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Abstract: This research explores the higher-order nonlinear fractional Huxley equation formulated
with the 8, and M-truncated fractional derivatives to account for memory and hereditary effects
present in nonlinear diffusion and excitation wave dynamics. The fractional formulation expands on
the standard Huxley model by incorporating nonlocal temporal and spatial correlations, providing a
more realistic description of finite-amplitude wave propagation and spectral energy transfer in
complex media. Two advanced analytical techniques are used to derive exact solutions: the enhanced
modified extended tanh expansion method (EMETEM) and the improved F-expansion technique.
Compared to classic perturbation and variational techniques, these methods offer greater algebraic
freedom and faster convergence, resulting in a diverse family of closed-form traveling-wave solutions
expressed in trigonometric, hyperbolic, exponential, and rational forms. The analytical results are
further validated, and the spatiotemporal evolution of the resulting wave structures is investigated
using a finite-difference numerical scheme. The accuracy and robustness of the suggested framework
are confirmed by the numerical findings, which show good agreement with the analytical results.
Phase-plane and bifurcation analyses demonstrate transitions between periodic, quasi-periodic, and
chaotic regimes by revealing both stable and unstable spiral formations. The findings show that
fractional derivatives significantly improve the dynamical characteristics of the Huxley system by
allowing for finer control of diffusion, dispersion, and localized energy concentration, advancing our
understanding of nonlinear fractional wave behavior in excitable and dispersive media.
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1. Introduction

Fractional differential equations (FDEs), which are differential equations containing non-integer
orders of differentiation, have become an effective tool for simulating complicated dynamical systems
with memory, spatial heterogeneity, and nonlocal interactions. Fractional models, in contrast to
traditional integer-order formulations, provide a more accurate depiction of diffusion, dispersion, and
relaxation processes by including the process’s history into the governing dynamics. FDEs have been
widely used in many different fields of science and engineering over the past few decades, such as
nonlinear wave propagation [1, 2], viscoelastic and rheological systems [3, 4], heat and mass
transfer [5], control and signal processing [6], and plasma or optical physics [7]. They are an essential
part of the study of complicated physical processes because of their capacity to combine diffusion-like
and wave-like characteristics into a single framework. Particularly, anomalous transport, subdiffusion,
and energy localization phenomena that are beyond the scope of conventional differential models have
been successfully described by fractional operators. As a result, investigating analytical and
numerical techniques to solve fractional equations has emerged as a crucial area in contemporary
theoretical physics and applied mathematics [8,9].

Researchers have concentrated on examining stability, finding precise solutions, and creating
effective numerical techniques since the existence and uniqueness results for fractional systems were
established [10-12]. In many scientific domains, such as fluid mechanics, plasma dynamics, diffusion
processes, and fractal systems, fractional partial differential equations (FPDEs) are crucial for
modeling and simulation. Numerous mathematical methods have been devised to find analytical and
semi-analytical solutions of FPDEs. Examples include the new auxiliary equation method [13], the
variational iteration method [14], the exp-function approach [15], the first integral technique [16], the
exp(—¢(€)) expansion method [17], and many more [18, 19].

Nonlinear effects play a central role in wave propagation through dispersive and dissipative media,
and Huxley-type equations are widely used to describe limited-amplitude waves and nonlinear
reaction-diffusion processes with strong mode interactions [13, 20-22]. Owing to their ability to
capture oscillatory and excitable dynamics, the Huxley model and its fractional extensions have found
applications in ocean engineering, plasma physics, nonlinear optics, and biological signal
transmission [23, 24]. In particular, the fractional-order formulation incorporates memory and
hereditary effects absent from the classical integer-order model whereas reducing to the standard
Huxley equation as the fractional order approaches unity. Recent studies have reported exact
solitary-wave solutions via analytical schemes, developed efficient numerical methods for fractional
Burger-Huxley-type models, and proposed data-driven solvers such as fractional physics-informed
neural networks for one- and two-dimensional settings [22]. These developments motivate the present
work, which introduces a unified analytical-numerical framework combined with bifurcation-based
dynamical analysis to extend existing results for the governing fractional Huxley equation.

In recent years, several analytical approaches have been developed to derive closed-form or
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approximate solutions of nonlinear fractional differential equations, including the integral transform
method [25], modified trial equation approach [26], subequation method [27], and Kudryashov
scheme [28-30]. While these techniques have enhanced the understanding of fractional systems, their
convergence and adaptability often remain restricted by the complexity of fractional operators and
nonlinear terms. Earlier work on the fractional Huxley equation, such as the study reported in [13],
applied the new auxiliary equation method to obtain soliton solutions and examine modulation
instability. However, that study did not explore the bifurcation structure, stability, or numerical
realization of the fractional model, leaving these aspects insufficiently addressed [31-33].

To close this gap, the current study adds the 8 and M-truncated fractional derivatives [34, 35],
which effectively incorporate nonlocal and memory-dependent effects, to the theoretical and
computational framework of the Huxley fractional equation. Some fractional operators yield sharper
localization of wave structures, capturing more pronounced peaks and troughs compared to the
classical model. Other operators, on the other hand, improve stability and smoothness whereas
lowering oscillations and numerical artifacts in the solution. Thus, the choice of fractional operator
allows control over both the localization and stability of the system, highlighting the flexibility and
richness introduced by fractional-order formulations. Different traveling-wave solutions in
trigonometric, hyperbolic, exponential, and rational forms are constructed using two complementary
analytical methods: the enhanced modified extended tanh expansion method (EMETEM) [36,37] and
improved F-expansion method [38, 39]. Compared to earlier well-established techniques, these
formulations provide more flexibility and expand the current analytical environment. The analytical
solutions, numerical simulations, and bifurcation analysis reported in this work show deeper insights
into dynamical characteristics of the fractional model, such as modified wave propagation, stability
features, and bifurcation structures.

A finite-difference numerical approach [40] is used to simulate the spatiotemporal evolution of the
fractional wave profiles in order to guarantee the dependability and physical consistency of the results
produced. The robustness of resulting solutions is confirmed by the numerical results, which exhibit
excellent agreement with the analytical predictions. Comparing these schemes allows us to observe
how numerical discretization can influence the qualitative behavior of solutions. For consistency, all
methods use the same set of parameter values, ensuring that any differences are solely due to the
numerical methodology. Furthermore, a thorough bifurcation analysis [41, 42] is carried out to
investigate how changes in system characteristics affect dynamical transitions and stability.

