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Abstract: This paper examines a family of convex interval-valued (IVC) functions using the
Riemann-Liouville (RL) integrals. Hermite-Hadamard (HH) and Hermite-Hadamard-Fejér (HHF)
type inclusions are developed by employing the s-type convexity of interval-valued (IV) functions.
Some inclusions for the product of s-type (IVC) functions are also established involving RL integrals.
All main results are furthur refined into inclusions and inequalities for s-type IVC functions and
s-type convex point-valued functions, respectively, involving the ordinary integral. In addition,
several consequences of the primary results are explored demonstrating the connections between
point-valued convex functions, IVC functions, and s-type IVC functions. Each key conclusion is
validated numerically. The results of this paper might open the path for new avenues in modeling,
optimization problems, interval differential equations, and fuzzy IV functions that involve both discrete
and continuous variables simultaneously.
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1. Introduction

Fractional calculus serves as a comprehensive extension of integer-order calculus offering
enhanced capabilities that surpass those of traditional integer-order methods. Many of the greatest
mathematicians in history turned their attention to fractional calculus following the ground breaking
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investigations of Leibniz and L’Hopital. Famous scientists such as Fourier, Euler, and Laplace
studied fractional calculus in great and conducted experiments demonstrating its deep mathematical
implications. The subject has diverse applications across numerous areas of science and engineering,
e.g., optics [1], biological population models [2], image processing [3], electrochemistry [4],
mathematics [5], physics [6], fluid mechanics [7], viscoelasticity [8, 9] and electromagnetism [10].
In a variety of mathematical and physical contexts, the fractional Fourier transform (FrFT) has been
introduced and modified multiple times [1]. There are studies that investigate the diverse applications
of the fractional Laplace transform in solving three distinct types of mathematical equations: those
related to the study of the heat conduction equation, ODEs and electric circuits [11]. Moreover,
fractional operators and fractional differential equations have been extensively applied across numerous
branches of natural science. Notable terminologies and ideas have been introduced for fractional
operators [12]. Convexity is a fundamental concept that plays a crucial role in addressing a broad
spectrum of challenges in both pure and applied sciences. In recent years, many scholars have focused
on investigating the properties and inequalities associated with convexity from both theoretical and
practical perspectives.

Initially, notable attention has been directed towards two prominent inequalities related to convex
maps: the HH type inequality and its weighted version HHF inequality. The HH type inequality
was first presented by Hermite in Mathesis in 1883 and was later independently proved by Hadamard
in 1893 [13], before being further generalized by Fejèr in 1906 [14]. The HH double inequality has a
general geometric interpretation and numerous applications across a wide range of specific inequalities.

A lengthy history exists for the theory of interval analysis, beginning with Archimedes’ work on
calculating the perimeter of a circle. However, it remained out of focus for a long time but meaningful
advancements in this area began in the 1950s. Ramon E. Moore is often considered as a pioneer of
interval analysis. He published his first major textbook in 1966 on the subject aiming to compute
numerical error bounds for solutions of finite-state machines. Since then, numerous researchers have
devoted attention to studying interval analysis and IV functions, exploring both their mathematical
foundations and practical applications. Numerous analysts have dedicated their efforts to explore
interval analysis and IV functions within mathematics and their practical applications [12, 15, 16].

In the generation and analysis of fractals via s-convexity, the escape criterion plays a vital role.
Escape criteria for polynomials of different orders have been developed in [17–19], involving terms
such as ϑs and (1 − ϑ)s. Solving these expressions for ϑ requires applying the binomial expansion
while retaining only the linear terms 1− sϑ and 1− s(1−ϑ) which led to the development of a new type
of convexity known as s-type convexity introduced by Rashid et al. [20]. Motivated by this work, we
introduce s-type inclusions to reduce the uncertainty arising from errors caused by truncating higher-
order terms in the binomial expansion, thereby obtaining more reliable outcomes.

In [16], Xuelong Liu et al. presented a fractional HH type inclusion for IVC functions as follows:

Λ

(
ρ1 + ρ2

2

)
⊇

Γ($ + 1)
2(ρ2 − ρ1)$

[J$ρ1+Λ(ρ2) + J$ρ2−
Λ(ρ1)] ⊇

(
Λ(ρ2) + Λ(ρ1)

2

)
.

If Λ = Λ = $ = 1. Then it reduces to HH type inequality for convex functions.
Various integral inclusions have been established by considering different types of convexity and

employing various fractional operators. Abdeljawad et al. presented inclusions for p-convex IV
functions using the Katugampola fractional integral in [21]. In [22], h-convexity is used to present
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new Jensen and HH-type inclusions by Zhao et al. In [23], Zhao et al. introduced and utilized the
novel class of IV approximately h-convex functions to generalize HH-type inclusions. In [24], Macı́as-
Dı́az studied inclusions for LR − p-convexity. In [25], Zhao et al. used s-convex IV functions to
study HH-type inclusions. Khan et al. [26] introduced and utilized ~–GL IV preinvex functions to
generalize the HH- and HHF-type inclusions. Fahad et al. presented the class of k-harmonically
IVC functions and studied applications of its inclusions in information science [27]. Fahad et al. [28]
introduced the class of GA−Cr-convex IV functions and investigated its properties. In [29], Fahad et al.
presented inequalities for GA −Cr-convex IV functions via IV Hadamard fractional integral operators
and explored connections with information systems. Moreover, Bhardwaj et al. [30] investigated IV
vector optimization problems, while Bhat et al. presented optimality conditions for IV optimization
problems on Riemannian manifolds under a total order relation [31].

