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context of linear combinations of special means. This provides a fresh perspective on superquadratic
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1. Introduction

Convexity is an intrinsic concept in mathematics and engineering because it supports a wide range
of theoretical and practical applications. Convex sets and convex functions help simplify complex
systems and make optimization problems more manageable due to their well-structured nature and
unique global minima. Beyond mathematics, convexity plays an essential role in fields such as control
theory, where it contributes to system stability and economics, and explains consumer preferences
and market behavior. Its significance extends to real-world engineering practices, where convex
structures routinely appear in system design and performance optimization. Convexity also has an
elegant presence in integral inequalities, where convex functions serve as key components in estimating
bounds. One of the most notable results are the inequalities of H.H type, which provides bounds for
the mean functional output of a convex function on a specified interval. This deep connection between
convexity and integral inequalities makes the area a vibrant and influential part of modern mathematical
research [1-3].

Fractional calculus has become a powerful and widely used mathematical tool, attracting growing
interest from physicists, engineers, and computer scientists [4]. By extending classical calculus
to derivatives and integrals of arbitrary orders, it provides an effective framework for modeling
systems with memory and hereditary effects, which explains its rising popularity. Beyond modeling,
Fractional-order calculus has also shaped the development of the theory of inequalities through
fractional order inequalities. A major breakthrough in this area was achieved by Sarikaya et al. in
2013 [5], who introduced a fractional version of the inequalities of H.H type using R..L fractional
integrals. This generalization broadened the scope of convex analysis and opened new directions for
studying the behavior of convex functions under fractional integration. Following the groundbreaking
presentation of the inequalities of H.H type via R.L fractional integrals, there has been significant
progress in expanding inequalities of H.H type across various definitions of fractional integrals.
Since the inequalities of H.H type were first introduced in the context of R.L fractional operators,
numerous extensions of inequalities of H.H type utilizing a broad class of fractional operators
have been thoroughly studied. The Sarikaya fractional operators [6], k-fractional operators [7],
Y-R.L fractional operators [8], generalized proportional fractional operators [9], generalized R.L
operators [10], (k—p) fractional operators [11], Katugampola fractional operators [12] and conformable
fractional operators [13] are notable examples. In addition to these operator-based generalizations, new
classes of non-integer order inequalities have also been established, including those of the Hadamard-
Mercer type [14], Bullen-type [15], Euler-Maclaurin-type [16], Simpson-type [17] and Ostrowski-type
inequalities [18]. Studies like [19,20] and the references cited therein, offer readers who want a more
thorough understanding of the most recent advancements and thorough summaries in this constantly
changing field.

The idea of superquadraticity was initially introduced by Abramovich et al. [21]. Superquadraticity
provides tighter and better bounds than general convexity, which greatly improves the theory of
integral inequalities. Such an improvement is highly desired in applied mathematics applications,
where better approximation translates into higher modelling accuracy, and in optimization problems,
where the quality of the boundary estimate determines the optimal solution. Superquadraticity thus
enriches the theoretical foundations of inequality structures and broadens their scope of application.
It offers a robust analytical framework that facilitates the formulation and utilization of inequalities
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across practical and mathematical issues. Later, Abramovich et al. [22] provided a formal definition
of superquadraticity along with key theoretical insights that enhanced comprehension of this type
of function. Building upon this foundation, Li and Chen [23] advanced the notion by examining
the fractional perspective of the inequalities of H.H type using R.L fractional integrals, marking a
significant extension of superquadraticity into the realm of fractional calculus. Further developments
were made by Alomari et al. [24], who initiated the notion of h-superquadratic functionn, investigated
their fundamental features and established a new variant within the broader family. Krni¢ et
al. [25] advanced the theory by formulating the concept of logarithmically superquadratic functions,
which serves as a natural logarithmic enhancement of the traditional superquadratic framework.
In a significant contribution to analysis over interval-valued structures and generalized function
frameworks, Khan and Butt [26] proposed a new class of function known cr-order superquadratic
function along with their fractional analogs, highlighting their utility through various applications.
Butt and Khan [27] were the first to develop the classical and fractional forms inequalities of H.H
and Fejér type within the framework of h-superquadratic functions. Extending this line of research,
Khan et al. [28] proposed the (P, m)-superquadratic function, a more general form that incorporates
examples, key properties, integral inequalities, and practical applications, thereby enriching the
functional landscape of superquadraticity. For further exploration of these ideas via multiplicative
calculus, fuzzy calculus and fractional calculus the reader is referred to the works in [29-32].

Recent years have seen growing interest in multiplicative calculus, largely sparked by the impactful
work of Ali et al. [33]. Their effort unleashed a flood of attention around the application of
multiplicative calculus, with a focus on the area of integral inequalities in particular. Unlike traditional
calculus, multiplicative calculus is founded on another type of foundation structure and is therefore
extremely effective in handling issues related to growth procedures and ratio-based systems. Such
a structure has served well to examine inequalities of other classes of functions. For this purpose,
researchers have found several integer order multiplicative inequalities for other variants of functions.
Worth mentioning is the substantial advancement in establishing inequalities for multiplicative
preinvex P-convex functions [34] and multiplicative harmonically convex functions [35], which apply
classical convexity principles within a multiplicative framework. These results not only enrich the
theoretical framework of multiplicative calculus but also provide valuable tools for application to
optimization and mathematical analysis.

In recent years, there has been growing scholarly interest in the study of integer-order inequalities
within the framework of multiplicative calculus. Numerous results have been established for
various classes of functions under this setting. Yet, fractional versions, especially those employing
multiplicative fractional operators, remain relatively underexplored. A significant advancement
occurred in 2020 when Budak and Ozgelik [36] introduced a novel approach for deriving new
inequalities of H.H type using multiplicative R.L fractional operators. This pioneering work marked
a milestone in the field, generating substantial interest within the mathematical community due to its
innovative methodology and its potential for broader applications. Building on this foundation, Fu et
al. [37] investigated a family of operators known as multiplicative tempered fractional integrals, thereby
extending the scope of inequalities of H.H type to multiplicatively convex function and enriching
the theoretical framework of fractional order multiplicative inequalities. Further developments were
made by Peng and Du [38], who introduced differentiable multiplicative (s,m)-preinvex and m-
preinvex functions. Within the setting of multiplicative tempered fractional integrals, they established
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new inequalities of H.H type, broadening the applicability of this theory to more generalized
convexity frameworks. Collectively, these works represent important contributions to the systematic
advancement of inequality theory in the context of fractional multiplicative calculus.

In 2022, Peng et al. [39] introduced a new class of operators called multiplicative fractional integrals
with exponential kernels, a significant breakthrough in multiplicative fractional calculus. Merad
et al. [40] made another significant addition by deriving symmetric Maclaurin-type inequalities for
functions whose multiplicative derivatives are both bounded and convex. Their work was conducted
within the framework of multiplicative fractional calculus and stands out for its symmetry-based
approach and theoretical rigor. The works of Lakhdari and Saleh [41] and Saleh et al. [42] provide
important advances in multiplicative fractional inequality theory. In [41], the authors extend the H.H
inequality using new fractional operators in G-calculus. Their results generalize several classical
inequalities and deepen the study of multiplicative convexity. Moreover, [42] develops H.H type
inequalities based on the Katugampola fractional multiplicative integral. Together, these studies
offer unified and powerful tools for research in multiplicative fractional calculus. To gain a broader
perspective on the current state of research in this dynamic area, readers are directed to [43,44], offering
detailed discussions on extensions, applications and ongoing developments in multiplicative-fractional
calculus.

Making decisions entails deciding on the best course of action when faced with paradoxes, which
are encountered across real-life situations. It is also essential to explore a broad spectrum of disciplines,
such as management science, optimization theory, and operations research. When making a choice,
several aspects are considered, including risk and future uncertainty. Decision-making involves
varying degrees of confidence, forming a scale that extends from complete certainty to absolute doubt.
There are many different contexts in which decisions can be made, such as conflicting demands,
decisions with confidence, decisions with ambiguity, decisions with risk and more. There are further
classifications for decisions made in the face of uncertainty. Two of them make optimistic choices,
while one makes depressing ones. While a pessimistic decision-maker prioritizes the most secure
outcome under uncertainty, an optimistic one selects the most favorable outcome despite the presence
of ambiguity. Real numbers are commonly used to express deterministic parameters in mathematical
models and they can provide a traditional explanation for some issues.

In numerous uncertain real-world contexts, particularly within engineering and decision-making
domains, such as operations research and management science, it is challenging to treat parameters as
fixed real values. By nature, models exhibit certain inexact or imperfect characteristics, requiring
decision-makers to exercise judgment in the presence of ambiguity. Operations research and
management experts typically use stochastic or fuzzy methodologies to deal with imprecise or
uncertain parameters. Imprecise parameters are treated as random variables with known probability
distributions when the stochastic approach is used. Alternatively, fuzzy approaches address uncertainty
by employing fuzzy sets with corresponding membership functions or representing values as fuzzy
numbers. In practice, there are scenarios where integrating both methods provides a more robust
solution to imprecise results. These approaches raise the issue of which probability distributions or
membership functions to use. This is truly a difficult task for a decision maker in an uncertain setting. In
response to this challenge, many researchers have turned to interval representations to model inaccurate
or uncertain parameters. In cases when decisions must be made, the order in which the intervals are
arranged determines the best option. Over the past few decades, researchers have presented order
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relations in the context of intervals in a number of mathematical approaches. Reformulating interval-
oriented optimization issues was the primary goal of these methods. Although their main goal was
to improve solution techniques, they did not necessarily go into great depth into the pertinent interval
ordering idea. Once they accomplished their goal, the researchers cut off the discussion.

