44] |
A. E. Bashirov, E. M. Kurpinar, A. Özyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
|
| [45] | R. E. Moore, Interval analysis, Prentice Hall: Englewood Cliffs, NJ, USA, 4 (1966), 8–13. |
| [46] |
Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1590/S1807-03022012000300002 doi: 10.1590/S1807-03022012000300002
|
| [47] | A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 35 (2013), 1459–1462. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617 |
| [48] |
T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
|
| [49] |
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
|
| [50] |
S. I. Butt, D. Khan, Integral inequalities of $h$-superquadratic functions and their fractional perspective with applications, Math. Method. Appl. Sci., 2024, 1–30. https://doi.org/10.1002/mma.10418 doi: 10.1002/mma.10418
|
| [51] |
D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
|
| [52] |
S. Markov, Calculus for interval functions of a real variable, Computing, 22 (1979), 325–337. https://doi.org/10.1007/BF02265313 doi: 10.1007/BF02265313
|
| [53] |
M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
|
| [54] |
T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
|
| [55] | M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton. Fract., 169 (2023), 113274. |
| [56] | J. P. Aubin, H. Frankowska, Set-valued analysis, Birkhäuser Boston, 1990. |
| [57] |
S. Karmakar, S. K. Mahato, A. K. Bhunia, Interval oriented multi-section techniques for global optimization, J. Comput. Appl. Math., 224 (2009), 476–491. https://doi.org/10.1016/j.cam.2008.05.025 doi: 10.1016/j.cam.2008.05.025
|
| [58] |
S. I. Butt, D. Khan, Superquadratic function and its applications in information theory via interval calculus, Chaos Soliton. Fract., 190 (2025), 115748. https://doi.org/10.1016/j.chaos.2024.115748 doi: 10.1016/j.chaos.2024.115748
|