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Abstract: The aim of this study is to extract new exact solutions for the Kadomtsev–Petviashvili (KP)
equation in three spatial dimensions and one time dimension, which is widely used in quantum field
theory and plasma physics. This research refers to two separate methods–the generalized Arnous (GA)

method and the
G′

bG′ +G + a
expansion method to uncover various new soliton solutions for the given

model. These solutions are usually expressed as rational, trigonometric, and hyperbolic functions,
which increase the usefulness of the method for practical applications. In addition, the conditions
certifying that these solutions remain valid are also identified. The behavior of these solutions is
shown through a visual representation. The recorded results are new and show how both methods are
effective and robust, making them valuable tools for solving various differential equations in applied
sciences and engineering.
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1. Introduction

Nonlinear partial differential equations (PDEs) appear in many different physical situations, such
as fluid dynamics, plasma physics [1], solid mechanics, and quantum field theory [2]. In addition,
systems of these equations are found in the chemical and biological fields. The study of nonlinear
wave equations and the concept of solitons have led to important progress in applied sciences [3].
Solitary waves and solitons appear in many different areas, such as shallow water and deep water
waves, optical communications, Bose–Einstein condensates, and biological models [4]. Solitary waves
are waves that maintain their shape as they move, usually originating from a specific type of nonlinear
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partial differential equation. A soliton is a special kind of solitary wave that maintains its shape even
after colliding with another soliton, which means that the collision is inelastic. Both solitary waves
and solitons maintain their shape as they travel long distances. John Scott Russell was the first who
noticed these waves, which led to the introduction of the soliton [5]. Due to its stability over a long
period of time, it caught the attention of engineers, mathematicians, and physicists across the world [6].
Optical solitons [7] are one of the major areas of study in soliton theory due to their wide range of uses
in communication and information technologies. Various different techniques have been introduced to
find the exact solution of the nonlinear equation, such as the tanh-coth method [8], the inverse scattering
transform [9], the exp-function method [10], the projective Riccati equation method [11], and the
Jacobi elliptic functions method [12], the power series approach [13], the F-expansion technique [14],
the Hirota bilinear method [15], the Kudryashov method [16], and many others approaches. In reality,
there is no single approach that works for every type of nonlinear problem.

In our study, we focus on the (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation [17]. This
equation was first created by Kadomtsev and Petviashvili in 1970. It is used to describe waves in
shallow water where the restoring force is not much stronger. Over time, it has become a standard
model for waves that are dispersive and weakly nonlinear, mostly one-dimensional but with some
slight effects in the transverse direction. The equation has ability to show how waves move in different
dimensions has made it useful in various areas. The KP equation describes how waves that are not very
steep and have a long wavelength change as time passes, and their movement isn’t much influenced by
the side-to-side direction. Now, a benchmark model for waves that are aversive and weakly nonlinear,
primarily one-dimensional but with some weak transverse effects, has emerged. The equation can
explain how waves behave in different dimensions, which makes it particularly useful in many distinct
areas.

The general form of the KP equation in (2+1) dimensions can be written as(
ut + 6 u ux + uxxx

)
x + 3σ2 uyy = 0, (1.1)

where u is the function of x,y, and t, respectively. The classical (3+1)-dimensional KP-I and KP-II
equations differ from each other based on the sign of their dispersion terms

σ = ±1,

which can be either positive or negative.
The general form of the KP-type equation in (3+1) dimensions is

(ut + 6uux + uxxx)x − 3uyy − 3uzz = 0, (1.2)

where u(x, y, z, t) stands for the wave shape or the amplitude of the wave, which is a function of the three
space coordinates x, y, and z, respectively. Subscripts denote the partial derivatives in the equation.