A range of analytical and numerical methods have been developed recently to investigate nonlinear
fractional differential equations, such as the traditional Huxley equation, that arise in biological and
physical models. Traditional analytical approaches such as the Adomian decomposition, variational
iteration, homotopy perturbation, and standard tanh-function methods have been widely employed
due to their simplicity. However, these approaches frequently fail to represent the rich dynamical
behavior of fractional-order systems, rely on restricted assumptions, or offer solutions in constrained
convergence areas. In contrast, the extended modified expanded tanh-expansion method adopted in
this study offers greater flexibility in constructing exact and approximate analytical solutions by
incorporating a broader functional structure, enabling the capture of diverse wave patterns and
nonlinear interactions more effectively. Although spectral and finite element approaches are known
for their great accuracy, their implementation for fractional operators can be difficult and
computationally taxing. The finite difference scheme employed here provides a balance between
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computational efficiency and accuracy, making it suitable for long-time simulations. Additionally, a
deeper comprehension of the qualitative dynamics of the fractional Huxley model, which is
sometimes disregarded in solely numerical or analytical studies, is made possible by the inclusion of
bifurcation analysis.

This framework improves both the accuracy and interpretability of solutions compared to classical
methods. The EMETEM offers several advantages over classical techniques, including the ability to
systematically construct exact and approximate analytical solutions and to capture a wide range of
nonlinear wave structures. However, its applicability is mainly limited to nonlinear equations where
the balancing procedure can be performed, and it may become cumbersome for highly complicated or
higher-dimensional systems. Compared to traditional techniques such as the Exp-function method or
auxiliary equation methods, the EMETEM and F-expansion method provide greater flexibility in
constructing exact and approximate solutions. These methods can capture more diverse wave
structures, handle higher-order nonlinearities effectively, and offer a systematic framework for
obtaining analytical solutions, which is often challenging for classical approaches. In order to
generate precise numerical solutions that are utilized to verify the analytical conclusions through
quantitative comparisons, we employ a finite difference scheme. Then, bifurcation analysis is used to
explore the qualitative dynamics and stability properties of the fractional model, providing insights
that are not available from purely analytical or numerical studies alone. Finally, we highlight the
importance of the fractional-order formulation, which captures memory and hereditary effects,
leading to richer dynamical behavior compared to the classical integer-order model.

The remainder of this paper is organized as follows. Section 2 provides essential definitions and
properties of fractional calculus. Section 3 presents the governing form of the fractional Huxley
equation. Section 4 details the employed analytical methods, including both the F-expansion and
EMETEM formulations. Section 5 discusses the construction of exact analytical solutions, whereas
Section 6 illustrates their dynamic characteristics through graphical interpretation. Section 7 explains
the numerical implementation and the comparison between analytical and numerical results. Section
8 focuses on the qualitative bifurcation analysis, and Section 9 concludes the study with major
findings and possible directions for future research.

2. Basic results of fractional calculus
Giving some basic definitions of fractional calculus is the sole objective of this section.

2.1. B-derivative conceptions

The fractional S-derivative is defined as follows [34]:

Mi(z+ 7z + 7)) = Mic2)
0 DM (2)) = lim , 0<d6<l. (2.1)

r

It possesses the following qualities:

1: ({DXa Mi(2) + b Ma(2) = ayDI M (2) + by DI My (2),
2: D) =0,
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3: (DUMI(@) * My(2)) = Ma(2)g DIMi(2) + Mi(2)g DI Ma(2),

4 4 D(;(Ml(z)) M@ DIMI(E) ~ Mi@ DM@
My (2) Mi(2)
The B-fractional integral is defined as follows [43]:
1-6
(M) = f (w+ @) Mi(©d¢. (22)

Theorem 1. Let y = [Re(v)] + 1 for Re(v) > 0. Let M € C? z([l m)) be a function. For example, M €
Cg’m([l, m)). Next, the left- and right B-type conformable derivatives’ Riemann—Liouville formulations
are provided as follows:

AT I [<z+ rg) ~ 0+ ) p-! 03

= VD? DT EMR)

and

YD Mi(2) =

(1) 42D i (24 1) — (x+ )0 -l
y f [ ) %] 2.4)
Z

I'(y—-v) 0
M (x)

(x+ 7(6))1 ”
=1 YO0 LM (2)).

dx

2.2. M-truncated fractional derivative

Definition 1. The Mittag-Leffler function with a single parameter is described as [35]:

i M

iE(S(M) = Z m,

(2.5)

in which 6 > 0 and n € C. It is defined in terms of a non-fuzzy idea as follows:

Definition 2. Let M; : [0,00) —» R and 0 < & < 1. The following represents the M-truncated
derivative of M, of order §:

M@+ iEy(e279) = M
D M) = lim 1@+ i) - M) (2.6)

€

Vz>0and E.) x> 0.

Theorem 2. Given 6 € (0, 1] and xy > 0, and assuming that M, is a differentiable function of 6 order
at zo > 0, M, is continuous at z.
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1) D5 (kM (2) + A Ma(2)) = kDSFIM1(2)) + ADH (Mo (2)).
2) D M(@) = Ma() = Mi(2) = DY (Ma(2)) + Ma(2) = DM (2)).

M) _ MIQDT M@)I-M@D (MiR)
3) Dy Goe) = M :

4) ii)if(gb) = 0, where M, = ¢ is a constant.

5) When M, (2) is differentiable, iDij‘(Ml)(z) = 1_61:1) dA;‘;(Z).

Theorem 3. Suppose that 6 € (0,1], y > 0, k, A € R and M,, M, are 5-differentiable at 7 > 0, then

The remaining parameters and symbols appearing throughout the manuscript are summarized in

Table 1 for clarity.

Table 1. Notation used in the manuscript.

