This research explores the higher-order nonlinear fractional Huxley equation formulated with the $ \beta $, and $ M $-truncated fractional derivatives to account for memory and hereditary effects present in nonlinear diffusion and excitation wave dynamics. The fractional formulation expands on the standard Huxley model by incorporating nonlocal temporal and spatial correlations, providing a more realistic description of finite-amplitude wave propagation and spectral energy transfer in complex media. Two advanced analytical techniques are used to derive exact solutions: the enhanced modified extended tanh expansion method (EMETEM) and the improved $ F $-expansion technique. Compared to classic perturbation and variational techniques, these methods offer greater algebraic freedom and faster convergence, resulting in a diverse family of closed-form traveling-wave solutions expressed in trigonometric, hyperbolic, exponential, and rational forms. The analytical results are further validated, and the spatiotemporal evolution of the resulting wave structures is investigated using a finite-difference numerical scheme. The accuracy and robustness of the suggested framework are confirmed by the numerical findings, which show good agreement with the analytical results. Phase-plane and bifurcation analyses demonstrate transitions between periodic, quasi-periodic, and chaotic regimes by revealing both stable and unstable spiral formations. The findings show that fractional derivatives significantly improve the dynamical characteristics of the Huxley system by allowing for finer control of diffusion, dispersion, and localized energy concentration, advancing our understanding of nonlinear fractional wave behavior in excitable and dispersive media.
Citation: Huiqin Chu, Muhammad Abuzar, Mohammed Ahmed Alomair, Abdulaziz Khalid Alsharidi. New solitons and bifurcation dynamics in the fractional Huxley model: Numerical and analytical approaches[J]. AIMS Mathematics, 2026, 11(1): 1998-2026. doi: 10.3934/math.2026083
This research explores the higher-order nonlinear fractional Huxley equation formulated with the $ \beta $, and $ M $-truncated fractional derivatives to account for memory and hereditary effects present in nonlinear diffusion and excitation wave dynamics. The fractional formulation expands on the standard Huxley model by incorporating nonlocal temporal and spatial correlations, providing a more realistic description of finite-amplitude wave propagation and spectral energy transfer in complex media. Two advanced analytical techniques are used to derive exact solutions: the enhanced modified extended tanh expansion method (EMETEM) and the improved $ F $-expansion technique. Compared to classic perturbation and variational techniques, these methods offer greater algebraic freedom and faster convergence, resulting in a diverse family of closed-form traveling-wave solutions expressed in trigonometric, hyperbolic, exponential, and rational forms. The analytical results are further validated, and the spatiotemporal evolution of the resulting wave structures is investigated using a finite-difference numerical scheme. The accuracy and robustness of the suggested framework are confirmed by the numerical findings, which show good agreement with the analytical results. Phase-plane and bifurcation analyses demonstrate transitions between periodic, quasi-periodic, and chaotic regimes by revealing both stable and unstable spiral formations. The findings show that fractional derivatives significantly improve the dynamical characteristics of the Huxley system by allowing for finer control of diffusion, dispersion, and localized energy concentration, advancing our understanding of nonlinear fractional wave behavior in excitable and dispersive media.