Moore [45] was the pioneer in using interval analysis in 1969 to automatically evaluate
computational errors, a breakthrough that improved accuracy and attracted attention from the academic
community. Interval numbers are used as variables in interval analysis and interval operations are
preferred over number operations because intervals may be stated as unknown quantities. Moreover
convex functions and integral inequalities have been connected by scholars in the setting of interval-
valued analysis, leading to some intriguing discoveries. The generalization of classical integral
inequalities to fuzzy-valued functions and 7V¥'s has been the focus of many researchers, including
Chalco-Cano et al. [46], Flores-FranuliC et al. [47], Costa et al. [48], and others.

The interval-inclusion connection was used by Zhao et al. [49] to explicitly design an interval
h-convex function and verify the pertinent integral inequalities. Using the Kulisch-Miranker order,
Khan et al. [50] created an h-convex 7V# in 2021 and deduced several inequalities for such convex
functions. According to this line of research, Jensen’s inequalities were derived by Zhang et al. [51]
using fuzzy set-valued functions. One can refer to [52-55] for detailed studies on convex 7 V¥,
including their various forms, inequality results, and fractional generalizations through multiple
fractional integral operators.

Extending the literature on multiplicative calculus, fractional calculus, interval calculus,
superquadraticity, and convexity, we identify a significant gap: Fractional forms of inequalities
for superquadratic 7VF have not been studied from the perspective of multiplicative calculus.
Accordingly, we investigate the properties of multiplicative superquadratic 7V# and formulates
corresponding fractional-order inequalities of H.H-type.

The paper is structured as follows:

In Section 1, we review the essential background and foundational concepts related to
convex and superquadratic functions, as well as fractional and multiplicative calculi and their
associated inequalities. In Section 2, we present key formulas and fundamental results concerning
convexity, superquadraticity and both types of calculus.In Section 3, we introduce new fractional
integral inequalities within the framework of multiplicative calculus, employing multiplicatively
superquadratic functions. To demonstrate the applicability of these results, relevant examples and
graphical illustrations are provided in Section 4. In Section 5, application is provided to strengthen our
results. Finally, in Section 6, we offer a concise summary and discuss potential directions for future
research based on the findings.

2. Preliminaries

In this section, we begin by reviewing several fundamental definitions, properties, and concepts
related to multiplicative calculus.

Definition 2.1. [44] Let the function ¥ : R — R be a positive then the multiplicative derivative F* is
defined as given below:

T(t+h))ﬁ‘

oF
_T(t)‘llfi%( Ft)

dt
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Remark 2.2. The relationship between the multiplicative derivative and the ordinary (classical)
derivative of a positive differentiable function is given by the following expression:

"(t
F* =exp{(InF (1)} = eXp{Z((t))}.

The major properties of the derivative with respect to multiplicative calculus are as follows:
Proposition 2.3. [44] Let the functions ¥ and ¢ are multiplicatively differentiable then
(1) (cF)Y®)=F"1), ceR
(2) (Fe)® =F (He"®.
(3) (F + @)'(t) = F*(H)70em o (1) 7oeem
4y =28.
(5) (F)'(H) = F* P OF ()9 ©.

The notation fa . (F (1))% is used for the multiplicative integral, sometimes called the *integral. Its
correspondence with the standard Riemann integral is given by the following relation, as documented
in [44]:

Proposition 2.4. The Riemann integrability of the function ¥ on the interval [a,,b,] implies its
multiplicative integrability over the same interval.

Do bo
f (F ()" = exp { f 1H(T(t))dt}.

In addition, Bashirov et al. [44] established that a function which is multiplicatively integrable
possesses the following features and implications:

Proposition 2.5. The Riemann integrability of ¥ on [a., b.] ensures that its multiplicative integrability
on [ao, bo].

b, b,
L f(F o = [(F»*), p>o.

S b, bo
2. [(F®em)" = [(F )" [(@i)™

=3
9

b,
3 f((]f(t)) (T(t))dt
o) f (@)

a5

b, c bo
4. f[F)* = [F )" [(FN*, a <c<b..

1

5f@mW:L ﬂ?@ﬁ U@ﬁw]
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Theorem 2.6. [44] Let the functions & and ¢ be *differentiable and differentiable respectively, and
the function F¥ be a *integrable, so that

Do § dt T(bo)np(bo) 1
f (7—“ (t)w(ﬂ) = Fay X — =
QAo j‘;oo (T(t)¢,(t))

Lemma 2.7. [22] Let ¥ : [a,,b,] =& Rand ¢ : [a,,b,] = R be *differentiable and differentiable,
respectively, and F¥ is *integrable, so that

b, dt (Do)

f (T *(h(t))h'“)“’“)) SEALDISE ! .
: Fla z
° [ (7o)

Next, we elaborate the basic mathematics pertaining to interval order relations, which is useful for
constructing the results associated with 7V s.

Let K, be the space of bounded and closed intervals of R, and any a, € K. may be defined using the
following definition:

A = [0, 0] ={t:a <t<a,teR}

with width (a, — Q). If (o, — a,) = 0, then a, is called degenerate. The upper and lower bounds of a,
are denoted by a, and a, € R, respectively. With no gape, each t € R may be identified as an interval
[t, t]. It is deemed positive if (a, — a,) > 0. It is represented by K" and provides the space of positive
intervals.

K: = {[00, 0] : [a5,0.] € Ko A @ > 0. (2.1)
For each 8 € R, we attain

[Bao, fac], iff=0
Bas = Blas, a] =
|Ba.. ). if <.

The definitions of fundamental arithmetic operations on interval numbers [a.], [b,] € K. are given in
the following, where [a,] = [a., a.] and [b,] = [Do, bo]:

e Addition: [a,] + [b,] = [, 8] + [Do, ] = [0, + Do, T5 + D]
e Subtraction: [a,] — [b.] = [a; — 5"1_0 —Db.].
e Multiplication: [a,]X[D.] = [a., a;]X[bo, bo] = [min(&%,&b_o,EE,Eb_O),max(&E,&b_o,a_oE,a_ob_o)].

e Division: % = [a, 0] X [bé, 10], provided 0 ¢ [b., b.].

2

Remark 2.8. [51] We can claim that [ao, a] < [bo, b.] & 0 < E,a_o < b., partial ordering is the
name given to such a relationship.
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Remark 2.9. [56] The lenght between [ao, o], and [Do, b.] defined as follows

[ =D, (2.2)

du, ([0, ac], [bo, b,]) = max{

a, — b,

This distance is known as the Hausdorff-Pompeiu distance. It is evident that a complete metric space
is formed by the pair (K., dy,).

Definition 2.10. [57] Let [a,] = [ao, a,] and n be any positive integer, then
[a.]" = [a,", "], for a, > 0.

Definition 2.11. [57] The nth root of [a.] = [a., a,], where n € Z*, is defined as

[0]" = [0, T]" = /[0, %] = [{fae, V&l for a,>0.

Definition 2.12. [57] The one that follows is a definition of the modulus of [a,]:

[ao]l = I[ae, ao]l = [@o, @], if a2 0

= [[@h lofl, if & <0.

Logarithmic, exponential, cosine, sine, and other basic useful functions have interval representations
introduced by [57], such that

exp([a.]) = exp([ac, ac]) = [exp(a.), exp(ac)]
log([a,]) = log([a., a.]) = [log(a.),log(a.)], Provided a, > 0.
Sin([a.]) = Sin([a., &1) = [min{S in(a), S in(@)}, max{S in(a), S in@)}] = [b,B].

Here b = min{Sin(a,), S in(as)} and, b = max{S in(a,), S in(a,)}. A Similar case holds for the function
Cos([as, T1).

Theorem 2.13. [52] Let F : [a,,b.] — R, is an IVF given as ¥ = [F, F1. Then, F is interval

Riemann integrable on [a,,b,] if and only if ¥ and F are Riemann integrable on [a,,b.], i.e.,

bo b b
(IR) f F(t)dt = [(R) f F(t)dt, (R) f ?’(t)dt]. 2.3)

Let us consider the notion of superquadraticity.
Definition 2.14. A function ¥ : [0, 00) — R is superquadratic, if
Ft,) =F@)+Cd, —t)+F(t, — 1), (2.4)
holds for each t, > 0, € € R, where t > 0 and €, is a constant.

Remark 2.15. 7 is subquadratic provided, the inequality (2.4) is flipped.

More specifically, any arbitrarily selected superquadratic function satisfies the three additional
conditions stated in Lemma 2.16:
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Lemma 2.16. If the function ¥ is superquadratic, then

e 7(0)<0.
e 7(0) =F"(0) = 0 implies F'(t) = €, provided F is differentiable at t > 0.
e ¥ is convex provided ¥ (0) = ¥'(0) = 0 and F is positive on (0, o).

Theorem 2.17. [22] If the function F is superquadratic, then
DUFW) = Fd + > F (-1, (2.5)
i=1 i=1

holds for each ; € (0,1) and t; > 0, where t = ity and Y =1

In their work, Bani¢ et al. [31] contributed to superquadratic theory by deriving the following
inequalities of H.H type:

Theorem 2.18. If the function F is superquadratic on [a,,b,], then

a + b, 1 0o a + b 1 0o
t— dt < t)dt
T( 2 )’Lbo—aofaog:(‘ 2 ) ‘bo—aofaoﬂ)

b
< F(a) + F(bs) 1 f [(b. — DF(t = a,) + (t — a,)F (b, — D)]dt. (2.6)
2 (bo - (10)2 S

The notion of the supporting line for superquadraticity is introduced in Definition 2.14. Below, we
present an additional related definition.