Symbol Description Notes

P(x, 1) Dependent variable (solution function) —

X Spatial variable xeR

t Time variable t>0

0 Order of the fractional derivative O<a<l1

o real constants model-dependent
Z)if[, 2  Fractional derivative operators see Eq (3.1)

') Gamma function standard definition
Um) Traveling-wave profile P(x,t) = U(n)

n Traveling-wave coordinate See Eqgs (3.4) and (3.5)
k Wave number / scaling constant k+0

v Wave speed Eq (3.4)

Ax Spatial step size numerical method
At Time step size numerical method
P! Numerical approximation of P(x, t) at (x;, t,)

3. Fractional governing model

The Huxley equation [21] in its time-fractional form is written as

Dyt P(x, 1) = Dy P(x, 1) = o P(x, D] a(1 = P(x, D)P(x, 1) - 0],

M, x

DOP(x,1) — D¥P(x,1) = o P(x, ) a(1 = P(x,1))P(x,1) — 0], 0<6<1,

(3.1)

where ¢ is the fractional order of the time derivative, and o is a nonzero real constant. Eq (3.1) can be
transformed by expanding the nonlinear term on the right-hand side. Equation (3.1) represents the
fractional Huxley model under two nonlocal derivative formulations: the M-truncated fractional

.. 5,
derivative D7,

and the classical B-fractional derivative 9°. This model generalizes the classical

Huxley equation by incorporating memory effects through fractional-order dynamics, allowing for
more accurate descriptions of wave propagation and excitable media. The present work systematically
investigates both nonlocal operators, deriving a diverse set of analytical solutions, including soliton,
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trigonometric, and Jacobi elliptic waveforms, whereas simultaneously validating the results via
numerical simulations. This dual-operator framework enables a direct comparison of memory
truncation effects and provides new insights into the influence of fractional dynamics on the
amplitude, width, and stability of wave propagation in excitable biological systems.

Dir P(x,1) = Dy P(x, 1) + 0P (x, 1) = (1 + O)P2(x, 1) + 7OP(x, 1) = 0,

(3.2)
DOP(x, 1) — Z))ZC‘SP(x, )+ oPx,t)—o(l + O)PX(x, 1) + 0OP(x,t) = 0, 0<o<1.
To construct traveling-wave solutions, the dependent variable P(x,t) is assumed in the form
P(x,1) = U(n), (3.3)

where U(n) is a single-variable function of the traveling coordinate 7, and P(x,?) is the soliton-like
pulse profile. The traveling coordinate for the S-fractional operator is defined as

1)
Vo5 1
=kx—-=11+—]|, 3.4
n=kx- o) (3.4)
where k denotes the wave number, ¥ is the wave velocity, and I'(-) represents the gamma function.

In the case of the M-truncated fractional operator, the corresponding transformation is taken as

T+ 1)

5 W, (3.5)

n=kx-—

with p being a positive real parameter associated with the truncation index.
Substituting either of the transformations (3.4) or (3.5) into Eq (3.2) reduces the fractional partial
differential equation to a nonlinear ordinary differential equation of the form

—yU'(m) = 20" () + o U (i) — (1 + O)U*(p) + 00U () = 0, (3.6)

where the first and second derivatives of U with respect to i are denoted by U’(n) and U"” (n). Thus, the
simplified governing model that characterizes the propagation of fractional traveling waves within the
Huxley framework is represented by Eq (3.6), which serves as the foundation for additional analytical
and numerical investigation.

4. Analytical solution approaches

In this study, two dependable analytical frameworks are used to get exact solutions to the nonlinear
evolution equations under consideration. The first method is the EMETEM, which has been shown to
be an effective and methodical way to build soliton-like and other closed-form solutions. This
approach reduces the controlling fractional equation to a solvable ordinary differential form by using
appropriate variable transformations and function expansions. The subsequent approach used is the
classical F-expansion method, which makes it easier to create both periodic and solitary wave profiles
by representing the solutions using trigonometric and hyperbolic functions. This section aims to
present a wider class of analytical solutions for the fractional Huxley model under consideration and
to assess and compare the performance of EMETEM and the F-expansion approach.
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For nonlinear fractional differential equations, the EMETEM offers a methodical, analytical
approach that produces precise and flexible solutions. It captures a broader spectrum of nonlinear
dynamic behaviors and improves the precision of found solutions by using extended hyperbolic
function expansions.

Consider a general nonlinear partial differential equation of the form

P(Ua Ux’ Ut, Uxxa Uxt’ Utt’ . ) = 05 (41)

where U(x,t) denotes the dependent variable. To transform Eq (4.1) into an ordinary differential
equation, we introduce the traveling-wave variable:

U(x,1) = U@.
Substituting this transformation into Eq (4.1) leads to

Ue,g,0’.¢™,..)=0, =), (4.2)

where primes indicate derivatives with respect to £.
The assumed solution form for EMETEM is expressed as

UGn) = Mo+ D" MIZODY + > N{Zp] ™, (4.3)
i=1 i=1
where My, My, ..., M;, N|, N, ..., N; are constants to be determined. The function {(n) satisfies the
Riccati equation
g 2
— =J+, 4.4)
dn

where J is a real-valued parameter.
Substituting Egs (4.3) and (4.4) into Eq (4.2) and then equating coeflicients of identical powers of
n({) yields a system of algebraic equations involving the unknown constants

J’MOaMl’MZ,-- ',MmaM—laM—Z’-' -7M—m7N1’N2-

By setting each coeflicient to zero, these constants are determined explicitly. The general solutions
of Eq (4.4) depend on the sign of J, leading to multiple categories of wave structures as follows.
For J < 0 (hyperbolic-type solutions):

£1() = — V=7 tanh( V=Jn),
£>(m) = — V=J coth(V=7n),
G = - V=J[tanh(2 V=J 1) + iw sech(2 \/—_Jn)],
J — V—=J tanh( V-Jn)
1 + V=7 tanh(V=Jn)
V=J[5 = 4 cosh(2 V=7n)]
3+ 4sinh@QV_Ty)

La(m) =

gs(m) =
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w—=J(m? + n*) — mV—J cosh(2 V-Jn)
msinh(2 V-Jn) +n ’

2m
G = w m + cosh(2 V-Jn) — w sinh(2 V-Jn)

Ls(n) =

For J > 0 (trigonometric-type solutions):

() = VT tan( V),

Lo(p) = — VT cot( Vi),

L) = VItan(2 VIn) + wsec(2 V)],
1 — tan( \/777))

_ _ﬁ(
Z11(n) L+ an(VIn)

4 - 5cos(2VJn)
ol
201 3+ 5sin2 VI
wAJm? — n2) —mVJ cos(2Vin)
L13(n) = - ,
m sin(2 \/jn) +n
2m
=i \/7(1 - )
al) = i m + cos(2 \/777) — iw sin(2 \/777)

For J = 0 (rational solutions):

1
Gis(n) = ——. 4.5)
n

These solutions, which correspond to various physical regimes and parameter conditions, represent
a broad variety of nonlinear structures, including rational forms, periodic solutions, and solitary waves.
Thus, a thorough analytical framework for studying the fractional Huxley equation and associated
nonlinear systems is provided by the combined use of EMETEM and the F-expansion techniques.

