This paper examines a family of convex interval-valued (IVC) functions using the Riemann-Liouville (RL) integrals. Hermite-Hadamard (HH) and Hermite-Hadamard-Fejér (HHF) type inclusions are developed by employing the $ s $-type convexity of interval-valued (Ⅳ) functions. Some inclusions for the product of $ s $-type (IVC) functions are also established involving RL integrals. All main results are furthur refined into inclusions and inequalities for $ s $-type IVC functions and $ s $-type convex point-valued functions, respectively, involving the ordinary integral. In addition, several consequences of the primary results are explored demonstrating the connections between point-valued convex functions, IVC functions, and $ s $-type IVC functions. Each key conclusion is validated numerically. The results of this paper might open the path for new avenues in modeling, optimization problems, interval differential equations, and fuzzy Ⅳ functions that involve both discrete and continuous variables simultaneously.
Citation: Ammara Nosheen, Khuram Ali Khan, Mariam Aslam, Atiq Ur Rehman, Tamador Alihia, Salwa El-Morsy. Analysis of inclusions using $ s $-type convex interval-valued functions via Riemann-Liouville fractional integrals[J]. AIMS Mathematics, 2026, 11(1): 2027-2045. doi: 10.3934/math.2026084
This paper examines a family of convex interval-valued (IVC) functions using the Riemann-Liouville (RL) integrals. Hermite-Hadamard (HH) and Hermite-Hadamard-Fejér (HHF) type inclusions are developed by employing the $ s $-type convexity of interval-valued (Ⅳ) functions. Some inclusions for the product of $ s $-type (IVC) functions are also established involving RL integrals. All main results are furthur refined into inclusions and inequalities for $ s $-type IVC functions and $ s $-type convex point-valued functions, respectively, involving the ordinary integral. In addition, several consequences of the primary results are explored demonstrating the connections between point-valued convex functions, IVC functions, and $ s $-type IVC functions. Each key conclusion is validated numerically. The results of this paper might open the path for new avenues in modeling, optimization problems, interval differential equations, and fuzzy Ⅳ functions that involve both discrete and continuous variables simultaneously.
| [1] |
A. Torre, The fractional Fourier transform and some of its applications to optics, Prog. Opt., 43 (2002), 531–596. https://doi.org/10.1016/S0079-6638(02)80031-2 doi: 10.1016/S0079-6638(02)80031-2
|
| [2] |
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
|
| [3] | P. Ostalczyk, Discrete fractional calculus: Applications in control and image processing, World Scientific Publishing Co., Inc., 2016. |
| [4] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
|
| [5] |
S. S. Ray, A. Atangana, S. C. Noutchie, M. Kurulay, N. Bildik, A. Kilicman, Fractional calculus and its applications in applied mathematics and other sciences, Math. Probl. Eng., 2014 (2014), 849395. https://doi.org/10.1155/2014/849395 doi: 10.1155/2014/849395
|
| [6] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
| [7] |
V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
|
| [8] |
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
|
| [9] |
R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
|
| [10] |
N. Engheta, On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propag., 44 (1996), 554–566. https://doi.org/10.1109/8.489308 doi: 10.1109/8.489308
|
| [11] |
A. Moazzam, Z. Ijaz, M. Hussain, N. Maqbool, E. A. Kuffi, Applications of fractional-Laplace transformation in the field of electrical engineering, J. Kufa Math. Comput., 10 (2023), 70–75. http://dx.doi.org/10.31642/JoKMC/2018/100211 doi: 10.31642/JoKMC/2018/100211
|
| [12] |
T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for $p$-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
|
| [13] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, 2000. |
| [14] |
M. R. Delavar, S. M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091. https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091
|
| [15] | W. A. Lodwick, Fundamentals of interval analysis and linkages to fuzzy set theory, In: Handbook of granular computing, John Wiley & Sons, 2008, 55–79. |
| [16] |
Z. Qiu, L. Ma, X. Wang, Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J. Sound Vib., 319 (2009), 531–540. https://doi.org/10.1016/j.jsv.2008.06.006 doi: 10.1016/j.jsv.2008.06.006
|
| [17] |
S. Y. Cho, A. A. Shahid, W. Nazeer, S. M. Kang, Fixed point results for fractal generation in Noor orbit and $s$-convexity, SpringerPlus, 5 (2016), 1843. https://doi.org/10.1186/s40064-016-3530-5 doi: 10.1186/s40064-016-3530-5