Many scholars have spent years looking into the behavior and different types of solutions for the
standard (3+1) KP equation and its related forms [18], highlighting how important it is for many
real-world uses. In a study, researchers found rogue waves and bright-dark solitons, and they looked
into how these structures behave dynamically. Ablowitz and Segur [19] showed how useful it is to
look at how wave packets interact in fluid systems, where the effects that occur in different directions
are very important. Agrawal [20] focused on the (3+1) KP equation when looking at how solitons
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move and how their spectra spread out in optical fibers, where effects that occur across the width of
the fiber can greatly affect how pulses behave. Grimshaw [21] said that the equation helps to explain
how energy moves and mixes in the ocean by showing how internal waves change over time in three
dimensions. Ramani et al. [22] proposed that the classical (3+1) KP equation is conditionally
integrable with respect to its integrability. Later, Porsezian et al. [23] offered more evidence for its
possible integrability using the Painlevé test. Ma [24] constructed the N-soliton solutions of the
equation using the Hirota bilinear method. Recently, Wazwaz and Xu [25] introduced a new
integrable generalized (n+1)-dimensional KP extension. Using this extension, they discovered infinite
conservation laws, N-soliton solutions, Lax pairings, and Bäcklund transformations. Table 1
summarizes recently published studies on the (3+1)-dimensional KP equation, including the equation
type, the solution methods employed, and the main obtained results.

Table 1. Comparison of recent works on (3+1)-dimensional KP equation.
Author’s
(year)

Equation type Method Obtained results Ref.

Li et al.
(2025)

(3+1)-dimensional
modified KP

∂-formalism
nonlinear Fourier
transform, spectral
analysis

Framework of solving IVP,
integrable MKP structure (no
explicit soliton family listed
in the abstract)

[26]

Alhejaili et
al. (2025)

Two new extended
(3+1) KP equations

Painlevé test,
simplified Hirota
linear method

Multiple soliton and lump
solutions

[27]

Ahamed
and
Sinuvasan
(2025)

(3+1) (gKP)
equation
with arbitrary
nonlinearity f (u)

Lie symmetries,
optimal system,
reduction

Invariant solutions, solitary
wave, elliptic and Jacobi
function representations

[28]

Mohammed
et al.
(2025)

(3+1)-dimensional
Boussinesq KP-type
(B-KP) equation

Improved modified
extended tanh-
function method

Dark, bright, singular
solitons; singular periodic,
Jacobi elliptic rational,
exponential waves

[29]

Alhejaili et
al. (2024)

(3+1)-dimensional
Boussinesq KP-
type, separated
(3+1) Boussinesq
and (3+1) KP
equations

Simplified Hirota
method, tanh and
tan methods

Multiple soliton, lump,
traveling, wave, shock, and
periodic solutions

[30]

No doubt, the proposed equation was studied widely, but the exact solution of the equation has not
been found using these methods. The present work aims to find various types of exact solutions for the
equation given as 1.2 and to study their physical properties in depth. Finding exact solutions for the KP
equation helps to understand how the system described by the equation behaves. These solutions can
show important features, such as the presence of certain wave types, solitons, or other stable structures,
which help explain the behavior of the system. This ability to predict is very useful in areas such as
fluid dynamics, plasma physics, and nonlinear optics.

In this study, we want to address a gap in the existing research by providing the precise soliton
solutions for the new extended (3+1)-dimensional KP equation using the generalized Arnous (GA)

method [31] and the
G′

bG′ +G + a
expansion method [32]. We first introduce general solutions using
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GA method and the
G′

bG′ +G + a
expansion method along with a proper traveling wave

transformation. Different types of soliton solutions are obtained, which helps in understanding the
behavior of the KP equation with these methods. These methods have been widely used before to
solve nonlinear equations, and many studies have shown how well they work. Our findings offer new

insights into how these solutions develop over time. The GA method and the
G′

bG′ +G + a
expansion

method offer several advantages over conventional analytical techniques used for nonlinear evolution
equations. By eliminating time-consuming bilinear transformations or intricate symbolic
computations, these techniques offer a more straightforward and methodical derivation process.
Moreover, they are capable of generating a richer variety of exact solutions, including rational,
trigonometric, hyperbolic, and hybrid soliton structures within a unified framework. This adaptability
strengthens the analytical treatment of the model by allowing the investigation of wider parameter
regimes and revealing wave characteristics that are difficult to reach using conventional techniques.