Definition 2.19. [21] If the function F is superquadratic, then

F(1 =Pt +Bt) < (1 =BF () + BF (t2) = BF (1 =PIt — ta])

- =BF Blt; — ta]), 2.7)
holds for each B € (0,1) and t,,1, > 0.
Definition 2.20. /[25] A function ¥ : I € R — (0, 00) is said to be multiplicatively superquadratic

function on I if
[F D" PIF )P
[F((1 =Bt = DPIF (BIt: - t2D]A”

F((1 =Bt +pt) < (2.8)

holds ¥ t1,t, > 0and 0 < g < 1.

The notion of superquadratic 7V s was first established in [58]. In the following, we list the major
results of the said notion:

Definition 2.21. A function ¥ : [a., b.] — R7, is said to be superquadratic I'VF on [a,, b.], if

F((1 =Pt +pt) 2 (1 = B)F () + BF (1) = BF (1 = P2 — 11])
- (1 =BF Bt — 1)), (2.9)

holds V1,1, € [a,, b,] and for each B € [0, 1].
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Remark 2.22. The function ¥ is called subquadratic IVF on ] if the relation “2" in (3.1) is reversed.

Remark 2.23. The function F is called affine IVF on J when the symbol “2" in (3.1) is substituted
by ((: !I'

Remark 2.24. A non-negative scalar multiple of a superquadratic IVF on ] is also superquadratic
IVF onl.

Remark 2.25. Let ¥ (t) and ¢(t) be superquadratic IVFs on J. Then the function defined by
max F (1), (1) is also superquadratic IVF s on J for every t € J.

Theorem 2.26. If ¥ : [a,,b,] — R} is a superquadratic IVF given by ¥ = [F, F1, then for all
t,8: >0, 1<i<n,wehave

F( iﬁi(ti)) 2 iBiT(ti) - Zn:ﬁﬂc(ﬂi - iﬁitﬂ), (2.10)
i=1 i=1 i=1 i=1

where Y\, Bi = 1.

Theorem 2.27. Suppose that F : [a,,b,] — R] is superquadratic IVF on [a,,b.] provided by F =
[F,F ), then

a + b, 1 B a, + b,
+ -
el |

7@ ' F(b)

e
Jat 2 f F (t)at
bo — 0 o

1 Do
(b, — a,)? f [(bo = DF (t — ao) + (t — a0)F (b, — D)]dlt. (2.11)

Next, we define the R.L fractional operators, which form the foundation for the analysis that
follows.

Definition 2.28. The R..L fractional operators of order £ > 0 with a, > 0 are denoted by 1°_F (t) and
Jij—" (1), respectively, and given by

¢ _ 1 f t -1
Jao"T(t) - r(g) . (t t()) T(t())dto’ (t > Clo),
and
¢ L™ (-1
JIao‘T(t) = % ‘[tv (t, =1 7:(tu)dtaa (t < b,).

HereI'(€) = fooo t, e todt,,

A significant extension of the classical R.L fractional operators, referred to as the multiplicative R..L
fractional operators, is presented in [43], representing an important advancement in the development
of multiplicative fractional calculus.
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Definition 2.29. The multiplicative left-sided R..L fractional operators . J\F (t) of order € € C, Re(£) >
0 and t > a., is defined by

LILF (1) = explll_.(Ino F)(1)}

— 1 t -1
—exp{% f (t—1,) (lnoT)(to)dto}, 2.12)

and the right-sided one *Jgo?’(t), where t < b, is defined by
J0F () = exp{ll_(Ino F)(H))
1 Do
= expl— |ty =m0 F)t, dt,,}, 2.13
i [ -0 o @.13)
withT(€+ 1) = I'(€) and T'(1) = 1.

3. Multiplicatively superquadratic 7V¥ s and its integral inequalities via multiplicative
calculus

In light of the analytical framework, we now present the following definition. Throughout the
article, the notation G(.,.) represents the geometric mean.

Definition 3.1. A function ¥ : J C [0,00) — R, is said to be multiplicatively superquadratic IVF
on J, if the following inequality

[F DI PIF ()P
[F((1 = B)lts = LDPIF (BIt — tD]P

holds for any a,,b, € J and g € [0, 1].

CF((1-pt +pt), (3.1

Remark 3.2. Reversing the inequality in (3.1) characterizes the function ¥ as a multiplicatively
subquadratic IVF on .

Remark 3.3. The function F is called a multiplicatively affine TVF on J when the inequality in (3.1)
holds with equality.

Remark 3.4. A non-negative scalar multiple of a multiplicatively superquadratic IVF on J is also
multiplicatively superquadratic IVF on J.

Remark 3.5. Let 7 (t) and ¢(t) be multiplicatively superquadratic IVF s on J. Then, for every t € ],
the function max {F (1), ¢(t)} is also multiplicatively superquadratic I'VF on J.

Theorem 3.6. LetF : ] — R;r be an TVF on ] such that
F(t) = [F (1), F )], (3.2)

V't € ). Then ¥ is multiplicatively superquadratic IVF on J provided ¥ (1) is multiplicatively
superquadratic and F(t) is multiplicatively subquadratic.
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Proof. Let ¥ be a multiplicatively superquadratic V¥ on J. Then V a,,b, € Jand S € [0, 1], so we
have

[F D] PIF ()P
[F((1 =Bty = LDEIF Bty - tD]P”

Accordingly, using (3.2), we can rewrite the left-hand side and right-hand side of (3.3) as follows:

F((1 =Bt +pt2) 2

(3.3)

[F 1" PIF ()P
[F((1 = Blts = LDPIF (BIt — t)]P
[F DI PIFE )P [F ()1 PIF ()Y

= , — — , 3.4
71~ Pl — LIPIE @I - DI (1 - Bl — ) PIF Bl — )]0 G4
and
F(1 - Bt +Bt) = [F((1 - Bt + ), F((1 - Bty + )], (3.5)
respectively. Thus, it implies that
|F((1 = B)ts + Bt2), F((1 = Bty + )]
_ [FEDI"PIE )P [F (D P[F ()P 3.6)
~ | [FEA =Bt = LDPIE GBIt — D17 [F((1 - ity = LDPIF @B — tD]10P | '
It follows from (3.6) that
[F DI P ()P
— — 1-p5)t t 3.7
T (1Al — LDPIT @l — thap = 2 =P+ ho). G-
and
F (1-B) 1 B _
[F D1 P[F (1)) < T (L~ Bty + ). 35)

[F((1 = B)lty — LDEIF Bt — ta))] 1P

From the inequalities (3.7) and (3.8) that ¥ is multiplicatively superquadratic and F is multiplicatively
subquadratic.

Conversely: Let  be a multiplicatively superquadratic function and Fa multiplicatively subquadratic
one. Then, by Definition 2.20, the following inequality holds:

[F DI PIF ()PP
[F((1 =PIty — LDIFIF (BIt — )]IP

> F((1 - Bty +pta), (3.9)
and

= (1-B) [ (+.\18 _
_ )l 77 (©)] < F((1 - Bty +fBta). (3.10)
[F((1 =Bty — LDPLF BIt — t]EP
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From (3.9) and (3.10), we can have

[F (DI PIF (L) [F (t)1PIF ()P
[F((1 =Bt = LDPIFBIt = DI [F((1 = B)lti — LYPIF Bl — 1]
C |71 =Bty + B), F(1 - Bty + Bto)] (3.11)

This implies that

[F DI PIF ()P
[F((1 = Blts = LDPIF (BIt — L)]P

Hence, ¥ is multiplicatively superquadratic ZV¥ on J. m]

C F((1 - Pt +Bh).

Remark 3.7. When ¥ (1) = F (1), the notion of a multiplicatively superquadratic IVF coincides with
that of the classical multiplicatively superquadratic function.

Proposition 3.8. Let ¥ : ] — R} be an I'VF on J such that
F(t) = [F(1), F O] (3.12)

Where ¥, F ] R If F and F are “integrable on J, then F is *integrable on J and

D, 18
f (T(t))‘“:exp{ f ln(yf(t))dt}. (3.13)

Proof. Let ¥ and F are “integrable on J, then by Proposition 2.4, ¥ and F are (RI)-integrable on J,
and

Do Do
f (f(t))dt:exp{ f ln(f(t))dt}, (3.14)
and
b R
f (F ) :exp{ f ln(?’(t))dt}. (3.15)

Thus, by Theorem 2.13, # is interval (RI)-integrable on J. Again by Proposition 2.4, ¥ is interval
“integrable on J, and from (3.14) and (3.15), we attain

j; " (F ()™, f . (?(t))dt] - [exp{ f . zn(f(t))dt},exp{ f . ln(7_:(t))dt}],
fa " Fy = exp{ f . ln(?f(t))dt}.

or

O
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Theorem 3.9. Let ¥ : ] — R be a multiplicatively superquadratic I'VF on ], such that
F(t) = [F1), F 0], (3.16)
where 7_“,% :J > R IfF is interval *integrable on J, then

(5 )( fb (G )dt)()

r(e+1)

2 (aoJi(?")(bo) . Jgo(f)(ao))Z(boﬂto)[
G(F (a,), F (0.))

)

{ b
dt:| (I‘o—ao)["'l

[ L (o = = (G = by

holds, Y a,,b, € J.