The goal of this paper is to introduce and study a new class of IVC functions, termed as s-type
IVC functions. The HH-type inclusion, the HHF type inclusion and some inclusions for the product
of functions involving the RL fractional integrals are also established using this new class. Special
cases are presented that relate the main results to classically predefined ones, thereby validating their
correctness. Additionally, the validity of the results is demonstrated through various examples. Overall,
the findings obtained are innovative, robust, and broadly applicable.

2. Preliminaries

Let H be a space of closed intervals of R and [e, e],[f, f] ∈ H . Some properties of closed intervals
expressed in [22] are as follows:
(1) Scalar multiplication:

c[e, e] =


[c · e, c · e] if c > 0,
0 if c = 0,
[c · e, c · e] if c < 0.

(2) Basic arithmetic operations:
[e, e] + [f, f] = [e + f, e + f],

[e, e] − [f, f] = [e − f, e − f],

[e, e].[f, f] = [min{ef, ef, ef, ef},max{ef, ef, ef, ef}],

where 0 < [f, f]. Moreover,
[e, e] ⊇ [f, f] ⇐⇒ e ≤ f, e ≥ f.

Definition 2.1. [32] Let $ > 0 and<=([ρ1,ρ2]) be the class of RL fractional integrable IV functions on
[ρ1, ρ2]. The RL integrals of Λ ∈ <=([ρ1,ρ2]) having order $ > 0 are provided as:

J$ρ1+Λ(τ) =
1

Γ($)

∫ τ

ρ1

(τ − `)$−1Λ(`)d`, τ > ρ1

and

J$ρ2−
Λ(τ) =

1
Γ($)

∫ ρ2

τ

(` − τ)$−1Λ(`)d`, τ < ρ2
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respectively, where J0
ρ1+Λ(τ) = J0

ρ2−
Λ(τ) = Λ(τ).

Definition 2.2. [20] Let B ⊆ R be a closed interval. Then the s-type convex function Λ : B → R is
defined as:

Λ(ϑρ1 + (1 − ϑ)ρ2) ≤ (1 − sϑ)Λ(ρ1) + (1 − s(1 − ϑ))Λ(ρ2),

for all ρ1, ρ2 ∈ B, and ϑ, s ∈ [0, 1]. If the function is not s-type convex, then it is s-type concave and ≤
is replaced by ≥ in the above expression.

Definition 2.3. [33] Let B ⊆ R be a closed interval, and H + be the space of positive intervals of R
that are closed. Then the IVC function Λ : B →H + as

Λ(ϑρ1 + (1 − ϑ)ρ2) ⊇ ϑΛ(ρ1) + (1 − ϑ)Λ(ρ2),

for all ρ1, ρ2 ∈ B, and ϑ, s ∈ [0, 1]. If the function is not IV convex, then it is IV concave and ⊇ is
replaced by ⊆ in the above expression.

Definition 2.4. [12] Consider an interval B ⊆ R that is closed and Λ(τ) = [Λ(τ),Λ(τ)] be an IV
function where τ ∈ B. Then Λ(τ) is Lebesgue integrable provided Λ(τ) and Λ(τ) are measurable as
well as Lebesgue integrable over B,∫

B

Λ(τ)dτ =

∫
B

Λ(τ)dτ +

∫
B

Λ(τ)dτ.

3. Main results

This section includes a set of new HH-type inclusions for s-type IVC functions by using the RL
fractional integrals. Let B ⊆ R be a closed interval, and S C(B,Λ+) denotes the class of s-type IVC
functions over B, and Λ,Λ1, Λ2 be the functions belonging to this class. Throughout this paper Λ,Λ1

and Λ2 ∈ <=(D) whereD = [ρ1, ρ2] ⊆ B and ρ1 ≤ ρ2 ∈ R.
Building upon the definitions of IV functions and s-type convex functions, we propose a novel class

of functions, designated as s-type IVC functions.

Definition 3.1. Let B ⊆ R be a closed interval, and H + be the space of positive intervals of R that
are closed. Then we define s-type IVC function Λ : B →H + as

Λ(ϑρ1 + (1 − ϑ)ρ2) ⊇ (1 − sϑ)Λ(ρ1) + (1 − s(1 − ϑ))Λ(ρ2) (3.1)

for all ρ1, ρ2 ∈ B, and ϑ, s ∈ [0, 1]. If the function is not IV s-type convex, then it is IV s-type concave,
and ⊇ is replaced by ⊆ in the above expression.

Example 3.1. Consider the following assumptions in inclusion (3.1): s = 0.98, ϑ = 1/2 and M(x) =

[−
√

x + 3,
√

x + 3] where x ∈ [0, 2]. Furthermore, for ρ1 < ρ2 ∈ [0, 2] assume ρ2 = ρ1 + 1/2 to get:[
3 −

√
ρ1 + 1/4, 3 +

√
ρ1 + 1/4

]
⊇

[
3 −

1
2
√
ρ1 −

1
2

√
ρ1 + 1/2, 3 +

1
2
√
ρ1 +

1
2

√
ρ1 + 1/2

]
. (3.2)

In Figure 1, starting from the left of the inclusion, the blue shaded region bounded by the black
curves represents the first interval and the red shaded region represents the second interval of
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inclusion (3.2). It is evident that the red shaded region is completely contained in the blue shaded
region, which shows that the first interval contains the second one hence validating (3.2) and the
ultimate inclusion (3.1) for s-type IVC, which is also shown numerically for a particular value of ρ1

that is ρ1 = 0.1 in (3.2) as follows:

[2.408392, 3.591607] ⊇ [2.454587, 3.545412].