4.1. F-expansion method

To construct explicit wave solutions of the nonlinear partial differential equations, we employ the F-
expansion procedure, which has been proven effective for generating a variety of solitary and periodic
wave profiles. Consider the general nonlinear partial differential equation

P(Ua Ux’ Ul" Uxb Uxx, .. ) = 07 (4'6)

where P denotes a polynomial operator acting on the dependent variable U(x, #) and its derivatives with
respect to the spatial variable x and temporal variable z.

To reduce the above equation to an ordinary differential form, we introduce a traveling-wave
transformation as follows:

P(x,t) = Q(n), and ncan be taken from Eqs (3.4) and (3.5), “4.7)
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where (1) is the wave profile associated with the traveling coordinate 7.  Substituting the
transformation (4.7) into Eq (4.6) converts it into a reduced nonlinear ordinary differential equation of
the form

FQ,-uwQ, ul, u*'Q",...) = 0. (4.8)

To identify analytical solutions, we assume a finite polynomial expansion of (1) in powers of an
auxiliary function f(n) given by

N
UG = BQ, (4.9)

i=0
where B; (i = 0,1,...,N) are coeflicients to be determined. The first derivative of (1) is assumed to

satisfy a first-order ordinary differential equation of the form

Q') = Q) + 72Q2(0) + vs, (4.10)

where 1, ¥,, and 3 are real parameters controlling the amplitude and shape of the solitary wave.
Soliton and periodic wave structures

Equation (4.2) admits several types of solitary and periodic solutions, which can be represented in
terms of Jacobi elliptic functions. Typical examples are summarized below:

Q(n) = sn(n) = tanh(n), arm?, e —1+m?), az—=1, m—17,

Q(n7) = ns(n) = coth(n), =L a--1+m?), az—m?, m— 17,

Q(n7) = cn(n) = sech(n), ay > —m*, ey 2mr -1, a3 1—-m?, m— 1,
Q(n) = ds(n7) = csch(n), - L, ay-2m* -1, a3 —-m*(1 -m?), m— 17,
Q@) = ns() £ds(y) = coth(y) = csch(m), a1 4, e 2 a3 2 m— 17,

Q(n) = sn(n) + icn(n) = tanh(n) = isech(n), a; — ’%2, a - ’"22_2, az "iz, m— 1,

Q) = snp) ___ tanh(@) a) - ’"TZ, a - %, a3 - =om 1

"~ 1+dn(n) 1+sech(n)’ win

Here, sn, cn, dn, ns, and ds are Jacobi elliptic functions with elliptic modulus 0 < m < 1. By
substituting Eqs (4.9) and (4.2) into Eq (4.8), one obtains a set of algebraic equations whose solutions
yield the constants B; and determine the physical parameters of the solitary and periodic wave
structures.

5. Deriving solutions via the EMETEM
To determine the balancing number N, we balance the highest-order derivative term with the highest

nonlinear term in Eq (3.6). U” (1) is the highest derivative term, and U?(n) is the highest nonlinear term,
which gives U”(17)¢V*? and U3(1)¢*N. When these dominant terms are balanced,

N +2 =3N,
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which results in N = 1. Hence, the trial solution is taken with N = 1.
Then, Eq (4.3) takes the form of

U(n) = My + MiZ(m) + Ni[Z(p] ™" (5.1)

Equations (4.4) and (5.1) can be substituted into Eq (3.6) to provide a polynomial. If we set this
form’s coefficient to zero, we obtain the system. We only offer the solution set that we used for the
graphical representations, even though we obtain several alternative solution sets when we solve the
problem.

0+1 2y G D26+ 1)o

MO -, Ml = s 1
2 6+ o 320

V2(26% - 50 +2)w
A — 1265 — 36" + 266° — 362 — 120+ 4o

(5.2)

The values of the unknown variables are entered into Eq (5.1) to produce the family of solitary wave
solutions to the governing equation:
Case 1: When J <0,

9+1 2V=Jytanh(yV=J) (6+ 1)@~ 1)*ccoth(nV=J)

ViD= @+ Do 2Ty ’ )
g+1 @+ 1)@- 170 tanh(nV=7) 2V=Jycoth(nV=J)

Ve === 32V=Jy - @+o G
’ _g+1 0+ 1(@~-1)Yocosh (2nV=7) 2V=Jysech(2nV=7J)(sinh (27 V=7) + iw) s
=T 32 V=Jy (sinh (2 V=T) + iw) B @+ Do )
’ 41 @+ 1)® - 1o (V=Ttanh(pV=7)+1)  2¢/(J - V=Ttanh(nV=7)) iy
===+ 320 (J - V=T tanh (nV=7)) " @+ Do (V=7 tanh (V=) + 1)’( ©

g+1 O+ 1)@ 170 (4sinh(2nV=7)+3) 2V=Jy(5 - 4cosh(2nV=7))
Us(x,t) = + + , (8.7

2 32V=Jy (5 — 4 cosh (27 V=7)) (6 + D)o (4sinh (27 V=7) + 3)

y 641 (0 + 1)(0 - 120 (msinh (27 V=7) + n)
o0 = 2 ’ 32y (w \—J (m? + n?) — V=Jmcosh (277 \/—_J)) ’

2y (a) \=J (m? + n2) — V=Jmcosh (277 \/—_J)) 5:8)

(@ + Do (msinh (27 V=7) + n)
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21 [— 1= 2m
0+1 O+ 1)0-1)12c Ty ( —wsinh(2n V=J)+cosh(2y ﬁ)ﬂn)
Us(x,1) = + + S .59
A/ 2m
32 _Jlﬁw - —-w sinh(2n \/j)+cosh(217 \/j)+m )

Case 2: When J > 0,

o+1 2VIytan(nVI) (0+1)(0- 1) o cot(nVJ)