Proof. Let ¥ be a multiplicatively superquadratic ZV¥ on J, then

)l

Taking Log on both sides of (3.17),

ln?’(b° ; ao) _ ln[f(b° 42- ao)’?(bo 42- ao)] _ [lnf(b° 42- ao)’ ln?‘(b" 42- a )] (3.18)

Consider [nF ( b°J2““°) from (3.18), and it is to be noted that ¥ (t) is multiplicatively superquadratic.
a, + b, Ba, + (1 = B)b, + Bb, + (1 —,B)ao)
2 2
1 1
<35 InF(Ba, + (1 - B)b,) + 5 In 7 (Bb, + (1 - B)as)

1 |(1-2B)(as — Do)\ 1 (1 —28)(a; — bs)|

In 7 (

):1nf(

Multiplying both sides of the inequality by 5/~! and then integrating the resulting expression with
respect to S over the interval [0, 1], we obtain:

1 1
fo B! 1nf<“°§b°>d/3 = %fo B InF (Bac + (1 - Bbo)dB

| 1
+% f S By, + (1 — By f ﬁf—llnf(Kl—Zﬁ)z(ao—bo)|)d,8-
o 0

After simple calculations and then with a change of variables, we obtain

a, + b, I'c+1)
A e I

[Jfo+ InF(b.) + J. In f(ao)]
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> o+ b,
L f (t—a) " InF (22— gpyt.

(bo - ao)f 2
This implies
@ + b, I(¢+1) ,
exp{In F( > )}Sexp{—z(b( _a)[(Jfo+lnf(bo)+J€D_ln7_-'(ao))
4 e G + b
- t—a) 'l ° 0 _{])dt.
(bo_ao)gf% (t =) InF (== Ddt)
Thus,
T(f+1)
Q. Jf ? bo ‘i Jg T ao 2([\0—00)[
f(ao;rbo)S [0, JS(F)(D) - T, (F)(a0)] -
(7 (Tt — tymery®)eer
or
a, + b, o a, + b, (a1t oy
F(——) (F( S~ ) (3.19)

< [ TE D) - JE(F )| Tt

As F is multiplicatively subquadratic and moving in the same fashion, we yield

_ b -1 ﬁ
7 a, + b, )(f (T(|ao + b, ETNCED )df)( : (3.20)

2 2
> [ JETIDO.) -+ JE (F)(ag)] T

From (3.19) and (3.20), we attain

b, el
[Z<a°;b°>(f (f(|“°+b°—t|>“‘“°>€'l)dt)( g

2
14
— a, + b, bo . + b, - (bo—10)¢
F )( [ T e )d‘) |

[(¢+1)

> [P0 - P
[0 T - I a7 | o)

To prove the second part, we consider the RHS of inequality (3.19), therefore we have:

resy I'ee+1)
I - I @ = explse s

g 1 1
= expl3] fo B In(F (Ba, — (1 - B)b)dB + fo B In(F (B, - (1 - B)a.)dp]

[J4,(tn 0 F)(.) + I (In o F)(a.)]}
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£ (In(F (@) F (b.) 2 S W

< expl [P —@waﬂQﬁlmfmf4m“>m
b,

+f‘mZm—m»WW%Wmm

G(f (a5), F(bo))

o
o

dt bo_ul; (+1
[fab ((f(lb0 — ) (F (It - aol))(bo—t)(t_ao){_|) ]< )

Similarly by considering the right term of (3.19), we have

r'(t+1)
2(bo—-a0)!

[, JAF)®) -2 JE(F)(a0)]
G(F (), F(b,))

=

b [ — - - dt (bo—ui)“l
Hffm—mwwﬂwmwwHW)]

From (3.22) and (3.23), we achieve

T((+1) L+
bo—a

mm@mmm@mmﬂwhmﬁmnm@mme]
[ G(F (a,), F(bo))
)

dt bo—ai 7+
[‘[{T ((f(lbo — tl))(f—ao)f(f(lt _ aol))(bo_t)(f_ao)f-l) ]< )
G(F (a.)F (b)) ]

0o [ — i . dt (bo_fa)ml
“J@m—mwwﬂwmmﬂmw)]

Merging (3.21) and (3.24), we attain the required result.

Remark 3.10. Ifwe set £ = 1 in Theorem 3.9, we attain

Do 1 Do 1
7:( a, ‘; b, )(f (?,('ao 42- Db, B tl))dt)(bo—ao) 5 (f (7_~(t))dt)bo—uo
G (). F (b)) °

)

B e
[fub ((T(Ibo — t]))t=) . (F (|t — ao|))(bo—t)) ]( k

Theorem 3.11. Let F,¢ : ] — R} be a multiplicatively superquadratic IVF s on J, such that

F(t) = [F (1), F®)]
(1) = [ph), BB,

(3.22)

(3.23)

(3.24)
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where F, F, @, 0] > R IfF and ¢ are interval “integrable on J, then

A + Do a, + b, bo a, + b, (t—ao)f-1\dt m
e [ (et - 0) ™))

r(e+1)

2 I:aoji(?)(bo) e Jgo(?')(ao) . aoJi(()p)(bo) " Jgo(ﬁo)(ao)] 2(bo—a0)!
G(F (a.), F (bo))

2

dt bo—ao)lt]
[fb ((?ﬂbo — ) (F (It - ao|))<brt>(t,ao)f‘) }( |

y G(p(a,), (b.)) __

b, , o dt (bo—a, )€+1
L (o, = e - (= o)

holds, ¥ a,,b, € ].
Proof. Let ¥ and ¢ be multiplicatively superquadratic 7V¥ s on J, then

( (b +ao). (bo;ao)):lnT(bo;—ao)_’_lngo(bo;ao)
LT S )
o

| i

o2 (5

b, + a, b, + a, b, + a, b, + a,
2 ) l”""( 2 )1”7:( 2 ) l”"”( 2 )]

e o )

Consider In(F (*3%) - @( 2:22:)) from (3.25), and it is to be noted that # (t) and (1) are multiplicatively
superquadratic.

ln(7L,(17L0+b )f(a°;b°)):lnf(a°+b )+ln¢(ao+b )
:1n7_—”(ﬁao+(1 - B)b, + Bb, + (1 — ﬁ)a°)+ln<,o(’8a°+(l — )b, + Bb, + (1 —,B)ao)
2 - 2
% InF (Ba, + (1 - B)b,) + 1lnf(ﬁbo +(1=-pP)a,) - ?’(l(l —Zﬁ)z(ao — b )l)
—% nf('(l_zﬂ)z(a"_b")') %1 (B + (1= B)bo) + 5 lncpwb + (1= B)ac)
1 |(1 - 2B)(as = b)) 1 (1 = 2B)(as = bo)|
—Elnf( ( )—Elnf( ( ) (3.26)

Multiplying (3.26) both sides with 87!, then integrating the resulting inequality with respect to 8 over
[0, 1], we have
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fﬁ“l a+b)(a°;b°))d,8

1
<5 f B! lnf(ﬂao+(1—ﬁ)bo)d,3+% f B In F (B, + (1 - B)a,)dB
0 0

X 1
~ f g lnf(l(l - 2B)(a, — bO)l)d,B 4 %f B Inp(Ba, + (1 — B)b.)dB
0 0 N

2
|(1 - zﬁ)(ao - bo)l
2

1 1
+%f0ﬁ“ 1n£(ﬁbo+(1—ﬁ)ao)d,8—foﬁ"-‘lng dg.

After simple calculations and with change of variables, we obtain

o+ Do o+ b,
In(F(*2=)e(=2=)
T+ 1)
= 2(b, — )f[ nF(bo) + T - InF(a0) + J; . Ing(bo) + Jg - In E(ao)]

b
- - N a +b
.= ao)f[f% ( fa (t—a)" Ing(

Thus, we have

° - tl)dt].

b, o+ bo
exp{In(F(“=)e(* )

< exp{%[ﬂ InF(b) + J, - InF(a) + JL . Ing(b.) + I, Ino(as)]
-1
&, _ao)(, f (t—a) 1n(7-'<p)(| —tl)dt}.

This follows as

a + Do, as+ D e a, + b, (t—ao) -1\ dt e
P [ (e -0) ™)

[(¢+1)

< [ JUFI®0) - T (F)(@0) - 0 JU@)(00) -0 Th (@) (a0) ] (327)

As F and ¢ are multiplicatively subquadratic and moving in the same fashion, we yield

— bo _ay-1ydt ﬁ
7_~(aoJ2rbo)¢(aoerbo)(f ((ﬁ_pqao;rbo_t|))<t ) ))< )

[(¢+1)

> [ L)) - T, (F)ae) - o IE@)0e) - T @)as) | (3.28)
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From (3.27) and (3.28), we attain

Do —a)t-1\dt ﬁ
[Z(ao+bo)£(ao+bo)(f ((Zg(laozbo—tl))(t ) ))< >,

2 2
7 a, + Do )_(ao + bo) fb" ((?_(lao +D, t|))(t—ao)“)‘j‘t @[1‘)"]
2 T2 L VAT

I(e+1)
2(bo—a0)!
b

2 |[LIUPIE - D) - IP0) - T @)a)]

—_ S T(+1)
| IEEI®) -2 T (F)(00) - T @)(0.) - T @) (o) | ] (3.29)

To prove the second part, we consider the RHS of (3.27), from which we obtain:

r(+1)

[ JEE)L) - T (F) @) - oI (@) - Ty () a) |

~ rc+1) , , ,
- exp{—2 b o) |75 InF(0o) + J.  InF(a.) + J Ing(bo) + I - In f(ao)]}

1 1

=exp{§[ f B InF (Ba. + (1 - B)b.)dB + f B InF(Bo, + (1 - B)a.)dB
0 0

1 1
+ f B Ing(Bas + (1~ B)b.)dB + f B lnw(ﬁbo+(1—,3)ao)dﬁ]}
0 - 0 -
1
< exp{i( In (F (a,), F (b,)) + In (¢(as), g(bo)))

¢ [ f “In (Ge(b. — 1) (gt - aol))(""_t)(t_a")f_l)df]

T (b — o)t
4 0o ) “Ht—a. ) !
— —(b T )[+] [f In ((f(lbo — t|))(f o) (f(lt _ aol))(bo t)(t—a.) )dt:l}

Thus, it follows as
T(¢+1)

[aoJi(Z)(bo) " Jgo(f)(ao) . aoJf:(f)(bo) . Jgo(f)(ao)] 2bo—a0)!
G(f (a.), F(bo))

(3.30)

< ¢
dt] (bo—ao)t1

[ L (o = e (G = by
G(p(as), p(b.))