Figure 1. The graph for inclusion (3.2).

The HH-type inclusion for s-type IVC functions using the RL integrals is

Theorem 3.1. Let s ∈ [0, 1], $ > 0, ρ1, ρ2 ∈ B such that ρ2 > ρ1. Then

Λ

(
ρ1 + ρ2

2

)
⊇ (2 − s)

Γ($ + 1)
2(ρ2 − ρ1)$

[J$ρ1+Λ(ρ2) + J$ρ2−
Λ(ρ1)]

⊇ (2 − s)2
(
Λ(ρ2) + Λ(ρ1)

2

)
.

Proof. Taking ϑ = 1
2 in (3.1),

Λ

(
j + h

2

)
⊇ (2 − s)

(
Λ(j) + Λ(h)

2

)
.

Thus
2Λ

( j + h
2

)
⊇ (2 − s)(Λ(j) + Λ(h)).

Take

j = ϑρ1 + (1 − ϑ)ρ2,

h = (1 − ϑ)ρ1 + ϑρ2.

Then
2Λ

(
ρ1 + ρ2

2

)
⊇ (2 − s)[Λ(ϑρ1 + (1 − ϑ)ρ2) + Λ((1 − ϑ)ρ1 + ϑρ2)]. (3.3)

Multiply both sides of (3.3) by ϑ$−1 and integrate

2
∫

[0,1]
ϑ$−1Λ

(
ρ1 + ρ2

2

)
dϑ ⊇ (2 − s)

∫
[0,1]

ϑ$−1[Λ(ϑρ1 + (1 − ϑ)ρ2) + Λ((1 − ϑ)ρ1 + ϑρ2)]dϑ. (3.4)
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From (3.4)

2
∫

[0,1]
ϑ$−1Λ((ρ1 + ρ2)/2)dϑ = 2

[ ∫
[0,1]

Λ

(
ρ1 + ρ2

2

)
ϑ$−1dϑ,

∫
[0,1]

Λ

(
ρ1 + ρ2

2

)
ϑ$−1dϑ

]
=

2
$

Λ

(
ρ1 + ρ2

2

)
(3.5)

and

(2 − s)
∫

[0,1]
ϑ$−1[Λ(ϑρ1 + (1 − ϑ)ρ2) + Λ(ϑρ2 + (1 − ϑ)ρ1)]dϑ

= (2 − s)
[ ∫

[0,1]
ϑ$−1Λ(ϑρ1 + (1 − ϑ)ρ2)dϑ +

∫
[0,1]

ϑ$−1Λ(ϑρ2 + (1 − ϑ)ρ1)dϑ
]
.

(3.6)

Solving for ∫
[0,1]

ϑ$−1Λ(ϑρ1 + (1 − ϑ)ρ2)dϑ.

Take the change of variable

t = ϑρ1 + (1 − ϑ)ρ2, dt = (ρ2 − ρ1) dϑ,

with ϑ = 0⇒ t = ρ2, ϑ = 1⇒ t = ρ1. Then∫ 1

0
ϑ$−1Λ(ϑρ1 + (1 − ϑ)ρ2) dϑ =

∫
D

(
ρ2 − t
ρ2 − ρ1

)$−1

Λ(t)
dt

ρ2 − ρ1

=
1

(ρ2 − ρ1)$

∫
D

(ρ2 − t)$−1Λ(t) dt

=
Γ($)

(ρ2 − ρ1)$
J$ρ1+Λ(ρ2).

(3.7)

Similarly, with
v = ϑρ2 + (1 − ϑ)ρ1, dv = (ρ1 − ρ2) dϑ,∫ 1

0
ϑ$−1Λ(ϑρ2 + (1 − ϑ)ρ1) dϑ =

Γ($)
(ρ2 − ρ1)$

J$ρ2−
Λ(ρ1). (3.8)

Inserting (3.7) and (3.8) into (3.6),

(2 − s)
∫

[0,1]
ϑ$−1[Λ(ϑρ1 + (1 − ϑ)ρ2) + Λ(ϑρ2 + (1 − ϑ)ρ1)]dϑ

=
Γ($)

(ρ2 − ρ1)$
[J$ρ1+Λ(ρ2) + J$ρ2−

Λ(ρ1)]. (3.9)

Using (3.5) and (3.9) in (3.4),

Λ

(
ρ1 + ρ2

2

)
⊇ (2 − s)

Γ($ + 1)
2(ρ2 − ρ1)$

[J$ρ2−
Λ(ρ1) + J$ρ1+Λ(ρ2)]. (3.10)
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Since Λ ∈ S C(B,Λ+)

Λ[ϑρ1 + (1 − ϑ)ρ2] ⊇ (1 − s(1 − ϑ))Λ(ρ2) + (1 − sϑ)Λ(ρ1) (3.11)

and

Λ[ϑρ2 + (1 − ϑ)ρ1] ⊇ (1 − s(1 − ϑ))Λ(ρ1) + (1 − sϑ)Λ(ρ2). (3.12)

Add (3.11) and (3.12)

Λ[ϑρ1 + (1 − ϑ)ρ2] + Λ[ϑρ2 + (1 − ϑ)ρ1] ⊇ (2 − s)(Λ(ρ1) + Λ(ρ2)). (3.13)

Multiply both side of (3.13) by ϑ$−1 and integrate∫
[0,1]