Useh ===+ —G e+ 32VIy 10
g+1 @+ 1)@ -172ctan(gV7) 2VIycot(nVJ)
Us(x,0) = —— = i ——G+ 1o (5.11)
Vet < 0+1 6+ 1)(8 — 1Yo cos (27 VJ) . 2 VT sec (2 V7) (sin (27 V7) + w), 512
2 32 ﬁw(sin(Zn \/7) +a)) O+ Do
g+1 @+ DO - 1720 (tan(nV7)+1) 2V (1 - tan(n V7))
Un(x, 1) = - - , (5.13)
2 327y (1 - tan (y V7)) @+ Do (tan (n V7) + 1)
g+1 @+ 1)@= (Ssin(2pV7)+3) 2Ty (4 - 5cos (27 V7))
Un(x, 1) = - - . . (5.19)
2 327y (4 = 5cos (27 V7)) 0+ D)o (5sin (27 V7) + 3)
Un(en) - 0+ 1 N ZW(w I (m? = n2) = \Imcos (27] \/.7)) ~ 5.15)
2 @+ Do (msin (27 V7T) + n)
O+ 10 — 120 (msin (27 V7T) + n) <16
+32w(w\/.](m2 —n2) — VJmcos (277\/7))’ 10
6+1 2 ﬁlﬁw(l - —iwsin(2y ﬁ;fcos(2nﬁ)+m) (0 + 1)(6 — 1)
Uis(rn) = ——+ G - ! g . (5.17)
32Vl (1 i vy e «/7)+m)
Case 3: When J = 0,
Uls(x’t):_(9+1)(9—1)2na_ 2 6+1 5.18)

32 @+ o 2
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5.1. Extraction of analytical solutions via F-expansion method

By applying the balancing technique in Eq (3.6), we arrive at N = 1. Equation (4.9) takes the form
U(n) = By + B1Q(n). (5.19)

The system of equations is obtained by substituting Eqs (5.19) and (4.10) into Eq (3.6). This system
of equations is then solved to obtain the following results:

20°2B* B3 2 P
mTﬁﬁ,y3 0 o VX 9=2&—1,BP:V_%

- 71lﬁ4’ B 2\/0_'30, B()O'
We can manipulate algebraically to obtain the soliton solution in its exact form by combining
Eq (5.20) into Eq (5.19). The following circumstances are used to categorize the response.

Y1 = (5.20)

Case 1: When Q(77) = sn(n) = tanh(y}), y; = m?, y, = —(1 + m?), y3 = 1.

Uis(x,1) = By + l//t%l;(ﬂ). (5.21)
Case 2: When Q(n) = ns(7) = coth(n), y1 = 1, y» = —(1 + m?), y3 = m>.
U = By + L0, (5.22)
Case 3: When Q(1)) = cn(n) = sech(n), y1 = —m?, v, =2m?> — 1, y3 = 1 — m>.
Uig(x,1) = By + %- (5.23)
Case 4: When Q(n) = ds(7) = csch(i), v1 = 1, y» = 2m?* — 1, y3 = —m*(1 — m?).
Unon) = By + LS00, (5.24)
Case 5: When Q(n) = ns(n) £ ds(n) = coth(n) £ csch(n), y; = }P Yy = #, Y3 = ’"Tz,
Uno(x,1) = By + ¢(C0th(g;:GCSCh(n)), (5.25)
Un(x,1) = By + w(COth(gg;SCh(”)). (5.26)
Case 6: When Q(17) = sn(7)) = icn(77) = tanh() + isech(n), y; = 2=, y, = 52, 3 = .
Una(x.1) = By + ¥ (tanh(n) + isech(n)), (5.27)

2B()O'
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Y (tanh(n) — isech(n))

Ux(x,1) = B 5.28
23(x, 1) o+ B ( )
Case 7: When Q() = 7 = M0 ) = o ) = 252 s = 2,
Y tanh(n)
Una(x,1) = By + , 5.29
100 = Bt o+ sech(n) (529)
tanh
Uns(x, ) = By + ——2 120000 (5.30)

2Byo (1 — sech(n))’

6. Graphical analysis and physical interpretation

This section presents the graphical analysis of the fractional Huxley model constructed using both
the S-derivative and the M-truncated fractional derivative. To clearly relate the analytical results
obtained from Eq (3.6) back to the original fractional Huxley model (3.1), we present graphical
representations of the solutions in terms of the original variables. The transformations in (3.4)
and (3.5) provide a direct mapping from the ordinary differential equation (ODE) solutions to the
spatiotemporal profiles of U(x,t) in Eq (3.1). Figures are plotted for both the M-truncated fractional
derivative and the S-fractional derivative to illustrate the distinct effects of the two operators on wave
amplitude, width, and propagation. This visual comparison not only confirms the validity of
analytical solutions but also reinforces the correspondence between ODE-based analysis and the
original fractional PDE model, addressing the connection between subsequent results and Eq (3.1).
The analytical solutions obtained in the preceding sections are visualized for several values of the
fractional order parameters to examine how the order of differentiation and truncation degree affect
the system’s nonlinear wave dynamics. Each figure illustrates the temporal and spatial evolution of
the wave profile, revealing the intrinsic link between the fractional calculus operators and the
corresponding dispersive-nonlinear balance. It is important to emphasize that, for the present
B-fractional and M-truncated formulations, the fractional order ¢ enters the solution only through the
traveling variable n7. Consequently, varying ¢ primarily induces a phase shift and spatial rescaling of
the waveform, whereas the peak amplitude, which is determined by the reduced ordinary differential
equation, remains invariant.