X 7 .
dt] (bo—a0)0+1

[ I ((gqbo — )" (g(lt - ao|))<"°‘““‘“°>“)

Similarly, by considering the right term of (3.28), we have

— — T
[ TG0 - T T @) - o J@)0) - Ty @) [

AIMS Mathematics Volume 11, Issue 1, 2046-2087.
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> G(F (a.), F (b,))
d (bo—a, )(+l
[faio (o =ty Gt = auyo-nie=er) t]
x G(@(a.), 3(1.)) | .

bs _ . _ o dt (bo—a0)l+1
[ (@, =ty - @t = aupyeeer)

From (3.30) and (3.31), we achieve an interval
T'(t+1)

[[aoJi(f)(bo) E Jgo(f)(ao) : aoji(f)(bo) ik Jgo (f)(ao)] 2o a0t B

_ _ r(+1)
[ JT)E - T oI @0 - T @) |

[ G(F (1), F (b))
D
At (bo—a0)t1
[f“b ((fqbo — )t (F (It - aol))<bo—t><t—ao>f']) ]( |
G(f(ac)a f(bo))
X f |
At bo—ao)i+l
[f“io (et =ty ot = == ]< |
G(F (a,), F (b))

F F At (oo—ao)HT
fai" ((T('bo - tl))(f—ao)f (F(It - ao|))(bo—f)(t—ao)"‘1) ]( )
G(p(a0), (b.)) ] .

. dt] o—ao)*1
[ e (@qbo — )" (it - ao|))<b°**>“*“°>"') ]

X

Merging (3.29) and (3.32), we attain the required result.

Remark 3.12. If we set £ = 1 in Theorem 3.11, we attain

PSS [ (e -0l

f (F ()" f (90(f))d“ -

G(F (0.). F(b.) - Glg(a.). ¢(b.) |
[ L (7 o — et — auh)®=(p(lb, — th) (ol — . e-0) =

Theorem 3.13. Let ¥,¢ : ] — R} be a multiplicatively superquadratic IVF and multiplicatively
subquadratic IVF, respectively, on J, such that

F(t) = [F (1), F ()]
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o) = [p(t), ZO)1,

where ¥, F, 0,0 : ] > R IFF and ¢ are interval *integrable on ], then

L

“b{f«¢m“ uwmfﬁﬁwﬂz
P2 L[ (1252 — o)
. [%Jf(?)(bo) : Jfo(if)(ao)];;“;;

0 J@)(05) -, J{ (9)(a5)
3G@m¢¢wm.YQ«ﬂm—mwmﬁwm—MWWW%“T*%$m
— G(p(a), ¢(bo)) fab ((F([by — )0+ (F (|t — a,]))E--Dit-a))d

b

holds, ¥ a,,b, € J.

Proof. Let ¥ and ¢ be multiplicatively superquadratic V¥ and multiplicatively subquadartic 7 V¥,
respectively, on J, then

b+a

i
ln[ (b +ao)’¢(b +ao)]
P55

)+ lngo(b + ao) (b + a, ln<p(b + ao)]
- ln(j((: :)) ln(y_:(: :))] (3.33)

Consider ln( (e S ))) from (3.33), and # (1) and ¢(t) are multiplicatively superquadratic and

multiplicatively subquadratic, respectively.

ln[f(%Tm)} _ lnf(ao;bo)_lnf(ao;bo)

o (")
_ lnT((l - B)a, + B, er (1 -p)b, +,3ao) _ lnf((1 — B)a, + b, -; (1 - )b, +,8ao)
% InF((1 - Bas +Bb.) + 1nf((1 — B)bs + Ba,) - ln?‘(l(l - 2[3)2((10 = b°)|)
- %mg((l — Ba. + Bb,) - %lmp((l — )b, + fa.) +In (l(1 zﬁ)z(% ~ b")I). (3.34)

Multiplying 8~! on both sides of (3.34) and integrating the inequality with respect to 8 over [0, 1], we
obtain
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¢((I o+Dbg
(11 d
f 18 (a 42-13 )) 'B
1
<3 fo B InF((1 - B)a, +Bo.)dB + %fo BTN InE((1 =Bt + fac JdB

1 _ B I
_ f gl lnf(|(1 2B)(a, b°)|)d,8 1 f B! lnf((l “ B, +§bo)d,3
0 2 Jo

2
(1 = 2B)(a, — bo)]
2

1 1
- % fo B ng((1 = B)bs + Ba.)dB + fo B Ing( )ds.

After simple calculations and with change of variables, we obtain

F (gt T(+1)
] <
n(f(_a ;b ) ) : 2(bo - ao)[

¢ o a, + b,
+ m(f (t — ao)[ 1nf(|

Thus, we have

|78 InF (0o + I, InF(a) — I, Ing(ds) — T - Ing(a,)]

Do
—t|)dt—f t—a) )-

a,+Ds
exp{ln(i(a 2 )))} < exp{m[ufj nF () + Ty - InF () - (Jg . Ing(bo) + J; - In f(ao))]

2(b, —
)E(f (t—a,) In go(l —tl)dt—f (t—a) In 7—‘(a°+b t‘)dt)}.
{ T'(¢+1)

It follows as
(ftle [ I Cat= t|>)“-“°>[‘)‘“]wo_’ao)f [%Jff(bo) Jlfo?_:(ao)]z(hi-ao)f
< .
= VL (et — o) Jigb0) -+ J; g(a)

(3.35)

As F and ¢ are multiplicatively subquadratic and multiplicatively superquadratic respectively, and
moving in the same fashion, we yield

r(e+1)

(S5 [f (F (|t - t|))<*-“°“‘)‘”]wo’aow >[%Jf?(bo> L T(ao)]z(b Y
ST L™ (@2t - )" =T, - I () '

From (3.35) and (3.36), we attain

(3.36)

L

(e [ ((F(2 - ) )
a+b [f (((p(la o+b, t|))(t_ao)£—l)dt] )
f(%){f (F (22—t 5 ]
9L (@05 - e
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WIF () o JEF (@) ivosel [ JF (00) - JLF (00) |3oe?
2 [ ] [ ] . (3.37)
JEp(bo) - Ty ¢(ac) . JEp(bo) - Ty plac)
To prove the second part, we consider the RHS of (3.35), from which we derive:
[ao Jff(bo) " Jgo?'((lo) ] Z(Ei[:r“l;)[
0, JE(0) - J{ p(as)
Ir'ee+1
= exp{m[ InF(b,) + Jp - InF(a,) - J, . Ing(b,) — J; In ¢(ao)]}
1
= exp{g[ f B InF(Ba, + (1 — B)b,)dB + f B InF(Bb, + (1 — B)a,)dB
0 0
1 1
- f B Ing(Bas + (1 - B)b.)dB — f B Inp(Bb, + (1 —ﬁ)ao)dﬁ]}
0 0
1
< exp{i( In (T(ao)’ T(bo)) —In (()0(00)’ ()O(bo)))
4 e (t-a0)’ (Bo—t)(t—0,)"!
+ m[[a In (((1bs — )™ (eIt - a.))) )dt
Do ¢ -1
_ f In ((?(lbo _ t|))(t—ao) (T(lt _ aol))(bo—t)(t—ao) )dt:l}
Thus, it follows that
[aoJfﬂbo) T(ao)]za
ao‘]ff(bO) " bof(%)
G (), FON[ [ (@be = ) (@t = ag) 00 ) ¥ o
< — — [ T = ] . (3.38)
G(f(ao)a f(bo)) J; ¢ ((f(|bo — tl))(t—ao)f(f(u _ aol))(bo_t)(t_ao)m)dt
Similarly, considering the right term of (3.36), we have
[ao Jf?(bo) Tk Jgoy_:(GO) ] Z(I;ijﬂl:)(
‘]fa(bo) E J]ig_p(ao)
. G(f?(ao),%(bo))[ [ (@b, = ) @1t = agly -y ] (3.39)
— G@ BN | [ (F (b, - th) Tt - ahyedi- |

From (3.38) and (3.39), we achieve an interval
[ JFM) L I F (ao)]zi“n)f [ IFW®) - LT (a)]ﬁ’l]
Jlp(bo) - so(ao) 0 J0(00) - J{ @(a,)
2 [G(Z(ao), f(bo))[ 7 (@I, = ) (it = o) -t ]H
G(p(as), (b)) fa" ((F(Iby — t))) 0 (F (|t — a,]))E-tt-a) 1)
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G(?(aom?(bo))[ L5 (@b, = )= @t = aly -y ]]

—— T — (3.40)
G(p(as), (b)) [ (F (b, — th)t=e (F (It - 1)) @o-Dit=ae) )t

Merging (3.37) and (3.40), we attain the required result.
Remark 3.14. If we set £ = 1 in Theorem 3.13, we attain

T () [f (F (g t|>)d*]bo%o 3 (Lf"(ﬂt))dt)bo‘«o

B R () R I A )
_ GF (@), T(bo))[ 2 (pIbe = )% - (gt = a)0) ]
~ Gle(ae). ¢ 0)) | [ (7 (o, — th)ee - (F(t - a )]
o

Theorem 3.15. Let ¥ : ] — R be a multiplicatively superquadratic IVF on ], such that
F(t) = [F (1), F O,

where f,? :J > RYIFF is interval *integrable on J, then

2t

o+ Do b O+b -1y dt o—a0)?
F(= )( f (Fae- === )

20-1re4 1)

2 [aegte JAF)(O0) w1 T, (F)(00)] om0

—e2t
(bo—a0){+T

Do
2T ))U (- aoD)(“"‘“”-(ﬂlbo—t|>)“‘“°>“’°‘”[_l)dt] ,

2

holds, ¥ a,,b, € J.