Unlike many earlier studies on the KP equation, where the reported exact solutions are
predominantly limited to single-soliton, periodic, or simple traveling wave forms expressed through
standard hyperbolic or trigonometric functions under relatively restrictive parameter constraints, the

present work introduces several fundamentally new features. Specifically, by using the
G′

bG′ +G + a
expansion method and the GA method, we obtain novel functional forms that are not found in earlier
studies, such as parameter-dependent hybrid solutions, mixed trigonometric hyperbolic structures, and
higher order rational solutions. Furthermore, the constraint conditions ensuring the validity of these
solutions are significantly relaxed, leading to a broader admissible parameter space and allowing the
emergence of additional soliton types, such as singular solitons, interacting multi-soliton
configurations, and localized wave patterns. There are many known solutions like Hirota solitons,
lump solutions, rogue waves, and multi-soliton structures in the literature. To show the novelty of our
results, we compare our solution with these well-known ones. When we remove the trigonometric
parameters and keep the transverse variables fixed, our solutions become similar to single-soliton or
multi-soliton forms that come from the Hirota bilinear method.

This describes that our approach is correct and that it can also be used to find the classical soliton
solutions. Moreover, lump and rogue wave solutions of the KP equation are localized in all directions,
meaning that they are spread out but not oscillating. However, the solutions we found in this work
have a mix of exponential and periodic components, creating wave patterns that are both localized and
oscillating. These patterns are different from standard lump or rogue wave solutions. These differences
make it evident that the solutions obtained in this work expand and broaden previous findings in the
literature, improving the analytical comprehension of the KP equation and its applications in quantum
field theory and plasma physics.

The organization of the paper is as follows: Section 2 discusses a general idea of the methodology
of both methods. Section 3 explains the mathematical evaluation of methods and their different types
of solutions. In Section 4, we study the formation of graphs and figures. In section 5, modulation
instability is discussed. Section 6 encapsulates the primary findings and proposes possible extensions
of this research to other multidimensional nonlinear models.
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2. Methodology

The GA method is an analytical technique that is useful for securing exact solutions of a wide range

of nonlinear PDEs. The
G′

bG′ +G + a
expansion method is a straightforward and effective mathematical

approach used to generate traveling wave solutions for nonlinear evolution equations.
Suppose that the general nonlinear PDE is as follows:

Φ
(
u, ux, ut, uy, uz, uxx, utt, uyy, uzz, uxt, uxy, uxz, uyz, uyt, . . .

)
= 0, (2.1)

where Φ denotes a polynomial (multivariate) in the field u(x, y, z, t) and its partial derivatives. We must
reduce the given PDE to an ordinary differential equation (ODE) using a suitable wave transformation.

u = U(η) = U(kx + ly + mz − ωt), η = kx + ly + mz − ωt, (2.2)

where k, l, and m are the wave numbers in the x, y, and z directions. Here ω, is the wave frequency,
and all are constants. We obtain the ODE in the form of

P
(
U,U′,U′′,U′′′, . . .

)
= 0, (2.3)

where ( ′ ) denotes the derivative with respect to η.

2.1. The GA method

This section provides a summary of the fundamental steps in the GA method.
Step 1. Let us suppose that the solution for Eq (2.3) is

U(η) = α0 +

N∑
i=1

αi + βiG′(η)i

G(η)i , (2.4)

where α0, αi, and βi act as constants, and G(η) satisfies the condition[
G′(η)

]2
=

[
G(η)2 − ρ

]
ln(B)2 (2.5)

with

G(m)(η) =

G(η) ln(B)m, if m is even,

G′(η) ln(B)m−1, if m is odd,

where m ≥ 2 and 0 < B < 1.
The following ODE has the solution in the form of

G(η) = κ ln(B)Bη +
ρ

4κ ln(B)Bη
, (2.6)

where κ and ρ are any parameters.
Step 2. N can be found by using the rule that balances the equation involving the highest order
derivative and the highest degree of the non-linear term.
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Step 3. Following the substitution of Eqs (2.4) and (2.5) into Eq (2.3), and given that

G(η) , 0,

this substitution produces a polynomial in 1
G′(η) ,

G′(η)
G(η) , and G(η).