| [1] |
A. E. Hamza, K. S. Mohamed, A. Mustafa, K. Aldwoah, M. Hassan, H. Saber, Abundant novel stochastic fractional solitary wave solutions of a new extended (3+1)-dimensional Kadomtsev-Petviashvili equation, Alex. Eng. J., 119 (2025), 45–55. https://doi.org/10.1016/j.aej.2025.01.073 doi: 10.1016/j.aej.2025.01.073
|
| [2] |
R. Roy, H. K. Barman, M. A. Akbar, J. F. Gómez-Aguilar, Bright-dark solitary wave solutions to the nonlinear fractional Boussinesq and breaking soliton equations, Nonlinear Dyn., 113 (2025), 8819–8837. https://doi.org/10.1007/s11071-024-10516-y doi: 10.1007/s11071-024-10516-y
|
| [3] |
Z. Shi, J. Zhou, D. Song, J. Cui, M. Yuan, C. Miao, The viscoelastic stress wave propagation model based on fractional derivative constitutive, Int. J. Impact Eng., 202 (2025), 105330. https://doi.org/10.1016/j.ijimpeng.2025.105330 doi: 10.1016/j.ijimpeng.2025.105330
|
| [4] |
W. W. Mohammed, M. M. Khatun, M. S. Algolam, R. Sidaoui, M. A. Akbar, Analytical solitary wave solutions of fractional Tzitzeica equation using expansion approach: Theoretical insights and applications, Fractal Fract., 9 (2025), 438. https://doi.org/10.3390/fractalfract9070438 doi: 10.3390/fractalfract9070438
|
| [5] |
M. A. I. Essawy, R. A. Rezk, A. M. Mostafa, Fractional dynamics of laser-induced heat transfer in metallic thin films: Analytical approach, Fractal Fract., 9 (2025), 373. https://doi.org/10.3390/fractalfract9060373 doi: 10.3390/fractalfract9060373
|
| [6] |
U. Younas, J. Muhammad, M. A. S. Murad, D. K. Almutairi, A. Khan, T. Abdeljawad, Investigating the truncated fractional telegraph equation in engineering: Solitary wave solutions, chaotic and sensitivity analysis, Results Eng., 25 (2025), 104489. https://doi.org/10.1016/j.rineng.2025.104489 doi: 10.1016/j.rineng.2025.104489
|
| [7] |
M. Al-Amin, M. N. Islam, M. A. Akbar, Computational analysis and wave propagation behavior of hyper-geometric soliton waves in plasma physics via the auxiliary equation method, Partial Differ. Equ. Appl. Math., 14 (2025), 101231. https://doi.org/10.1016/j.padiff.2025.101231 doi: 10.1016/j.padiff.2025.101231
|
| [8] |
H. Ma, R. U. Rahman, S. Manukure, Dynamical analysis and bifurcations in a fractional integrable equation, Alex. Eng. J., 125 (2025), 600–623. https://doi.org/10.1016/j.aej.2025.03.138 doi: 10.1016/j.aej.2025.03.138
|
| [9] |
D. Chou, S. M. Boulaaras, H. U. Rehman, I. Iqbal, K. Khushi, Fractional nonlinear doubly dispersive equations: Insights into wave propagation and chaotic behavior, Alex. Eng. J., 114 (2025), 507–525. https://doi.org/10.1016/j.aej.2024.11.097 doi: 10.1016/j.aej.2024.11.097
|
| [10] |
A. Khan, M. I. Liaqat, M. Younis, A. Alam, Approximate and exact solutions to fractional order Cauchy reaction‐diffusion equations by new combine techniques, J. Math., 2021 (2021), 5337255. https://doi.org/10.1155/2021/5337255 doi: 10.1155/2021/5337255
|
| [11] |
E. M. Özkan, A. Özkan, On exact solutions of some important nonlinear conformable time-fractional differential equations, SeMA J., 80 (2023), 303–318. https://doi.org/10.1007/s40324-022-00290-5 doi: 10.1007/s40324-022-00290-5
|
| [12] |
A. Özkan, E. M. Özkan, O. Yildirim, On exact solutions of some space-time fractional differential equations with M-truncated derivative, Fractal Fract., 7 (2023), 255. https://doi.org/10.3390/fractalfract7030255 doi: 10.3390/fractalfract7030255
|
| [13] |