Proof. Let ¥ be a multiplicatively superquadratic 7V¥ on J, then

InF(t) = [ln(f(t)), ln(?(t))].

Since ¥ be a positive and multiplicative superquadratic function, we have

R e

mf(éaoJr ‘5 ) +=—In 7—~('8 ;'Bao)—lnf(%Kﬁ—1)(ao—bo)|)~ (3.41)

2 2

Multiplying with 8~! on both sides of (3.41) and integrating the resulting inequality with respect to 3
over [0, 1], we get

[
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fﬁ“ln?’(ﬁb +2 a,)dB — fﬁ“lnT( (B = D)(as = bo)dB.

By changing of variables and after simple calculations, we get

a+b, T+1) 201
InF(=5=) < =gy i ME®) + Jue I F (a0
t Do
Gy t 2 )ff (b, = O InF (- = * 0ot

Thus, it follows that

e} + bO
exp{lnf ¢

£ 2(’ Do
ROETS Yf (b =07

Thus, we have

Jfosgs), MF(0) + Ty, INF(02)

L6+ 1)-25!
} < e.xp{ (bo _ ao)f ( (

ot bo Do o T+ bo -l L[[
Z(a 2 )[L((Z(H— GTD)(DO t) )dt](bo—ao)
201+
< [a +bo J“T)(b ) s J osto (T)(Cl )] (bo—a0)! . a4

Similarly, considering InF (1), where F is multiplicatively subquadratic, and moving in the same
fashion, we get

— a + b b, _ . + b -1 A
o o f— o © 1 (0o =) 1A ] (b6 —a0)?
7 ( zﬂﬁ%«ﬂ|—7—m )]

20=Irany

< g AFH00) e T @) T (3.43)

From (3.42) and (3.43), we have

o+ bg b, +b, L L‘[
[P [ = Sy

2
ﬁ%;mﬂﬂi«?m—E%Emmwﬁﬂﬁa]
> [[a . J€(7:)(b ) J +b (T)(ao)]z(l;fﬁb),

(3.44)

20-1re+1)
e TTIO - T )| |
To establish the second part, we consider the right term of (3.42). Accordingly, we have:

20-1e41)

[u +bo J“?)(b ) J ot (7—")((10)] (bo-ao)l
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A1

{g fﬁ“ln?'( 0 + b)dﬂ+f,8“ln7:(ﬁb L 22 ﬁao)dﬁ]}

¢ 0o ¢ -1
Sexp{ln \/Z(ao)f(bo)—%( [ = o, - e )dt)}

_eol

Do dt bo—a0)l+1
= G(F (@) (. >)U (G” (1t - @)™ - (7 (. tl))“‘“‘”“’"“[_l) ] - (34
Similarly, considering the right term of (3.43), we obtain
20-1re41)
[ ETIO) s T, (Pa)|
> G(F(a). F b, >)U (Wt ) - (F (b, — ) )] -G
From (3.42) and (3.46), we obtain
20-141) 2l lr(m)
[ T O K U LS P U ) Kl
bo boiif["“
[ (F(a), F (0, ))[ f ((¢<|t—ao|>)“’ v (f(mo—t|>)“—“°>“’°—*>“) ] -
bo . — = dt (bo:if)i’“

G(F (a.). F (b, ))[ f ((T(It a7 (F (b, — )0 )] | (3.47)
Combining (3.44) and (3.47), we obtain the required result. O
Remark 3.16. If we set £ = 1 in Theorem 3.15, we attain

N a +Db t == i
F(= )( f L (Fe-=2 ) f (F()")’
70)2

Do
2 G(F (a.), F (b, ))[ f (@ = 0y (. — t )’ ]

2

Theorem 3.17. Let ¥, ¢ : ] — R} be a multiplicatively superquadratic IVF s on ], such that
F () = [F (1), F(®)]
@) = [o®), e()].

Where ¥, 7_-', @, @ :J > R IfF and ¢ are interval *integrable on J, then

pol
-2
b,

[7:(a042rb0)¢(a042rb0)(f%; (7:90(“_ a + b, Gt b, t)“)dt)woao%

2
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20=1.re41) ]

2 [ AT e Tt (F(@) e T0:) o T (@)(00)|

—e2f
(bo—a0)f+1

Do
oo [ (- an o ey

2
—¢2¢

" bo—ao0){+1
X G(p(a.), ¢(bo)) - [ f . ((sﬂ(lt — )™ - (p(lb. — tl))“—ao)(bo—t)“)dt}( ]

2
holds, Y a,,b, € J.

Proof. Let ¥ and ¢ be multiplicatively superquadratic 7V¥ s on J, then

ln(f(t)g(t)) = I (1) + Ing(t) = zn[f(t),s_f(t)] + ln[f(t),a(t)]

= [znf(t), ln?(t)] + [an(t), ln@(t)] = [lnf(t) + Ing(t), InF (1) + Inig ()

- [ln(f(t)f(t)), ln(?(t)a(t))]. (3.48)

Next, consider

ln(?,(a + b, )f(ao-;bo)):lnf(ao;bo)+ln£(ao;bo)

2-p 2-p 1, B 2-p B 2-
ln7:( ((— a, + —— > 3 ao))) + lnf(i((iao 7 Do T > ao)))
B 2-p B 2-p 1
< 5 lnf(iao Tb ) ~ 1 7:( b + D) ao) - lnf(EKﬁ - 1)((10 - bo)l)
+ %lnf('gao + 2 2’8 —1 (p('Bb + 2- - lng(%l(ﬁ — 1)(a, — bo)). (3.49)

Multiplying with 8/~! on both sides of (3.49) and integrating the resulting inequality with respect to 8
over [0, 1], we get

fﬂlll ao+b)(ao-;bo))dﬁ

S—fﬁ[_lln?'(—ao+ '8 fﬁ" 'In T(ﬁb 42

fﬁ‘ ngBa, + 2 Puas 4 fﬂf ngS. +22 ao>dﬂ—f0ﬁ“‘lng(zw—1)<ao—b°>|>dﬁ.

B yap - f B I F 1B~ 1@, 0B

By changing of variables and after simple calculations, we get

in(F(*52)el 5 )

L¢+1)-2¢1 ’ y ¢ ¢
< W J%ﬁ In ¥ (b.) + J(m)f In¥ (a,) + J(%y lnf(bo) + J(%)f lnf(ao)

(
¢ 2€ b, b,
(b, —a)"[f ﬁz ]
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Thus, it follows that
o+ Db o+ Db
explin (F(*5=)e(=5=)))

r+1)y-2¢1
B BRSO

[ 2€ Do
" (b, —ao)f(f (o =07

[J(n sy INF(00) + ioern sy INF(a0) + Jiswsne M @(00) + i In ¢(0.)|
2 - 2 -

18
+f (b, — 1) )},

or
2!
@G +Dboy (a0 +D 0o . + b, -1y dt) Co-oo
o o o o _ (bo—1)
75l [ (e )
2L+
< Lo IO w0 Tt (FI@0) g )0 - T ()] (3.50)
Similarly,
2t
— 0y + boy_y0o + D L a. + b, rodt) (o=0o)
(o] O \— (o] (o) _ (b t)
PSR [ TR )
20=1r(e+1)
> g ATI0) e T s, (@) e TE@0:) e T @00 (3.51)
Combining (3.50) and (3.51), we get the interval
2l
QG +boy /0, +D 0o a, + b, rindt) To-uo
o o o o _ (bo—t)
() [ (et e )]
2
ol
— 4+ boy_/ 0, + b bo a, + b, -1y dt) Eoeo)
(e} O \— (e} o _ (b t)
TS e )(faogbo(ﬁ(“ 2 ey ) |
2l= 1r(£+1)

2 [ast I T P00) e @) - T, P

2l= 1r<z+1)
[ g FETN00) w2 T (FI0) g T@)(00) 2 T, @) | ] (352)

To prove the second part, we consider the RHS of (3.50). Accordingly, we have:

20=1.res1)

[“ e JC (F)(Db.) - JE o0 (F)(a5) e otto J‘)(tp)(b ) JE " (90)((10)] (o-a0)!