Next, all terms with identical powers are collected and set equal to zero. Subsequently, ρ, κ, ω, α0,
α1, α2, β1, and β2 are found by solving the system. Using Eqs (2.5) and (2.2), the solutions can be
obtained for Eq (2.1).

2.2.
G′

bG′ +G + a
expansion method

Step 1. Let us suppose that the solution of the transformed ODE is

U(η) =
N∑

i=0

AiF i, (2.7)

where
F = F(η) =

G′

bG′ +G + a
and a, b , 0. Ai are arbitrary constants that will be found later.

F satisfies the requirement.

F′ =
dF(η)

dη
= (λ − µ − 1)F2 +

2µ − λ
b
−
µ

b2 , (2.8)

and the ODE has the solution in this form:

G′′ = −
λ

b
G′ −

λ

b2 G −
µ

b2 a, (2.9)

where λ and µ are considered real numbers.
Step 2. The positive integer N can be determined by applying the principle of balancing the highest
order derivative with the non-linear term in Eq (2.3).
Step 3. Two types of solutions are considered for Eq (2.9).

Type 1. If
ϑ = λ2 − 4µ > 0,

then
G = −a + m1e

1
2b (−λ−

√
ϑ)η + m2e

1
2b (−λ+

√
ϑ)η,

m1, and m2 are arbitrary constants that satisfy

a2 + m2
1 + m2

2 , 0.

In this type, F = F(η) can be written as

F =
m1(λ +

√
ϑ) + m2(λ −

√
ϑ)e

√
ϑ

b η

b m1(λ − 2 +
√
ϑ) + b m2(λ − 2 −

√
ϑ)e

√
ϑ

b η
. (2.10)
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We can also write F = F(η) as

F =
R1 sinh(

√
ϑ

2b η) + R2 cosh(
√
ϑ

2b η)

R3 sinh(
√
ϑ

2b η) + R4 cosh(
√
ϑ

2b η)
. (2.11)

Here,

λ(m2 − m1) −
√
ϑ(m2 + m1) = R1,

λ(m2 + m1) −
√
ϑ(m2 − m1) = R2,

b(λ − 2)(m2 − m1) −
√
ϑ(m2 + m1) = R3,

b(λ − 2)(m2 + m1) −
√
ϑ(m2 − m1) = R4.

• If
(λ − 2)(m2 − m1) −

√
ϑ(m2 + m1) = 0,

then

F =
λ − 2µ
2bQ

−

√
ϑ

2bQ
tanh(

√
ϑ

2b
η). (2.12)

Here,
Q = λ − µ − 1.

• If
(λ − 2)(m2 + m1) −

√
ϑ(m2 − m1) = 0,

then

F =
λ − 2µ
2bQ

−

√
ϑ

2bQ
coth(

√
ϑ

2b
η). (2.13)

Type 2. If
ϑ = λ2 − 4µ < 0,

then

G = −a + e
−λ
2b η

m1 cos(

√
−ϑ

2b
η) + m2 sin(

√
−ϑ

2b
η)

 .
In this type, F = F(η) has the following representation

F =
S 1 cos(

√
−ϑ

2b η) + S 2 sin(
√
−ϑ

2b η)

S 3 cos(
√
−ϑ

2b η) + S 4 sin(
√
−ϑ

2b η)
. (2.14)

Here,

λm1 −
√
−ϑm2 = S 1,

λm2 −
√
−ϑm1 = S 2,

b
(
(λ − 2)m1 −

√
−ϑm2

)
= S 3,

b
(
(λ − 2)m2 +

√
−ϑm1

)
= S 4.
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• If
(λ − 2)m2 +

√
−ϑm1 = 0,

then

F =
λ − 2µ
2bQ

+

√
−ϑ

2bQ
tan(

√
−ϑ

2b
η). (2.15)

• If
(λ − 2)m1 −

√
−ϑm2 = 0,

then

F =
λ − 2µ
2bQ

−

√
−ϑ

2bQ
cot(

√
−ϑ

2b
η). (2.16)

Step 4. Substitute Eqs (2.8) and (2.9) into the transformed ODE and set the coefficients of F i to zero.
This gives a system of equations. The values of the unknown constants can be found by solving this
set of equations.