ϑ$−1{Λ[ϑρ1 + (1 − ϑ)ρ2] + Λ[ϑρ2 + (1 − ϑ)ρ1]}dϑ

⊇(2 − s)
∫

[0,1]
ϑ$−1(Λ(ρ1) + Λ(ρ2))dϑ. (3.14)

Inseting (3.7) and (3.8) into (3.14)

Γ($ + 1)
(ρ2 − ρ1)$

[J$ρ2−
Λ(ρ1) + J$ρ1+Λ(ρ2)] ⊇ (2 − s)(Λ(ρ1) + Λ(ρ2)), (3.15)

(3.10) and (3.15) give Theorem 3.1. �

Corollary 3.1. If $ = 1 in (3.1). Then it simplifies to the HH-type inclusion for s-type IVC function:

Λ

(
ρ1 + ρ2

2

)
⊇

(2 − s)
(ρ2 − ρ1)

∫
D

Λ(τ)dτ ⊇ (2 − s)2 Λ(ρ1) + Λ(ρ2)
2

.

Corollary 3.2. If Λ = Λ = $ = 1 in (3.1). Then it simplifies to the HH-type inequality for the s-type
convex function:

Λ

(
ρ1 + ρ2

2

)
≤

(2 − s)
(ρ2 − ρ1)

∫
D

Λ(τ)dτ ≤ (2 − s)2 Λ(ρ1) + Λ(ρ2)
2

.

Remark 3.1. From Theorem 3.1, we see that

1) If s = 1. Then it simplifies to the HH-type inclusion for the IV convex function [34].
2) If s = $ = 1. Then it reduces to [35, Theorem 1].
3) If Λ is a real-valued convex (<) function and s = 1, it further refines to [36, Theorem 2].
4) If Λ is < (or concave) function and s = 1, it simplifies to the classical HH-type inequality for

convex (or concave) functions [37].

Example 3.2. Consider the following assumptions in Theorem 3.1:
s = 0.98, $ = 4, and Λ(τ) = [−τ2/3 + 9, τ2/3 + 9] where τ ∈ [0, 3].

Furthermore, for ρ1 < ρ2 ∈ [0, 3], assume ρ2 = ρ1 + 1/2 to get:

Λ

(
ρ1 +

1
4

)
⊇ (195.84) [J 4

ρ1+Λ(ρ1 + 1/2) + J 4
(ρ1+1/2)−Λ(ρ1)]
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⊇ (1.0404)
(
Λ(ρ1 + 1/2) + Λ(ρ1)

2

)
. (3.16)

Figure 2 reflects Theorem 3.1.

Figure 2. Graph showing inclusion (3.16).

In Figure 2, starting from the left of the inclusion, the blue-shaded region bounded by the black
curves represents the first interval of inclusion (3.16), while the red and green shaded regions represent
the second and third intervals, respectively. It is evident that the green-shaded region is completely
contained within the red one, and the red-shaded region is entirely contained within the blue one. The
curved boundary lines appear very close to one another because of the proximity of the corresponding
interval endpoints. This nested structure shows that the first interval contains the second interval,
which in turn contains the third interval, thereby validating inclusion (3.16) and, ultimately, the HH-
type inclusion for s-type IVC in Theorem 3.1. This is also shown numerically for a particular value of
ρ1 that is ρ1 = 0.2 in, (3.16) as below

[8.41277, 9.58723] ⊇ [8.42274, 9.57726] ⊇ [8.43482, 9.56518].

The HHF type inclusion for s-type IVC functions using the RL integral is presented as follows:

Theorem 3.2. Let s ∈ [0, 1], $ > 0, ρ1, ρ2 ∈ B with ρ2 > ρ1 and Θ(τ) = Θ[ρ1 + ρ2 − τ] ≥ 0 for τ ∈ B.

Λ

[
ρ1 + ρ2

2

]
[J$ρ2−

Θ(ρ1) + J$ρ1+Θ(ρ2)] ⊇ (2 − s)[J$ρ2−
ΛΘ(ρ1) + J$ρ1+ΛΘ(ρ2)]

⊇ (2 − s)2
[
Λ(ρ1) + Λ(ρ2)

2

]
[J$ρ2−

Θ(ρ1) + J$ρ1+Θ(ρ2)].

Proof. Since Θ is non-negative, integrable and symmetric with respect to
(
ρ1+ρ2

2

)
,

Θ[ϑρ1 + (1 − ϑ)ρ2] = Θ[ϑρ2 + (1 − ϑ)ρ1].

Multiply both sides of (3.4) by Θ[ϑρ2 + (1 − ϑ)ρ1],

2
∫

[0,1]
ϑ$−1Λ

(
ρ1 + ρ2

2

)
Θ[ϑρ2 + (1 − ϑ)ρ1]dϑ

⊇ (2 − s)
∫

[0,1]
ϑ$−1[Λ(ϑρ1 + (1 − ϑ)ρ2) + Λ((1 − ϑ)ρ1 + ϑρ2)]Θ[ϑρ2 + (1 − ϑ)ρ1]dϑ
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= (2 − s)
[ ∫

[0,1]
ϑ$−1[Λ(ϑρ1 + (1 − ϑ)ρ2),Λ(ϑρ1 + (1 − ϑ)ρ2)]Θ[ϑρ2 + (1 − ϑ)ρ1]dϑ

+

∫
[0,1]

ϑ$−1[Λ(ϑρ2 + (1 − ϑ)ρ1),Λ(ϑρ2 + (1 − ϑ)ρ1)]Θ[ϑρ2 + (1 − ϑ)ρ1]dϑ
]
. (3.17)

Let ŭ = ϑρ2 + (1 − ϑ)ρ1. Then by changing variables in (3.17), we get

2
(ρ2 − ρ1)$

Λ

(
ρ1 + ρ2

2

) ∫
D

Θ(ŭ)(ŭ − ρ1)$−1dŭ

⊇
(2 − s)

(ρ2 − ρ1)$

{ ∫
D

[Λ(ŭ),Λ(ŭ)]Θ(ρ2 + ρ1 − ŭ)(ρ2 − ŭ)$−1dŭ

+

∫
D

[Λ(ŭ),Λ(ŭ)]Θ(ŭ)(ŭ − ρ1)$−1dŭ
}
.