R. U. Rahman, A. F. Al-Maaitah, M. Qousini, E. A. Az-Zo'bi, S. M. Eldin, M. Abuzar, New soliton solutions and modulation instability analysis of fractional Huxley equation, Results Phys., 44 (2023), 106163. https://doi.org/10.1016/j.rinp.2022.106163 doi: 10.1016/j.rinp.2022.106163
|
| [14] |
Z. Odibat, S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58 (2009), 2199–2208. https://doi.org/10.1016/j.camwa.2009.03.009 doi: 10.1016/j.camwa.2009.03.009
|
| [15] |
O. Guner, A. Bekir, H. Bilgil, A note on exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201–218. https://doi.org/10.1515/anona-2015-0019 doi: 10.1515/anona-2015-0019
|
| [16] |
B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
|
| [17] |
H. Jafari, N. Kadkhoda, A. Biswas, The G'/G-expansion method for solutions of evolution equations from isothermal magnetostatic atmospheres, J. King Saud Univ. Sci., 25 (2013), 57–62. https://doi.org/10.1016/j.jksus.2012.02.002 doi: 10.1016/j.jksus.2012.02.002
|
| [18] |
N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov-Ivanov equation by using $\exp(-\phi(\xi))$-expansion method, Optik, 139 (2017), 72–76. https://doi.org/10.1016/j.ijleo.2017.03.078 doi: 10.1016/j.ijleo.2017.03.078
|
| [19] | H. Jafari, H. Tajadodi, D. Baleanu, A. A. Al-Zahrani, Y. A. Alhamed, A. H. Zahid, Exact solutions of Boussinesq and KdV-mKdV equations by fractional sub-equation method, Rom. Rep. Phys., 65 (2013), 1119–1124. |
| [20] | A. C. Cevikel, A. Bekir, E. H. M. Zahran, Novel exact and solitary solutions of conformable Huxley equation with three effective methods, J. Ocean Eng. Sci., 2022. In Press. https://doi.org/10.1016/j.joes.2022.06.010 |
| [21] |
T. El-Sayed El-Danaf, M. A. Zaki, W. Moenaaem, New numerical technique for solving the fractional Huxley equation, Int. J. Numer. Method. H., 24 (2014), 1736–1754. https://doi.org/10.1108/HFF-07-2013-0216 doi: 10.1108/HFF-07-2013-0216
|
| [22] |
M. Inc, M. Partohaghighi, M. A. Akinlar, P. Agarwal, Y. M. Chu, New solutions of fractional-order Burger-Huxley equation, Results Phys., 18 (2020), 103290. https://doi.org/10.1016/j.rinp.2020.103290 doi: 10.1016/j.rinp.2020.103290
|
| [23] |
J. Shi, X. Yang, X. Liu, A novel fractional physics-informed neural networks method for solving the time-fractional Huxley equation, Neural Comput. Appl., 36 (2024), 19097–19119. https://doi.org/10.1007/s00521-024-10177-3 doi: 10.1007/s00521-024-10177-3
|
| [24] |
A. S. V. R. Kanth, K. Aruna, K. Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers-Huxley equation, Numer. Meth. Part. Differ. Equ., 39 (2023), 2690–2718. https://doi.org/10.1002/num.22983 doi: 10.1002/num.22983
|
| [25] |
R. Wang, Y. Chen, L. Qiao, J. Huang, Numerical methods for studying neuronal dynamics in the stochastic fractional Hodgkin-Huxley model, Phys. Lett. A, 561 (2025), 130966. https://doi.org/10.1016/j.physleta.2025.130966 doi: 10.1016/j.physleta.2025.130966
|
| [26] |
A. Majeed, M. Kamran, N. Asghar, D. Baleanu, Numerical approximation of inhomogeneous time fractional Burgers-Huxley equation with B-spline functions and Caputo derivative, Eng. Comput., 38 (2022), 885–900. https://doi.org/10.1007/s00366-020-01261-y doi: 10.1007/s00366-020-01261-y
|
| [27] |
S. H. Weinberg, Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model, PloS One, 10 (2015), e0126629. https://doi.org/10.1371/journal.pone.0126629 doi: 10.1371/journal.pone.0126629
|
| [28] | N. Kadkhoda, H. Jafari, Application of fractional sub-equation method to the space-time fractional differential equations, Int. J. Adv. Appl. Math. Mech., 4 (2017), 1–6. |
| [29] |