3 Ir'e+1) 2[ ! p p y y
= exp{W[J(a so, INF (D) + J st lnf(ao) +J (a0 lnf(bo) + J(%)f lnf(ao)]

1
:exp{f[fﬁf’-llnf(éao+—b )dﬁ+fﬁ" 11n7—"(’8b +2 a,)dB

fﬁ" lngo( ao+—b )dﬁ+fﬁ" ln(p( b, + ﬁao)dﬂ]}
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£ In(F (a0)F (b.)) as! b N o
<“‘p{z[ ‘ - ool f In ((F(t = a0 (FE (oo = ) )at]
ln(f(ao)f(bo)) yl+1 bo . e
T T [fz In (1t = aap) ™" (p(lb. — ) )dt]]}'

It follows that

27 resy

[%Jf(f)(bo) Jﬁ +bo (T)(ao) totte Jg(()p)(b ) J otoe (90)(00)] (bo=10)¢

==

G(f(“o)’f(bo>)[ f (it - ay® - (F qo. - t|>)<*‘“°><b°‘”[_')dt]( |

_¢at

" i dt] Tome T
G(f(“o)’f(bo>)[ f (Gt = al)®™™" - (p(lo, =ty )‘“]( "

==

Similarly,

20-Lres)

[0 TETO) -2 s, (@) e T @NO) -2 T, @)a)]

2

" (bo-a0)0+T
(9:(%) F (bo ))[f+ ((?—'(It—aOD)‘b 0 (F(|by — )t ®0 ‘)‘“]

Do (bo-a0)+T
x G(@(a.), B, >)[fo+ (@1t — a0 - @, -t “”)dt]

2

From (3.53) and (3.54), we get the interval

2l

[[“"E""Jf(f)(bo) 0 J@(Z)(ao)-% JH()(0,) - Ji%(f)(ao)] CEsa

LD ((25)) ]

[“ o J! (f)(b ) I ot (F)() *w 5o J{@)(0,) - Jﬁogbo (5)(00)] (vo—a0)!

_eal

) (bo—a0)T+T
> [G(f(%)’f(bo))[ f ((fqt—aon)(bf“*~(f(|bo—t|))<f-ao><bo_t>f—l)dt]< >
Oleto) ) [f (it = ™" - (b, — b)) [

T(a ), F(bo) [f (T(lt — ) (F (b, — tl))(t_ao)(bo_t)(_l)dt —

(‘10((1 ) QO(b ))[‘[;+ ((go(|t - a, |))(b —t)¢ (()O(lb tl))(t—ao)(bo—t)f—])dt—([’000)€+lj|.

2

Combining (3.52) and (3.55), we get the required result.

AIMS Mathematics
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Remark 3.18. If we set € = 1 in Theorem 3.17, we attain

QG +bo [ [ ao+b at\ ==
F(— )( f (Fet - |>))

b, Do 2
> ( f T f L Gety®)

2

2 G(F (a,), F (b, ))[f+ ((7:(|t—ao|))<b O (F(Jb, — t|))(t“‘°))dt]( )

2

Do
X G(g(a.), ¢ (b ))[ f (et - ao|>)“’°‘“<go(|bo—t|>)“-“°>)‘“]

2

=2 _
(bo —ao)2

Theorem 3.19. Let ¥,¢ : ] — R} be a multiplicatively superquadratic IVF and multiplicatively
subquadratic IVF, respectively, on J, such that

F (1) = [F (1), F ()]
() = [e(h), B(1)].

where ¥, 7, epil— R*. If F and ¢ are interval *integrable on J, then

(e foe (F (1 = 52D 152
(*52) [ Jos (o1t = =gy

s JUTN00) o T, (F)(0) 25
rez2e S (00) e T, (9)(00) ]

G(F (a0), F(0.)) [ Jose (1t = @)™ oo, =t

)
B G(QO(C[O), 90([)0)) fi";bo ((7—'(” — aol))(bo—t)"’ . (?‘(lbo _ t|))(t—ao)(bo—t)“1)dt

D)

)

holds, ¥ a,,b, € J.

Proof. Let ¥ and ¢ be multiplicatively superquadratic and multiplicatively subquadratic 7VF
respectively on J, and # and ¢ be multiplicative superquadratic and multiplicative subquadratic

functions, respectively, so we have

ln(f(a°§b°)):lnf(ao+b )—l f(a +bo)

f(ao;bo) 2 2
2 — 2

=7 (5(Ea+2E Lo)-ng(3(Ea+ 220+ Eo+ 22 0)

% nT('Ba + 2T’Bb )+ —1 ?'('Bb + 2= 'Ba ) — lnf(zl(ﬁ— 1(a, — b))

%lntp(ﬁa + zTﬁb ) — l1 (gbo + 2Tﬁao) + lnf(%KB — 1)(a, = by)l). (3.56)
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Multiplying with 8/~! on both sides of (3.56) and integrating the resulting inequality with respect to 8
over [0, 1], we get

a+b

[rmE

g—f ﬁ“lnf(—ao+ ﬁ fﬁ" 'In 9’(/23 ﬁao)d,b’
fﬁ“l F (18~ i - b)l)dﬁ——fﬁ“l oo+ 2 Lo
f B ing 2B + f ﬁ“lntp( (B — 1)(a, — b,))dB.

After simple calculations and with change of variables, we obtain

7_~(ao+bo) f 2[_1
ln(‘p( )S(b Y

Qo +bo

Do 2
[( f (b, — 1)~ In F(t)dt + f (t - a.) " InF(t)dt)

a+b)

o +bo

b, :
—( f b (b, — 1" In p(t)dt + f

7 o

£-2¢ Do
C(bo-a )"(f (b =07
Therefore, we have
o+bo
1 (T((a +b, )
< ¢+ 1)-2“[
(bo - ao)[

, o b
- )"U (b, — go(|t—°°+b it [ o= (e 2 I>dt]

It follows that

F(=5=) T +1)- 26!
exp{ In ( g( aofbo) )} < exp{w[(J(a sy, INF (Do) + Jfa . 1n f(ao))

- (Jf%ﬁ Ing(b,) + J([%)— In f(ao))] +

b,
- f = (- o |)dt)}

2

(t—a)"In f(t)dt)]

Do + b,
f (0, — ) n (it — & |)dt)
fege -

J(a +bo 11’1 7:([) ) + J[a +I> ll’l 7_:((10) - J([QQ‘H)O )* In QD(bo) - J([ﬂo‘HJO > In w(ao)]
2 - 2 -

X4

: fbo -1 a, + b,
(| @=H""Ing(t- dt
(bo — (10)[ 00*2’[‘0 —

Thus, we have

f(%)[ﬁiibo (= o) oy
(’0(_) f ((cp(|t a;b°|))(bo—t)€-1)dt
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s JF(00) -0 T4, (F)(00) 5"
. 3.57
I%ym@mMAT@mo] 57
Similarly,
@%VWWm“Wwwwﬁ
“_)LJMH“WWﬂW
E%MQmMQQGM)?w>
— . (3.58)
[ %Jf(w)(bO) v g +b ((p)((l ) ]
Combining (3.57) and (3.58), we get the interval
Qo +bo [V} (bo—t)f7! dt
f@%ﬁqﬁ+b«¢m gt ) )]M%y
Ao +bo o\ dt ’
PO 2 (et - =gepyen)
— e-n\dt e
?_—'(w)[ﬁiibo ((T(lt - %D)(bo_t) ) :|(boao)[:|
dt
PETIL 2 (@0t - 2o
st JUT) (D) -0 Lo, (F(00) 25"
Lwﬂww)awwmo ’
awmﬂw)ﬁw@m>ﬁw“
[ ] (3.59)

st JE@)(Do) -, T, oste (p)(ac)

Next, considering the RHS of (3.59),

we JAF)(G) - wa(fﬁ( DGt
[ %Jf((%’)(bo) e gg o +b (‘)0)((1 ) ]

21T+ 1) . . .
= exp{W[J(a IV CO R LU COR NS T CO R g(ac)]}

1
= exp{f[f Bf—l lnf(éao + 2;ﬁbo)d’g + f ﬁf—l lnf(gbo + ﬁ(l )dﬁ

f,B“ln oo+ 2L a5 - fﬁ“ln (’Bb +2;’8ao)d,8]}

+ bo
- exp{z[ln(¢(a )F (be )) e+l (f ((T(I’f 2 )™ - (F (b, - tl))(t_ao)(bo—t)“])dt)

£ (I) -q, )€+1
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ln(f(ao)QD(bo)) 2t+1

Do .
f_ (b T )€+1 (f In (((P(lt —a, D)(b -ty (f(lbo _ tl))(t—ao)(bo—t)l )dt)]}

G(F (0, F0.) [ Joe (Gt = )™ (o, — )= )
- G(QD(C(O) (,D(b )) |:ﬁ +l ((7—‘(“: — aol))(b t)[(f(lb _ tl))(t a0)(Bo—t)f= l)dt '

Similarly,

e JUF) (Do) -1 T, . (F(a,) Eteh
[ e JL@)00) S, @00 ]

(T(ao) F (bs )) ﬁ st (@It — a.))® @(Ib, — t|))(t—ao)(bo—t)f-l)dt
>
2 G(‘,D(Cl ) SO(b )) [ﬁ +[ ((7—‘(“:_ a, |))(b t)t’(?-(lb —tl))(t 1) bty l)dt

Combining (3.60) and (3.61), we get the interval

woste JE(P)(D6) - T ot (p)(ao) oo JE@)(0o) - T st (p)(a)

(T(a ), F(be )) ﬁoibo (It = D) (b, — t))Eoe ety
[ G(p(a,), p(b.)) [ﬁ e (T (It = )0 (F([b, — )oY

G(F (@), F (. >)[ S (Gt = )~ o, — e ]

G @O | [, (1t = au) " (F (I =ttt

Merging the results (3.59) and (3.62), we get the required result.