3. Mathematical evaluation

In this section, we will extract the exact solution of the KP equation using the proposed methods.
Consider the wave transformation

u = U(η), η = kx + ly + mz − ωt. (3.1)

Extract u′, u′′, u′′′ and u′′′′ from Eq (3.1) and substitute it into Eq (1.2); we obtain

k4U (4)(η) + U′′(η)
(
6k2U(η) − kω − 3

(
l2 + m2

))
+ 6k2U′(η)2 = 0. (3.2)

Integrating the above equation twice with respect to η, and without loss of generality, the constant is
set to zero. This corresponds to a translational invariance of the wave pattern that does not affect the
overall shape or main features of the solution. We obtain the ODE in this form:

k4U′′(η) + 3k2U(η)2 − kωU(η) − 3l2U(η) − 3m2U(η). (3.3)

Using the balancing principle, the terms U2 and U′′ in Eq (3.3) result in

N = 2.

3.1. Solutions by GA method

As
N = 2,

the solution is

U(η) = α0 +
α1 + β1G′(η)

G(η)
+
α2 + β2 (G′(η))2

G(η)2 , (3.4)

where α0, α1, α2, β1, and β2 are constants and β2 does not equal to zero. By substituting Eq (3.4) into
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Eq (3.3) and equating the coefficients of 1
G′(η) and G′(η)

G(η) , a system of algebraic equations is formed.

6α1β1k2 = 0,
6α1α2k2 − 2α1k4ρ ln2(B) − 6α1β2k2ρ ln2(B) = 0,
6α2β1k2 − 2β1k4ρ ln2(B) − 6β1β2k2ρ ln2(B) = 0,
6α0β1k2 + 6β1β2k2 ln2(B) − β1kω − 3β1l2 − 3β1m2 = 0,
α1k4 ln2(B) + 6α0α1k2 + 6α1β2k2 ln2(B) − α1kω − 3α1l2 − 3α1m2 = 0,
6β2k4ρ2 ln4(B) − 6α2k4ρ ln2(B) + 3α2

2k2 − 6α2β2k2ρ ln2(B) + 3β2
2k2ρ2 ln4(B) = 0,

3α2
0k2 − 3α0m2 + 6α0β2k2 ln2(B) + 3β2

1k2 ln2(B) + 3β2
2k2 ln4(B) − α0kω

− β2kω ln2(B) − 3α0l2 − 3β2l2 ln2(B) − 3β2m2 ln2(B) = 0,
4α2k4 ln2(B) − 4β2k4ρ ln4(B) + 6α0α2k2 − 6α0β2k2ρ ln2(B) + 3α2

1k2 + 6α2β2k2 ln2(B)
− 3β2

1k2ρ ln2(B) − 6β2
2k2ρ ln4(B) − α2kω + β2kρω ln2(B) − 3α2l2 + 3β2l2ρ ln2(B)

− 3α2m2 + 3β2m2ρ ln2(B) = 0.

With the help of a mathematical tool, we obtain the solutions

Set 1


α0 = −β2ln2(B), α1 → 0, α2 = ρln2(B)(β2 + 2k2),

β1 = 0, ω =
4k4ln2(B) − 3l2 − 3m2

k
,


and

Set 2


α0 =

1
3

[
−3β2ln2(B) − 4k2ln2(B)

]
, α1 = 0, α2 = ρln2(B)(β2 + 2k2),

β1 = 0, ω =
−4k4ln2(B) − 3l2 − 3m2

k
.


Using the set 1 in Eq (3.4), the solution is

U1(η) =
32κ2k2ρ ln2(B)B2η(
ρ + 4κ2 ln2(B)B2η

)2 . (3.5)

For Eq (1.2), we can write Eq (3.5) as

u1 =
32κ2k2ρ ln2(B)B2η(
ρ + 4κ2 ln2(B)B2η

)2 , (3.6)

where

η = kx + ly + mz −
4k4ln2(B) − 3l2 − 3m2

k
t,

and the graphical representation is as follows (see Figures 1 and 2):
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(a) (b)

Figure 1. 3D and 2D representations of u1 with ρ = 0.05.