Figures 1 and 2 display the three- and two-dimensional plots of the solution Us(x,t) associated
with Eq (5.5). The 3D surface illustrates the smooth propagation of a localized soliton-type structure
that retains its integrity as it travels along the spatial axis. The 2D profiles demonstrate that varying o
mainly affects the spatial position and localization of the soliton, and the peak amplitude remains
unchanged. Higher fractional orders yield sharper and more confined wave fronts due to enhanced
nonlinear dispersive balance. For smaller ¢, the soliton broadens and exhibits a gentler slope,
corresponding to weaker nonlinear interactions. Together, the 3D and 2D plots provide a clear
visualization of how the fractional operator modulates the stability and localization of the wave
structure.
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Figure 1. The three-dimensional (3D) and two-dimensional (2D) profiles of the solution
Us(x, t) using the parametric values w = 0.1, 8 = 0.52, ¢ = =09, 0 = 0.4, k = 2, and
0 = 0.5. Itis observed that increasing d results in sharper and more localized peaks, indicating
stronger nonlinear and dispersive effects. The 3D surface illustrates a soliton-like structure
that propagates whereas preserving its shape, whereas the 2D profiles show that variations in
the fractional order primarily affect the spatial position and localization of the wave, with the
peak amplitude remaining essentially unchanged.
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Figure 2. The 3D surface demonstrates a soliton-like structure that maintains its shape during
propagation, for the parametric values w = 0.1, 0 = 0.52, ¢ = -09,0 =04,k =2,p = 1.5,
and 6 = 0.5, whereas the 2D plot highlights how the fractional derivative order affects the
amplitude and width of the waveform. The results demonstrate that increasing ¢ leads to
sharper and more localized wave fronts, whereas the maximum amplitude remains invariant,

indicating that the fractional order mainly modulates propagation characteristics rather than
amplitude.

Figures 3 and 4 correspond to the solution U,(x, t). The 3D surface describes the temporal—spatial
propagation of a soliton-like structure, whereas the 2D cross-section compares the amplitude response
under varying fractional orders of both S and M. An increase in ¢ results in a noticeable horizontal shift
and steepening of the wave front, whereas the maximum amplitude remains effectively constant. This
confirms that the fractional order modulates propagation characteristics rather than energy level. The
plots highlight how the M-truncated operator reproduces the main features of the S-derivative whereas
introducing subtle damping and shape-retaining effects that enhance wave stability.

AIMS Mathematics Volume 11, Issue 1, 1998-2026.



2013

—— &=0.3 B-derivative &5=0.5 B-derivative
&6=0.7 B-derivative &6=0.9 B-derivative
——— &=1 B-derivative
2.4f
2.2
2.0
= 1.8
=
5“‘- 1.6
1.4
1.2
1.0
-0 -5 0 5 10 15 20 25

X

Figure 3. The 3D and 2D plots of the solution U,(x, t) using the parametric values 8 = 2.3,
Yy =10 =14,k =024, and 6 = 1. The 2D plots compare wave profiles for different
fractional orders, revealing that variations in ¢ primarily induce horizontal shifts and changes
in localization, whereas the peak amplitude remains nearly constant.

—— 6=0.3 M-derivative 6=0.5 M-derivative

—— 6=0.7 M-derivative 6=0.9 M-derivative

——— &=1 M-derivative

Figure 4. The 3D and 2D plots for Eq. (5.14) are shown using the parametric values 6 = 2.3,
Yy=1,0=14,k=0.24,p=1.5,and 6 = 0.1. The wave maintains its soliton-like structure,
and the 2D profiles confirm that fractional-order variation affects the spatial transition and
steepness of the waveform without significant change in amplitude.

Figures 5 and 6 illustrate the 3D and 2D profiles of the solution U;g(x, ). The 3D surface reveals
a symmetric bell-shaped soliton that propagates stably without distortion. From the corresponding
2D cross-sections, it is observed that varying the fractional order ¢ primarily affects the localization
and width of the soliton. As ¢ increases, the waveform becomes more confined and sharper around its
center, whereas the peak amplitude remains nearly unchanged. This indicates that, for this solution, the
fractional order mainly regulates spatial localization rather than producing a significant amplification
of the wave height. The near-invariance of the maximum amplitude is consistent with the analytical
structure of the reduced ordinary differential equation, in which the fractional order ¢ enters through
the traveling coordinate rather than the amplitude-determining coeflicients.
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Figure 5. 3D and 2D plots of the solution Ug(x,?) with By = 0.5, ¥ = 0.04, o = 0.01,
k = 0.5, and 6 = 0.3. Increasing the fractional order ¢ leads to enhanced localization and
narrowing of the soliton profile, whereas the peak amplitude remains nearly unchanged.
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Figure 6. The 3D and 2D plots of the solution U;s(x,t) obtained using the M-truncated

fractional derivative for the same parameter values as in Fig. 5. The comparison shows

that the M-truncated operator preserves the bell-shaped soliton structure and yields similar

localization behavior, with minimal variation in peak amplitude across different fractional

orders.

Figures 7 and 8 represent the solution Uy (x,t) obtained for Eq (5.27). The 3D plots depict an
inverted, trough-shaped soliton whose depth and localization increase with higher fractional orders.
As 6 grows, the soliton well becomes deeper and more pronounced, indicating that stronger fractional
effects intensify the nonlinear steepening of the waveform. The corresponding 2D graphs confirm
this trend: the peak-to-valley difference widens with increasing ¢, illustrating the transition from a
smooth to a sharply localized structure. When the same parameters are applied to the M-truncated
derivative, the soliton remains stably inverted but exhibits slightly smoother edges, suggesting that the
truncation introduces a regularizing influence that counteracts excessive steepening. As ¢ increases,
the inverted soliton becomes narrower and more pronounced in depth, indicating stronger localization
effects, whereas the extremal values remain bounded within the same amplitude range.

The observed invariance of peak amplitude with respect to the fractional order ¢ is a direct
consequence of the S-fractional and M-truncated traveling-wave transformations, where 6 appears
solely in the phase variable. As a result, fractional differentiation influences the spatial-temporal
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distribution and localization of the wave rather than its energy level. This behavior is consistent with
the structure of the reduced ODE and confirms that fractional effects primarily regulate propagation
dynamics instead of amplitude amplification. All analytical and numerical figures in Sections 6 and 7
are plotted using identical spatial and temporal intervals to allow direct visual comparison.
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Figure 7. 3D and 2D plots of the solution Ux(x,t) for Eq. (5.27) for values By = 0.17,

Y = 0.05, 0 = 0.03, k = 0.5, and 6 = 0.1. The solution represents an inverted soliton

structure whose width and depth are influenced by the fractional order, whereas the extremal

amplitude remains bounded.