|
| [18] |
S. Kumari, M. Kumari, R. Chugh, Generation of new fractals via SP orbit with $s$-convexity, Int. J. Eng. Technol., 9 (2017), 2491–2504. https://doi.org/10.21817/ijet/2017/v9i3/1709030282 doi: 10.21817/ijet/2017/v9i3/1709030282
|
| [19] | Y. C. Kwun, A. A. Shahid, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation via CR iteration scheme with $s$-convexity, IEEE Access, 7 (2019), 69986–69997. |
| [20] |
R. Saima, İ. İscan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via $n$ polynomials $s$-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 264. https://doi.org/10.1186/s13662-020-02720-y doi: 10.1186/s13662-020-02720-y
|
| [21] |
T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for $p$-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
|
| [22] |
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
|
| [23] |
D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately $h$-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. https://doi.org/10.1186/s13660-020-02488-5 doi: 10.1186/s13660-020-02488-5
|
| [24] |
J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. A. A. Mousa, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Mathematics, 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236
|
| [25] |
G. Deng, D. Zhao, S. Etemad, J. Tariboon, Generalized fractional Hermite-Hadamard-type inequalities for interval-valued $s$-convex functions, AIMS Mathematics, 10 (2025), 14102–14121. https://doi.org/10.3934/math.2025635 doi: 10.3934/math.2025635
|
| [26] |
Z. A. Khan, W. Afzal, M. Abbas, K. Nantomah, Some novel inequalities for Godunova-Levin preinvex functions via interval set inclusion $(\subseteq)$ relation, J. Math., 2025 (2025), 5570638. https://doi.org/10.1155/jom/5570638 doi: 10.1155/jom/5570638
|
| [27] |
A. Fahad, S. Furuichi, Z. Ali, Y. Wang, Novel extensions of $k$-harmonically convex functions and their applications in information science, PLoS One, 20 (2025), e0320192. https://doi.org/10.1371/journal.pone.0320192 doi: 10.1371/journal.pone.0320192
|
| [28] |
A. Fahad, Y. Wang, Z. Ali, R. Hussain, S. Furuichi, Exploring properties and inequalities for geometrically arithmetically-$Cr$-convex functions with $Cr$-order relative entropy, Inform. Sci., 662 (2024), 120219. https://doi.org/10.1016/j.ins.2024.120219 doi: 10.1016/j.ins.2024.120219
|
| [29] |
A. Fahad, Z. Ali, S. Furuichi, Y. Wang, Novel fractional integral inequalities for $GA-Cr$-convex functions and connections with information systems, Alex. Eng. J., 113 (2025), 509–515. https://doi.org/10.1016/j.aej.2024.11.034 doi: 10.1016/j.aej.2024.11.034
|
| [30] |
R. K. Bhardwaj, T. Ram, $LU$-efficient solutions for interval-valued nonsmooth vector optimization problem, Int. J. Appl. Comput. Math., 11 (2025), 10. https://doi.org/10.1007/s40819-024-01824-3 doi: 10.1007/s40819-024-01824-3
|
| [31] |
H. A. Bhat, A. Iqbal, M. Aftab, Optimality conditions for interval-valued optimization problems on Riemannian manifolds under a total order relation, J. Optim. Theory Appl., 205 (2025), 6. https://doi.org/10.1007/s10957-025-02618-3 doi: 10.1007/s10957-025-02618-3
|
| [32] |
T. Sitthiwirattham, M. Vivas-Cortez, M. A. Ali, H. Budak, I. Avci, A study of fractional Hermite-Hadamard-Mercer inequalities for differentiable functions, Fractals, 32 (2024), 2440016. https://doi.org/10.1142/S0218348X24400164 doi: 10.1142/S0218348X24400164
|
| [33] |
M. B. Khan, J. E. Macías-Díaz, S. Treanţǎ, M. S. Soliman, Some Fejér-type inequalities for generalized interval-valued convex functions, Mathematics, 10 (2022), 3851. https://doi.org/10.3390/math10203851 doi: 10.3390/math10203851
|
| [34] |
X. Liu, G. Ye, D. Zhao, W. Liu, Fractional Hermite-Hadamard type inequalities for interval-valued functions, J. Inequal. Appl., 2019 (2019), 266. https://doi.org/10.1186/s13660-019-2217-1 doi: 10.1186/s13660-019-2217-1
|
| [35] |
E. Sadowska, Hadamard inequality and a Refinement of Jensen inequality for set-valued functions, Results Math., 32 (1997), 332–337. https://doi.org/10.1007/BF03322144 doi: 10.1007/BF03322144
|
| [36] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
|
| [37] |
P. Kórus, An extension of the Hermite-Hadamard inequality for convex and $s$-convex functions, Aequat. Math., 93 (2019), 527–534. https://doi.org/10.1007/s00010-019-00642-z doi: 10.1007/s00010-019-00642-z
|
| [38] | I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, arXiv preprint arXiv: 1404.7722, 2014. https://doi.org/10.48550/arXiv.1404.7722 |
| [39] |
H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
|