Since Θ(ρ2 + ρ1 − ŭ) = Θ(ŭ) ≥ 0 and Λ(ŭ = [Λ(ŭ),Λ(ŭ)] then (3.18) becomes

2
(ρ2 − ρ1)$

Λ

(
ρ1 + ρ2

2

) ∫
D

(ŭ − ρ1)$−1Θ(ŭ)dŭ

⊇
(2 − s)

(ρ2 − ρ1)$

{ ∫
D

Λ(ŭ)Θ(ŭ)(ρ2 − ŭ)$−1dŭ +

∫
D

Λ(ŭ)Θ(ŭ)(ŭ − ρ1)$−1dŭ
}
.

Hence,

Γ($)
(ρ2 − ρ1)$

Λ

[
ρ1 + ρ2

2

]
[J$ρ2−

Θ(ρ1) + J$ρ1+Θ(ρ2)] ⊇ (2 − s)
Γ($)

(ρ2 − ρ1)$
[J$ρ2−

ΛΘ(ρ1) + J$ρ1+ΛΘ(ρ2)].

This implies that

Λ

[
ρ1 + ρ2

2

]
[J$ρ2−

Θ(ρ1) + J$ρ1+Θ(ρ2)] ⊇ (2 − s)[J$ρ2−
ΛΘ(ρ1) + J$ρ1+ΛΘ(ρ2)]. (3.18)

Multiply both sides of (3.13) by ϑ$−1Θ(ϑρ2 + (1 − ϑ)ρ1) and integrate∫ 1

0
ϑ$−1

{
Λ[ϑρ1 + (1 − ϑ)ρ2] + Λ[ϑρ2 + (1 − ϑ)ρ1]

}
Θ(ϑρ2 + (1 − ϑ)ρ1)dϑ

⊇ (2 − s)(Λ(ρ1) + Λ(ρ2))
∫ 1

0
ϑ$−1Θ(ϑρ2 + (1 − ϑ)ρ1)dϑ.

Taking t = ϑρ1 + (1− ϑ)ρ2, v = ϑρ2 + (1− ϑ)ρ1 and following similar steps as in (3.7) and (3.8), above
inclusion becomes

(2 − s)[J$ρ2−
ΛΘ(ρ1) + J$ρ1+ΛΘ(ρ2)] ⊇ (2 − s)2

[
Λ(ρ1) + Λ(ρ2)

2

]
[J$ρ2−

Θ(ρ1) + J$ρ1+Θ(ρ2)]. (3.19)

(3.18) and (3.19) lead toward Theorem 3.2. �

Corollary 3.3. If $ = 1 in (3.2). Then it simplifies to:

Λ

(
ρ1 + ρ2

2

) ∫
D

Θ(τ)dτ ⊇ (2 − s)
∫
D

Λ(τ)Θ(τ)dτ ⊇ (2 − s)2 Λ(ρ1) + Λ(ρ2)
2

∫
D

Θ(τ)dτ.
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Corollary 3.4. If Λ is< and $ = 1 in (3.2). Then it reduces to:

Λ

(
ρ1 + ρ2

2

) ∫
D

Θ(τ)dτ ≤ (2 − s)
∫
D

Λ(τ)Θ(τ)dτ ≤ (2 − s)2 Λ(ρ1) + Λ(ρ2)
2

∫
D

Θ(τ)dτ.

Remark 3.2. Theorem 3.2 leads to the conclution that

(1) If Θ(τ) = 1, then we get Theorem 3.1.
(2) If s = 1, then it reduces to the HHF-type inclusion in fractional integral form for IVC

functions [34].
(3) If Λ is< function and s = 1, it becomes [38, Theorem 4].
(4) If Λ is< (or concave) function and $ = s = 1, it simplifies to the classical HHF-type inequality

for convex (or concave) functions [21].

Example 3.3. Consider the following assumptions in Theorem 3.2:
Let s = 0.99, $ = 2,

Λ(τ) = [−τ3/7 + 7, τ3/7 + 7],

and
Θ(τ) = (τ − ρ1)(ρ2 − τ),

for τ ∈ [0, 1.5]. While for ρ1 < ρ2 ∈ [0, 1.5], assume ρ2 = ρ1 + 1/2 to get:

Λ

(
ρ1 +

1
4

)[
J 2

(ρ1+1/2)−Θ(ρ1) + J 2
ρ1+Θ(ρ1 + 1/2)

]
⊇ (1.02)

[
J 2

(ρ1+1/2)−ΛΘ(ρ1) + J 2
ρ1+ΛΘ(ρ1 + 1/2)

]
⊇ (1.0404)

(
Λ(ρ1) + Λ(ρ1 + 1/2)

2

)[
J 2

(ρ1+1/2)−Θ(ρ1) + J 2
ρ1+Θ(ρ1 + 1/2)

]
. (3.20)

Figure 3 verifies Theorem 3.2.

Figure 3. The graph for inclusion (3.20).