Remark 3.20. If we set £ = 1 in Theorem 3.19, we attain

F (Rette )[ ﬁ+b (F (It — 2t |))d*] = ( fL (f(t))dt)l,fao
ol =
AT o (ot 252)" Jo (et

> G(p(a,), (b))

| G (@), 7, ))[ Jet (Gt = @)™ cp(fo. — )" ]

Joss (G (1t = au))e=0(F (oo — th)-e)"

[wff((f)(bo) I (Z)(ao)]m [ JOO0) -0 T, (F)a0) P55

(3.60)

(3.61)

(3.62)

(3.63)

Corollary 3.21. Let F,¢ : ] — R} be a multiplicatively superquadratic IVF and multiplicatively

convex IVF, respectively, on J, such that

F(t) = [F (1), Ft)]
(1) = [ph), BB,
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where F, F, @, 0] > R IfF and ¢ are interval “integrable on J, then

wive JUF (D) o T, NG o) il
[ e JUR)(D) -0 T, Lo (9)(00) ]

. (7"((10) F (b, ))
— Glp(a.), ¢(bo))

. -2t :
[ f ((F (it = aa)™ " (F (b, — )00 )] oo™,
holds.
4. Graphical and simulation analysis

To verify the efficacy of the generated results, we carry out a thorough numerical study in this
part. We evaluate the suggested method’s precision and effectiveness in approximating integrals
of multiplicatively superquadratic 7V¥# s with a battery of numerical tests. Our objectives are to
assess the effectiveness of H.H’s type inequalities in a variety of circumstances and provide tangible
numerical data to support the theoretical conclusions. First, we consider examples to explain how the
functions are multiplicative superquadratic 7 V¥ 's.

Example 4.1. Let us examine the multiplicatively IVF, F : [a,,b,] € R* — R}, given by
F (1) = |explt™),exp{ VB}|, Vte[a,b.]. (4.1)

Since the endpoint functions in (4.1) are defined as ¥ (t) = exp (tz.s) and ?(t) = exp(\ﬁ), the
subsequent graphs and table constructed based on the values of L;, L,, R,, and R, verify that ¥ (t)
is a multiplicatively superquadratic IVF for all € [0, 1]. Here, L and L, denote the lower and upper
bounds of the interval on the left term of (3.6), while R, and R, represent the corresponding bounds on
the right term. It is important to note from Figure 1(b) that the dotted and solid blue curves lie between
the corresponding dotted and solid red curves. This indicates that the left term of inclusion (3.6)
is a superset of its right term. Likewise, Figure 1(a) shows that the values associated with R, and R,
remain between the values corresponding to L,, and L, verifying that [L, L,] 2 [Ri, R,]. Figure 1(a),(b)
confirm the validity of Theorem 3.6.
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LI Lu RI Ru
0.1 052119053 ]1.86
021055 (1.8|057]|1.74
03]058|1.7061]1.62
04]062|16|065]|1.51
05]066 15070 1.41
0607114075 1.31
0.7]10.76 | 1.3 | 0.81 | 1.23
081083 |1.2|087]|1.14
091090 |1.1{093 | 1.07 0.0 E 5 5 5 5
10 100 10 100 100 0.0 0.2 0.4 0.6 0.8 1.0
(b) Graphical illustration of Theorem 3.6.

(a) Numerical illustration of Theorem 3.6.

Figure 1. Numerical and graphical illustration of F(t) = [exp{’[z'5 4, expl| \/%}] as
multiplicative superquadratic 7 V¥ s via Theorem 3.6 for a, = 0,b, = 1 and € [0, 1].

Example 4.2. Let us examine the IVF, F : [a.,b.] C [2,00) — R], given by

Ft) = |exp(t), exp{t}], Vi€ fa, bl 4.2)

Since the endpoint functions in (4.2) are given by ¥ (1) = exp (t3) and 7?(’[) = exp(t), the subsequent
graphs and table constructed based on the values of L, L,, R, and R, demonstrate that F (1) is a
multiplicatively superquadratic IVF for all € [0,1]. Here, L; and L, denote the lower and upper
bounds of the interval on the LHS of (3.6), while R, and R, correspond to the respective bounds on the
RHS. The numerical and graphical representations are provided below (see Figure 2):

L | L, | R | R,
01112129 1.13] 2388
021.13 |28 | 1.14 | 2.76
03| 1.14 | 27| 1.16 | 2.65
041.15]26| 1.18 | 2.55
05| 1.17 |25 1.19 | 2.44

0.6 1.18 | 2.4 | 1.21 | 2.35 s

0712023123225 : [ T
0812222124216 ol T T T T T ]
09| 1.25|2.1]1.26]2.08 | § | | | |
10 128 20 128 200 0.0 0.2 0.4 0.6 0.8 1.0

(a) Numerical illustration of Theorem 3.6. (b) Graphical illustration of Theorem 3.6.

Figure 2. Numerical and graphical illustration of F(t) = [exp{t?}, exp{t}] via Theorem 3.6
fora, =0,b, = 1and € [0, 1].

The following example provides the authenticity of Theorem 3.9.
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Example 4.3. Let us examine the same multiplicatively superquadratic IVF as shown by
Example 4.1, given by

F(t) = |explt™} exp{ V]|Vt € [a..bo]. (4.3)

Since the endpoint functions in (4.3) are given by F (1) = % and F(t) = t, the corresponding graphs
constructed using the values of L, L,, M, M,, R\, and R, confirm the validity of Theorem 3.9. Here,
L, and L, represent the lower and upper bounds of the interval associated with the left term in the
statement of Theorem 3.9; My and M, denote the bounds for the middle term; and R, and R, correspond
to the bounds of the RHS term in the same theorem. It is important to note from Figure 3(b) that the
dotted and solid green curves lie between the corresponding dotted and solid blue curves, while the
blue curves lie between red curves. This indicates that the left term of inclusion of Theorem 3.9 is a
superset of its middle term, and the middle term is the superset of its right term. Likewise, Figure 3(a)
shows that the values associated with R, and R, remain between the values corresponding to M,, and
M., while M,, and M, lie between L,, and L, verifying that [L,L,] 2 [M;,M,] 2 [R,R.]. Thus
Figure 3(a),(b) confirm the validity of Theorem 3.9.

LI Lu MI Mu RI Ru o5l ! i
0.10.12|0.54 | 0.09 | 0.54 | 0.09 | 0.45 T
0.2 [ 0.12 | 0.53 | 0.09 | 0.53 | 0.09 | 0.45 5 ; | |
0.3 ]0.12 | 0.53 | 0.09 | 0.53 | 0.09 | 0.45 °“_i ““““““
0.4 0.12 | 0.53 | 0.09 | 0.53 | 0.09 | 0.45 o | | |
05012 ]0.53]009 053009045 | I —w " T
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(a) Numerical illustration of Theorem 3.9. (b) Graphical illustration of Theorem 3.9.

Figure 3. Numerical and Graphical illustration of [exp{tz's}, expf \ﬁ}] via Theorem 3.9 for
a, =0,b,=1and ¢ € [0, 1].

5. Applications

In this section, we demonstrate the practical significance of the theoretical findings by applying
them to a range of mathematical constructs. In particular, we focus on classical and generalized special
means, examining the related inequalities.

Now we describe some formulas of special means and then take into account the multiplicatively
superquadrati 7V¥ for Theorem 3.9, demonstrating that how the linear combination of special means
are associated with each other:

Let a, < b, and a,,b, € R, considering the following special means.

(1) Arithmetic mean:

a, + b,

A(ao’ bo) = 2

(5.1)
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(2) p-logarithmic mean:

1 b,D —q, 0D
L o’bo = : s 5.2
»(%: bo) [p+1 (b, — a,) ] 6:2)
where p € Z\{-1,0}, a,,b, € R, and q, # b,,.
(3) Geometric mean:
G(a,,b,) = V a,D,. (5.3)

Proposition 5.1. The inequality
2P AP (—q,, b,)I(1 + OT(1 + p)

22A%(—a,, bo)[(1 + O(2) }]

[exp{Ap(ao, b,) + }, €XP{A((10, b,) +

I'ad+¢+p) TG0
E(M)f %
2 (o (e o)
PP
> [ G(ab, b}) |

o (t-0.)¢ emtit-af1) =
— —0)" . — o—1)(1—0ao)"™
[ L2 (o = e g - ach? ) ]
G(a,, bo)

—
)dt] (o—a0)l+1

bo —Qo ¢ . F— o_t —0s -1
[ L2 (. =t - i = aupomvi=

holds for all [a,,b,] C [0, 1].

Proof. Theorem 3.6 can be utilized to demonstrate the outcome for a multiplicatively superquadratic
function F (t) = [exp{t’}, exp{t}] for p > 2. O

6. Conclusions

In this study, we introduced and systematically explored a novel class of functions, namely
multiplicatively superquadratic 7V, within the framework of multiplicative calculus. By employing
interval order relations and the R.L fractional integral operators, we successfully established new
H . H-type inequalities of fractional order for these functions. The theoretical development was further
extended to encompass fractional integral inequalities for the product and quotient of multiplicatively
superquadratic and subquadratic V¥ s, highlighting the structural richness of this function class under
multiplicative operations.

Our findings exhibit a seamless reduction to integer-order results when the fractional parameter
is set to @ = 1, thereby demonstrating the generality and robustness of the proposed approach.
The validity and applicability of the results have been substantiated through a series of well-chosen
examples, supported by numerical and graphical illustrations. Moreover, the applications presented
in terms of linear combinations of special means not only validate the theoretical constructs but also
emphasize their practical significance in the broader context of convexity and mean value analysis.

This work contributes a new direction to the growing field of fractional multiplicative calculus
by unifying interval analysis, superquadraticity, and fractional integration in a coherent and original
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framework. The theoretical advancements introduced here are expected to inspire further investigations
into related classes of functions, integral inequalities, and their applications across mathematical
modeling, optimization, and information theory. In the future researchers may extend these ideas
to stochastic settings, multidimensional interval-valued functions, and generalized fractional operators,
thereby broadening the horizons of multiplicative convex analysis and its interdisciplinary applications.
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