6=0.3 M-derivative

—— &6=0.1 M-derivative

6=0.7 M-derivative

— — &=0.5 M-derivative

L

— — &=0.9 M-derivative

"
/]

]

il

277

\
\
\
\
s
;
¢

/177

\
§
:

Lo oo

N
=\

p

~10 _5 0 5 10

X X
Figure 8. The 3D and 2D plots of the solution U,,(x,t) obtained using the M-truncated
fractional derivative for the same parameters as in Figure 7. The results show that increasing
the fractional order leads to a more localized and pronounced inverted soliton profile, with

the overall amplitude remaining nearly invariant.

7. Finite difference numerical validation

It is important to clarify the relationship between numerical simulations presented in Sections 6
and 7. The analytical solutions derived from Eq (3.6) are graphically shown in Section 6, showing
how the M-truncated and S-fractional derivatives affect wave amplitude, width, and shape. In contrast,
Section 7 implements a finite-difference-based numerical scheme directly on the original fractional
Huxley equation (3.1) without using ODE transformation. This enables the analytical solutions to be
verified and shows that the numerical approach for the original PDE is accurate, stable, and consistent.
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To validate the analytical solutions, a representative finite-difference discretization is employed using
the same spatial and temporal domains as those used in Section 6. Other standard finite-difference
variants yield qualitatively similar behavior and are therefore omitted from the main text to streamline
presentation and focus on analytical-numerical agreement.

To complement the analytical investigation, the governing equation is solved numerically using a
finite difference approach. In this study, we employ the forward-centered difference scheme (F-CDS)
as a representative and stable discretization for validating the analytical solutions.

Expanding the function P(x) in a Taylor series yields

2

P(x +a) = P(x) + aP'(x) + %P”(x) +oee (7.1)

The first- and second-order derivatives can then be approximated as

P(x+a) - P(x)

a
P(x+a)-2P(x)+ P(x—a)

a2

P'(x) ~

(7.2)

P/I(x) ~

(7.3)

7.1. Forward-centered difference scheme

The F-CDS utilizes a forward stencil in time and a centered stencil in space. This combination
provides a balanced compromise between computational efficiency and accuracy, minimizing
numerical dispersion in wave-like solutions. From Taylor’s expansion, the finite difference formulas
are expressed as

N P(x+a,t)— P(x,t)

P, (7.4)
P ~ P(x + a, tc; - 2P6(1)2c, 1)+ P(x—a, t)’ (7.5)
P~ P(x,t+ b; — P(x, t)’ 7.6)
~ P(x,t+b) — 2Pl(?)2c, 1)+ P(x,t— b). a7

Substituting Eqs (7.4)—(7.7) into Eq (3.1) leads to the discrete form
Piji = % + (—% - bo6 + I)P,-,j + (bo6 + bo) P,%j + Pci;’j - bO'Pij. (7.8)

By introducing the coefficients
ap = c%’ a, = (—i—f —bo0 + 1), a3z = (bob+bo), a4= c%’ as = —bo,
the updated equation can be written compactly as

Pije1 = 1Py j+ @aPij+ asP} + auPioy j + asP; . (7.9)
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Figure 9 presents the numerical surface generated using the F-CDS, depicting the evolution of
P(x,t) across the spatial-temporal domain.

08
0.6 .

0.4

Pixt)

0.2

Figure 9. Three-dimensional surface plot of P(x,t) obtained using the F-CDS. The method
accurately reproduces the nonlinear spatiotemporal dynamics, capturing both amplitude and
phase variations of the evolving wave.

The numerical surface in Figure 9 reproduces the same soliton profile, localization, and bounded
amplitude observed in the analytical plots of Section 6 under identical parameter values. The solutions
obtained through the analytical method exhibit smooth and consistent wave behavior and capture the
essential dynamics of the fractional Huxley equation. Similarly, the solutions obtained through the
numerical method follow the same general trends and profiles over the considered spatial and temporal
domains. A pointwise comparison between the two solutions shows that the differences remain very
small throughout the computational domain, indicating good agreement between the analytical and
numerical approaches. Any minor deviations can be attributed to discretization effects. Further study
will continue by applying more advanced numerical techniques to investigate error behavior in greater
detail.

8. Bifurcation analysis

In this section, we provide the bifurcation analysis of the model under study to examine how
parameter changes impact the qualitative behavior of solutions. The research pinpoints the critical
times when the stability and dynamical structure of the system shift. Such an analysis insightfully
illustrates both the model’s sensitivity and the emergence of different solution patterns under
parameter modifications.

To investigate the bifurcation features of the nonlinear governing equation, we reformulate it into
an equivalent planar dynamical system, which is given by

aw _,
a @8.1)
o =aU?® + bU* + cU + do,

n
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where
o __0'(1+t9) oY

" bttt T
The system’s Jacobian matrix, represented by J (U, ¢) is used to analyze its stability. It is defined
as follows:

a

0 1
JUD =32 s v +c ®.2)
The determinant of the Jacobian matrix can be expressed as
det (U, ¢) = —(3U* + 2bU + ¢). (8.3)

The character of the equilibrium point at ¢ = 0 is identified through det J (U, 0), namely
Center, detJ(U,0) > 0,
Equilibrium type = < Saddle, det J(U,0) <0,
Cusp, detJ(U,0)=0.

Thus, the system possesses three distinct equilibrium states.

—-b+ Vb? —4ac 0]

El = (Oa O)’ E2,3 = ( 2a

The bifurcation possibilities of the system under parameter variations are largely determined by these
equilibria. This raises the following potential outcomes:

e Fora > 0,b >0,c >0, and d > 0, each of the three equilibrium points shows saddle. The
system’s bifurcation structure and the various kinds of equilibrium states are depicted in the
phase portrait above. Three red-marked saddle points are located at (—3,0), (0,0), and (2,0).
Trajectories are directed either towards or away from the saddles by their separatrices, which are
represented by black curves and divide the phase plane into discrete dynamical regions. On the
other hand, spiral trajectories (shown in blue and magenta) in the middle region show oscillatory
behavior surrounding the equilibrium. The phase portrait has been illustrated in Figure 10.

Saddle
(20)

Figure 10. Phase portrait illustrating the bifurcation structure of the dynamical system in the
(U, ¢) plane with the valuesa=1,b=1,c=6,andd = 1.
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e Fora <0,b>0,c>0,andd > 0, the plot highlights three equilibrium points: a center at each
(-0.5,0) and (1,0) and a saddle at (0,0). Contour curves illustrate the system’s stability
structure, where trajectories near the center exhibit oscillatory behavior, whereas those near the
saddle diverge along unstable directions. The qualitative analysis has been computed and
illustrated in Figure 11.