In Figure 3, starting from the left of the inclusion, the blue-shaded region bounded by the black
curves represents the first interval of inclusion (3.20), while the red- and green- shaded regions
represent the second and third intervals. It is evident that the green-shaded region is completely
contained within the red one and the red-shaded region is entirely contained within the blue one. The
curved boundary lines appear very close to one another because of the proximity of the corresponding
interval endpoints. This nested structure shows that the first interval contains the second interval which
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in turn contains the third interval, thereby validating inclusion (3.20) and, ultimately, the HHF-type
inclusion for s-type IVC in Theorem 3.2. This is also confirmed numerically by taking ρ1 = 0.1 in (3.20)
as

[0.0662742, 0.0795591] ⊇ [0.0663645, 0.0794688] ⊇ [0.0667909, 0.0790424].

Theorem 3.3. Let s ∈ [0, 1], $ > 0, ρ1, ρ2 ∈ B with ρ2 > ρ1. Then

Γ($ + 1)
2(ρ2 − ρ1)$

[J$ρ1+Λ1(ρ2)Λ2(ρ2) + J$ρ2−
Λ1(ρ1)Λ2(ρ1)]

⊇ λ1(ρ1, ρ2)
[ ((1 − s)2 + 1)

2
− s2

(
$

($ + 1)($ + 2)

)]
+ λ2(ρ1, ρ2)

[
(1 − s) + s2

(
$

($ + 1)($ + 2)

)]
,

where

λ1(ρ1, ρ2) = [Λ1(ρ1)Λ2(ρ1) + Λ1(ρ2)Λ2(ρ2)], (3.21)
λ2(ρ1, ρ2) = [Λ1(ρ1)Λ2(ρ2) + Λ1(ρ2)Λ2(ρ1)]. (3.22)

Proof. Let ϑ ∈ [0, 1]. Hence the assumptions in Theorem 3.3 imply that

Λ1[ϑρ1 + (1 − ϑ)ρ2] ⊇ (1 − ϑs)Λ1(ρ1) + (1 − (1 − ϑ)s)Λ1(ρ2), (3.23)
Λ2[ϑρ1 + (1 − ϑ)ρ2] ⊇ (1 − ϑs)Λ2(ρ1) + (1 − (1 − ϑ)s)Λ2(ρ2). (3.24)

Products of (3.23) and (3.24) give,

Λ1[ϑρ1 + (1 − ϑ)ρ2]Λ2[ϑρ1 + (1 − ϑ)ρ2]
⊇(1 − ϑs)2Λ1(ρ1)Λ2(ρ1) + (1 − (1 − ϑ)s)2Λ1(ρ2)Λ2(ρ2)

+ (1 − ϑs)(1 − (1 − ϑ)s)[Λ1(ρ1)Λ2(ρ2) + Λ1(ρ2)Λ2(ρ1)].
(3.25)

Analogously,

Λ1[ϑρ2 + (1 − ϑ)ρ1]Λ2[ϑρ2 + (1 − ϑ)ρ1]
⊇(1 − ϑs)2Λ1(ρ2)Λ2(ρ2) + (1 − (1 − ϑ)s)2Λ1(ρ1)Λ2(ρ1)

+ (1 − ϑs)(1 − (1 − ϑ)s)[Λ1(ρ2)Λ2(ρ1) + Λ1(ρ1)Λ2(ρ2)].
(3.26)

Add (3.25) and (3.26),

Λ1[ϑρ1 + (1 − ϑ)ρ2]Λ2[ϑρ1 + (1 − ϑ)ρ2] + Λ1[ϑρ2 + (1 − ϑ)ρ1]Λ2[ϑρ2 + (1 − ϑ)ρ1]
⊇[(1 − ϑs)2 + (1 − (1 − ϑ)s)2][Λ1(ρ1)Λ2(ρ1) + Λ1(ρ1)Λ2(ρ1)]

+ 2[(1 − ϑs)(1 − (1 − ϑ)s)].[Λ1(ρ1)Λ2(ρ2) + Λ1(ρ2)Λ2(ρ1)].
(3.27)

Multiply both sides of (3.27) by ϑ$−1 and integrate∫
[0,1]

ϑ$−1Λ1[ϑρ1 + (1 − ϑ)ρ2]Λ2[ϑρ1 + (1 − ϑ)ρ2]dϑ
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+

∫
[0,1]

ϑ$−1Λ1[ϑρ2 + (1 − ϑ)ρ1]Λ2[ϑρ2 + (1 − ϑ)ρ1]dϑ

⊇ λ1(ρ1, ρ2)
∫

[0,1]
ϑ$−1[(1 − ϑs)2 + (1 − (1 − ϑ)s)2]dϑ

+2λ2(ρ1, ρ2)
∫

[0,1]
ϑ$−1[(1 − ϑs)(1 − (1 − ϑ)s)]dϑ. (3.28)

From (3.28),

λ1(ρ1, ρ2)
∫

[0,1]
ϑ$−1[(1 − ϑs)2 + (1 − (1 − ϑ)s)2]dϑ

+ 2λ2(ρ1, ρ2)
∫

[0,1]
ϑ$−1[(1 − ϑs)(1 − (1 − ϑ)s)]ϑ

=
2λ1(ρ1, ρ2)

$

[ ((1 − s) + 1)
2

− s2
(

$

($ + 1)($ + 2)

)]
+
λ2(ρ1, ρ2)

$

[
(1 − s) + s2

(
$

($ + 1)($ + 2)

)]
.