S. E. Tutam, M. Akar, Exact solutions of the generalized Huxley-Burgers' equations, Mod. Phys. Lett. B, 39 (2025), 2450452. https://doi.org/10.1142/S0217984924504529 doi: 10.1142/S0217984924504529
|
| [30] |
Z. Rahman, M. Z. Ali, H. O. Roshid, Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method, Chinese Phys. B, 30 (2021), 050202. https://doi.org/10.1088/1674-1056/abd165 doi: 10.1088/1674-1056/abd165
|
| [31] | M. Kleczka, W. Kleczka, E. Kreuzer, Bifurcation analysis: A combined numerical and analytical approach, In: Continuation and bifurcations: Numerical techniques and applications, Dordrecht: Springer, 1990,123–137. https://doi.org/10.1007/978-94-009-0659-4_8 |
| [32] |
S. T. R. Rizvi, S. O. Abbas, S. Ghafoor, A. Althobaiti, A. R. Seadawy, Soliton solutions with generalized Kudryashov method and study of variational integrators with Lagrangian to shallow water wave equation, Mod. Phys. Lett. A, 40 (2025), 2550043. https://doi.org/10.1142/S0217732325500439 doi: 10.1142/S0217732325500439
|
| [33] |
M. Cai, C. Li, C. Wang, J. Shi, Effects of additive noise and variable coefficients on the exact solutions of the stochastic Kawahara equation, Phys. Lett. A, 554 (2025), 130723. https://doi.org/10.1016/j.physleta.2025.130723 doi: 10.1016/j.physleta.2025.130723
|
| [34] |
A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), 40. https://doi.org/10.3390/e18020040 doi: 10.3390/e18020040
|
| [35] |
A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
|
| [36] |
S. Akcagi, T. Aydemir, Comparison between the (G'/G)-expansion method and the modified extended tanh method, Open Phys., 14 (2016), 88–94. https://doi.org/10.1515/phys-2016-0006 doi: 10.1515/phys-2016-0006
|
| [37] |
Y. Alhojilan, H. M. Ahmed, Novel analytical solutions of stochastic Ginzburg-Landau equation driven by Wiener process via the improved modified extended tanh function method, Alex. Eng. J., 72 (2023), 269–274. https://doi.org/10.1016/j.aej.2023.04.005 doi: 10.1016/j.aej.2023.04.005
|
| [38] |
A. Filiz, M. Ekici, A. Sonmezoglu, $F$‐Expansion method and new exact solutions of the Schrödinger‐KdV equation, Sci. World J., 2014 (2014), 534063. https://doi.org/10.1155/2014/534063 doi: 10.1155/2014/534063
|
| [39] |
S. S. Mahmood, M. A. Murad, S. S. Omer, S. S. Omer, S. J. Saeed, Traveling wave solutions of nonlinear evolution equations via the $F$-expansion method, Comput. Method. Differ. Equ., 2025, 1-27. https://doi.org/10.22034/cmde.2025.66357.3092 doi: 10.22034/cmde.2025.66357.3092
|
| [40] |
C. Li, F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat. Chaos, 22 (2012), 1230014. https://doi.org/10.1142/S02181274123001 doi: 10.1142/S02181274123001
|
| [41] |
R. U. Rahman, Z. Hammouch, A. S. A. Alsubaie, K. H. Mahmoud, A. Alshehri, E. A. Az-Zo'bi, et al., Dynamical behavior of fractional nonlinear dispersive equation in Murnaghan's rod materials, Results Phys., 56 (2024), 107207. https://doi.org/10.1016/j.rinp.2023.107207 doi: 10.1016/j.rinp.2023.107207
|
| [42] |
S. M. Y. Arafat, M. A. Saklayen, S. M. R. Islam, Analyzing diverse soliton wave profiles and bifurcation analysis of the (3+1)-dimensional mKdV-ZK model via two analytical schemes, AIP Adv., 15 (2025), 015219. https://doi.org/10.1063/5.0248376 doi: 10.1063/5.0248376
|
| [43] |
T. Han, K. Zhang, Y. Jiang, H. Rezazadeh, Chaotic pattern and solitary solutions for the (2+1)-dimensional beta-fractional double-chain DNA system, Fractal Fract., 8 (2024), 415. https://doi.org/10.3390/fractalfract8070415 doi: 10.3390/fractalfract8070415
|