5
4 Center
(-0.5,0)
ok
.
s
S0

-3 2 - 0 1 2 3

— Saddle

(1,0)

Figure 11. Phase portrait with contour lines showing equilibrium points in a nonlinear
dynamical system.

e Fora>0,b>0,c<0,andd > 0, three critical locations are indicated: two saddles in (-5, 0) and
(4,0) and a center in (0, 0). Stable oscillatory behavior is shown by the closed orbits surrounding
the center. Figure 12 shows the portrait for this case.

Figure 12. Phase portrait with contour lines showing equilibrium points in a nonlinear
dynamical system.

It is worth noting that the qualitative transitions observed in the first three cases correspond to
codimension-1 bifurcations driven by variations in a single control parameter (such as a, c, or d).
In particular, changes in the sign of det J (U, ¢) and the associated eigenvalue structure of the
Jacobian matrix lead to saddle—center and center—saddle transitions in the phase plane. These
transitions mark the onset or disappearance of closed orbits and separatrix structures and are
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characteristic of codimension-1 bifurcation behavior. Thus, although explicit bifurcation
diagrams are not presented, the analytical phase-plane analysis provides a rigorous theoretical
characterization of the underlying bifurcation mechanisms.

e Fora>0,b>0,c <0,andd = 0, this dynamical system’s contour map displays equilibrium
points. Whereas (-2,0), and (1,0) are saddle points connected by separatrices that separate
regions of motion, the origin (0, 0) is a center encircled by closed orbits. Figure 13 presents the
phase portrait corresponding to the chosen set of parameters.

Saddle
(1,0

Figure 13. Contour plot of a dynamical system showing equilibrium points.

e Fora <0,b >0, c >0, and d = 0, this dynamical system’s contour map displays equilibrium
points. Whereas (2, 0), and (-1, 0) are centers, the origin (0, 0) is a saddle. As shown in Figure 14,
the phase portrait depicts the system’s behavior for this specific parameter set.

Figure 14. Phase portrait illustrating two centers and a saddle.

e Fora=0,b>0,c>0,andd = 0, the plot illustrates the phase space trajectories with a center at
(-1, 0) surrounded by closed orbits and a saddle at (0, 0) showing diverging and converging paths.
It highlights the contrast between stable periodic motion and unstable behavior. Figure 15 shows
the phase portrait for this case, highlighting the qualitative dynamics for this case.
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Figure 15. Phase portrait showing stable and unstable dynamics.

The bifurcation behavior of the fractional Huxley equation is investigated through phase-plane
analysis for selected parameter values. By varying key system parameters whereas keeping others
fixed, qualitative changes in the dynamical structure are observed in the form of transitions between
stable and unstable equilibrium states, as well as variations in the shape and orientation of trajectories.
The phase portraits illustrate how the solution trajectories evolve under parameter changes, revealing
the influence of fractional order and nonlinear terms on system stability. These observations provide
insight into the local dynamical behavior of the system and demonstrate the sensitivity of the solution
structure to parameter variations.

A natural extension of the present study is to perform a systematic bifurcation analysis by
constructing codimension-1 and codimension-2 bifurcation diagrams through numerical continuation
techniques. Such an approach would allow a more comprehensive understanding of the global
dynamical behavior of the system and the interaction between multiple control parameters.

9. Conclusions

The B-fractional derivative and the M-truncated derivative are two nonlocal operators that we used
in this work to create a thorough framework for studying the higher-order nonlinear fractional Huxley
model. By combining the F-expansion procedure with the enhanced modified extended tanh
expansion method, a rich catalogue of exact solutions was derived, including soliton profiles,
trigonometric forms, and families expressed through single and combined Jacobi elliptic functions.
These closed-form results clarify how fractional memory modifies wave amplitude, width, and
propagation characteristics, and they provide reusable templates for related nonlinear models in
mathematical physics. The two operators exhibited complementary behaviors when compared
head-to-head. The S-fractional derivative tends to localize and sharpen waveforms, indicating that it
can be used to mimic highly localized biological events or fast signal propagation, and the
M-truncated operator yields shape-preserving profiles with mild regularization due to the truncation
of the memory tail. These trends are consistent across the solution families reported here and give
practical guidance for selecting an operator to match a target physical regime. These results offer
useful recommendations for choosing suitable operators to represent different biological regimes.

To corroborate the analytical results, a finite-difference-based numerical scheme was developed
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and applied to the fractional Huxley equation. The obtained numerical surfaces closely followed the
analytical predictions, demonstrating the accuracy, consistency, and stability of the proposed
approach. In parallel, a qualitative investigation based on planar dynamical systems exposed
parameter windows that govern transitions between distinct regimes. The phase portraits exhibit
stable and unstable spiral-type bifurcations and demonstrate how frequency and amplitude parameters
steer the system between localized, periodic, and mixed behaviors. Phase pictures revealed stable and
unstable spiral-type bifurcations, clarifying how amplitude and frequency parameters control
excitability and stability. These findings are directly applicable to comprehending the propagation of
brain or cardiac signals in biological tissues. This study presents multiple analytical solutions of the
fractional Huxley model with results validated through a finite difference scheme. The bifurcation
analysis provides a deeper understanding of the system’s qualitative dynamics and stability. Overall,
this work demonstrates the effectiveness of combining analytical and numerical approaches,
underscores the significance of fractional-order formulation in capturing memory effects and complex
nonlinear behaviors that are absent in classical models.

Future research directions include the development of energy-based stability criteria for the
reported waves, data-driven operator learning to infer effective fractional orders from experimental
observations, extensions to higher-dimensional and anisotropic systems, and the incorporation of
stochastic forcing to explore robustness under physiological variability and uncertainty. These paths
will help close the gap between biological occurrences in the real world and quantitative models.
Furthermore, a more detailed comparison between analytical and numerical solutions will be carried
out by evaluating pointwise errors and standard error norms to further assess numerical accuracy. In
addition, a systematic analysis based on codimension—1 and —2 bifurcation diagrams, obtained
through numerical continuation techniques, will be considered. Such investigations would provide
deeper insight into the global dynamical behavior of the system and interplay between multiple
control parameters.
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