(3.29)

Inserting (3.7), (3.8), and (3.29) into (3.28) lead toward Theorem 3.3. �

Corollary 3.5. If $ = 1 in (3.3). Then it simplifies to inclusion

1
(ρ2 − ρ1)

∫
D

Λ1Λ2(τ)dτ ⊇ λ1(ρ1, ρ2)
[ ((1 − s)2 + 1)

2
−

s2

6

]
+ λ2(ρ1, ρ2)

[
(1 − s) +

s2

6

]
.

Corollary 3.6. If Λ is< and $ = 1 in (3.3). Then it gives the following inequality

1
(ρ2 − ρ1)

∫
D

Λ1Λ2(τ)dτ ≤ λ1(ρ1, ρ2)
[ ((1 − s)2 + 1)

2
−

s2

6

]
+ λ2(ρ1, ρ2)

[
(1 − s) +

s2

6

]
.

Remark 3.3. From Theorem 3.3, if s = 1, then it reduces to [39, Theorem 3.5].

Example 3.4. Consider the following assumptions in Theorem 3.3:
Let s = 0.98, $ = 3,

Λ1(τ) = [−
√
τ + 2,

√
τ + 2],

and
Λ2(τ) = [−

√
τ + 3,

√
τ + 3],

for τ ∈ [0, 2].
While for ρ1 < ρ2 ∈ [0, 2], assume ρ2 = ρ1 + 1/2 to get:

24
[
J 3
ρ1+Λ1(ρ1 + 1/2)Λ2(ρ1 + 1/2) + J 3

(ρ1+1/2)−Λ1(ρ1)Λ2(ρ1)
]

⊇ (0.353035)λ1(ρ1, ρ1 + 1/2) + (0.157015)λ2(ρ1, ρ1 + 1/2). (3.30)

Figure 4 validates Theorem 3.3.
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Figure 4. The graph for inclusion (3.30).

In Figure 4, starting from the left of the inclusion, the blue-shaded region bounded by the black
curves represents the first interval of inclusion (3.30) while the red shaded region represents the
second interval. It is evident that the green-shaded region is completely contained within the red-
region indicating that the first interval contains the second interval thereby validating Theorem 3.3
and is also confirmed numerically by taking ρ1 = 0.7 in (3.30) as

[2.09372, 11.8063] ⊇ [2.10969, 11.7702].

Theorem 3.4. Let s ∈ [0, 1], $ > 0,ρ1, ρ2 ∈ B with ρ2 > ρ1. Then

2Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
⊇

Γ($ + 1)
2(ρ2 − ρ1)$

[
J$ρ1+Λ1(ρ2)Λ2(ρ2) + J$ρ2−

Λ1(ρ1)Λ2(ρ1)
]

+

[
(1 − s) + s2

(
$

($ + 1)($ + 2)

)]
λ1(ρ1, ρ2) +

[ (1 − s)2 + 1
2

− s2
(

$

($ + 1)($ + 2)

)]
λ2(ρ1, ρ2),

where λ1(ρ1, ρ2) and λ2(ρ1, ρ2) are given in (3.21) and (3.22), respectively.

Proof. Let $ ∈ [0, 1]; then(
ρ1 + ρ2

2

)
=
ϑρ1 + (1 − ϑ)ρ2

2
+
ϑρ2 + (1 − ϑ)ρ1

2
.

Since Λ1,Λ2 ∈ SC([ρ1, ρ2],H+). Therefore,

Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
= Λ1

[
ϑρ1 + (1 − ϑ)ρ2

2
+
ϑρ2 + (1 − ϑ)ρ1

2

]
Λ2

[
ϑρ1 + (1 − ϑ)ρ2

2
+
ϑρ2 + (1 − ϑ)ρ1

2

]
⊇

1
4

[Λ1(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ2 + (1 − ϑ)ρ1)][Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ2(ϑρ2 + (1 − ϑ)ρ1)]

=
1
4

[
Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ2 + (1 − ϑ)ρ1)

+Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)
]
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⊇
1
4

[
Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)

]
+

1
4

{
[(1 − ϑs)Λ1(ρ1) + (1 − s(1 − ϑ))Λ1(ρ2)] × [(1 − ϑs)Λ2(ρ2) + (1 − s(1 − ϑ))Λ2(ρ1)]

}
+

1
4

{
[(1 − ϑs)Λ1(ρ2) + (1 − s(1 − ϑ))Λ1(ρ1)] × [(1 − ϑs)Λ2(ρ1) + (1 − s(1 − ϑ))Λ2(ρ2)]

}
=

1
4

[
Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)

]
+

1
4

{
(1 − ϑs)2Λ1(ρ1)Λ2(ρ2) + (1 − ϑs)(1 − s(1 − ϑ))[Λ1(ρ1)Λ2(ρ1) + Λ1(ρ2)Λ2(ρ2)]

+(1 − s(1 − ϑ))2Λ1(ρ2)Λ2(ρ1)
}

+
1
4

{
(1 − ϑs)2Λ1(ρ2)Λ2(ρ1) + (1 − ϑs)(1 − s(1 − ϑ))[Λ1(ρ1)Λ2(ρ1) + Λ1(ρ2)Λ2(ρ2)]

+(1 − s(1 − ϑ))2Λ1(ρ1)Λ2(ρ2)
}

=
1
4

[
Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2) + Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)

]
+

1
4

[(1 − ϑs)2 + (1 − s(1 − ϑ))2]λ2(ρ1, ρ2) +
1
2

[(1 − ϑs)(1 − s(1 − ϑ))]λ1(ρ1, ρ2).

Multiply by ϑ$−1 and integrate w.r.t ϑ over (0,1),∫
[0,1]

ϑ$−1Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
dϑ

⊇ +
1
4

∫
[0,1]

ϑ$−1Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2)dϑ

+
1
4

∫
[0,1]

ϑ$−1Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)dϑ

+λ2(ρ1, ρ2)
1
4

∫
[0,1]

ϑ$−1[(1 − ϑs)2 + (1 − s(1 − ϑ))2]dϑ

+λ1(ρ1, ρ2)
1
2

∫
[0,1]

ϑ$−1[(1 − ϑs)(1 − s(1 − ϑ))]dϑ. (3.31)

From (3.31), ∫
[0,1]

ϑ$−1Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
dϑ =

1
$

Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
. (3.32)

Taking t = ϑρ1 + (1 − ϑ)ρ2, v = ϑρ2 + (1 − ϑ)ρ1 and following similar steps as in (3.7) and (3.8),

1
4

∫
[0,1]

ϑ$−1Λ1(ϑρ1 + (1 − ϑ)ρ2)Λ2(ϑρ1 + (1 − ϑ)ρ2)dϑ

+
1
4

∫
[0,1]

ϑ$−1Λ1(ϑρ2 + (1 − ϑ)ρ1)Λ2(ϑρ2 + (1 − ϑ)ρ1)dϑ

+λ2(ρ1, ρ2)
1
4

∫
[0,1]

ϑ$−1[(1 − ϑs)2 + (1 − s(1 − ϑ))2]dϑ
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+λ1(ρ1, ρ2)
1
2

∫
[0,1]

ϑ$−1[(1 − ϑs)(1 − s(1 − ϑ))]dϑ

=
Γ($)

4(ρ2 − ρ1)$

[
J$ρ1+Λ1(ρ2)Λ2(ρ2) + J$ρ2−

Λ1(ρ1)Λ2(ρ1)
]

+
1

2$

[ (1 − s)2 + 1
2

− s2
(

$

($ + 1)($ + 2)

)]
λ2(ρ1, ρ2)

+
1

2$

[
(1 − s) + s2

(
$

($ + 1)($ + 2)

)]
λ1(ρ1, ρ2). (3.33)

(3.32) and (3.33) give Theorem 3.4. �

Corollary 3.7. If $ = 1 in (3.4). Then it simplifies to inclusion

2Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
⊇

1
(ρ2 − ρ1)

[ ∫
D

Λ1(τ)dτ
]

+

[
(1 − s) +

s2

6

]
λ1(ρ1, ρ2) +

[ (1 − s)2 + 1
2

−
s2

6

]
λ2(ρ1, ρ2).

Corollary 3.8. If Λ is< and $ = 1 in (3.4). Then it simplifies to an inequality

2Λ1

(
ρ1 + ρ2

2

)
Λ2

(
ρ1 + ρ2

2

)
≤

1
(ρ2 − ρ1)

[ ∫
D

Λ1(τ)dτ
]

+

[
(1 − s) +

s2

6

]
λ1(ρ1, ρ2) +

[ (1 − s)2 + 1
2

−
s2

6

]
λ2(ρ1, ρ2).

Example 3.5. Consider the following assumptions in Theorem 3.4:
Let s = 0.98, $ = 3,

Λ1(τ) = [−
√
τ + 2,

√
τ + 2],

and
Λ2(τ) = [−

√
τ + 3,

√
τ + 3],

for τ ∈ [0, 2]. While for ρ1 < ρ2 ∈ [0, 2], assume ρ2 = ρ1 + 1/2 to get

2Λ1

(
ρ1 +

1
4

)
Λ2

(
ρ1 +

1
4

)
⊇(24)

[
J3
ρ1+Λ1

(
ρ1 +

1
2

)
Λ2

(
ρ1 +

1
2

)
+ J 3

(ρ1+ 1
2 )−

Λ1(ρ1)Λ2(ρ1)
]

+ (0.157015)λ1(ρ1, ρ1 + 1/2) + (0.353035)λ2(ρ1, ρ1 + 1/2). (3.34)

Theorem 3.4 is supported by Figure 5.

Figure 5. The graph for inclusion (3.34).
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In Figure 5, starting from the left of the inclusion, the blue-shaded region bounded by the black
curves represents the first interval of inclusion (3.34), while the red shaded region represents the second
interval. It is evident that the green-shaded region is completely contained within the red-shaded
region, indicating that the first interval contains the second interval. This validates Theorem 3.4 and
is also shown numerically for a particular value of ρ1 that is ρ1 = 0.7 in (3.34),

[4.15321, 23.6468] ⊇ [4.20341, 23.5765].

4. Conclusions

In this article a novel class called as s-type convex interval-valued function has been introduced
and used to construct several new generalized inclusions employing Riemann-Liouville fractional
integrals. For each key conclusion a particular example is provided to validate the corresponding result.
These findings have applications in iterative methods where expressions like ϑs and (1 − ϑ)s appear.
Linearization of these expressions as 1 − sϑ and 1 − s(1 − ϑ) leads to s-type convexity, but truncating
higher-order terms in the expansion introduces errors, resulting in uncertainty in the obtained results.
Therefore, replacing point-valued s-type convex functions with interval-valued s-type convex functions
provides more reliable bounds and better handles uncertainty in practical computations. Researchers
in this discipline may investigate further inclusions, such as Hermite-Hadamard-Mercer, Ostrowski,
Simpson and trapezoidal type inclusions, in the future by utilizing various generalized convexities or
different fractional operators, including Atangana–Baleanu, Hadamard, Katugampola and Prabhakar
fractional integrals.
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