(a) (b)

Figure 2. 3D and 2D representations of u1 with ρ = −0.01.

Using set 2 in Eq (3.4), the solution we obtained is

U2(η) = −
4k2 ln2(B)

(
ρ2 + 16κ4 ln4(B)B4η − 16κ2ρ ln2(B)B2η

)
3
(
ρ + 4κ2 ln2(B)B2η

)2 . (3.7)

We can rewrite Eq (3.7) for Eq (1.2) as follows:

u2 = −
4k2 ln2(B)

(
ρ2 + 16κ4 ln4(B)B4η − 16κ2ρ ln2(B)B2η

)
3
(
ρ + 4κ2 ln2(B)B2η

)2 , (3.8)

where

η = kx + ly + mz −
−4k4ln2(B) − 3l2 − 3m2

k
t,

and the graphical representation is as follows (see Figures 3 and 4):
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(a) (b)

Figure 3. 3D and 2D representations of u2 with ρ = 0.05.

(a) (b)

Figure 4. 3D and 2D representations of u2 with ρ = −0.01.

To check the correctness of obtained solutions, we substitute one solution in a given equation. We
calculate all the necessary derivatives step by step, and after simplifying, the left-hand side of the
equation becomes zero. This shows that the solution we found is exactly correct for the equation.

3.2. Solutions by
G′

bG′ +G + a
expansion method

As N = 2, the solution is
U(η) = A0 + A1F + A2F2, (3.9)

where A0, A1, and A2 are constants that can be found later and A2 , 0. So, put Eqs (2.8) and (3.9) into
Eq (3.3) and equate the coefficients of the power of F, and a system of equations is formed.

3A2
0k2 − A0kω − 3A0l2 − 3A0m2 +

A1λk4µ

b3 −
2A1k4µ2

b3 +
2A2k4µ2

b4 = 0,

3A2
2k2 + 6A2λ

2k4 − 12A2λk4µ − 12A2λk4 + 6A2k4µ2 + 12A2k4µ + 6A2k4 = 0,

6A0A1k2 − A1kω − 3A1l2 − 3A1m2 +
6A2λk4µ

b3 +
A1λ

2k4

b2 −
12A2k4µ2

b3

−
6A1λk4µ

b2 +
6A1k4µ2

b2 +
2A1k4µ

b2 = 0,
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6A1A2k2 + 2A1λ
2k4 − 4A1λk4µ − 4A1λk4 + 2A1k4µ2 + 4A1k4µ + 2A1k4 −

10A2λ
2k4

b

+
30A2λk4µ

b
+

10A2λk4

b
−

20A2k4µ2

b
−

20A2k4µ

b
= 0,

6A0A2k2 + 3A2
1k2 − A2kω − 3A2l2 − 3A2m2 −

3A1λ
2k4

b
+

9A1λk4µ

b
+

3A1λk4

b
−

6A1k4µ2

b

−
6A1k4µ

b
+

4A2λ
2k4

b2 −
24A2λk4µ

b2 +
24A2k4µ2

b2 +
8A2k4µ

b2 = 0.

Solving this system with Mathematica, we get

Set 1


A0 = −

2k2µ(−λ + µ + 1)
b2 , A1 =

2k2(λ2 − 3λµ − λ + 2µ2 + 2µ)
b

,

A2 = −2k2(λ − µ − 1)2, ω =
−3b2l2 − 3b2m2 + λ2k4 − 4k4µ

b2k
,


Set 2


A0 = −

k2(λ2 − 6λµ + 6µ2 + 2µ)
3b2 , A1 =

2k2(λ2 − 3λµ − λ + 2µ2 + 2µ)
b

,

A2 = −2k2(λ − µ − 1)2, ω =
−3b2l2 − 3b2m2 − λ2k4 + 4k4µ

b2k
.


Set 1.
Case 1. If

ϑ = λ2 − 4µ > 0,

then

u1 = −
2k2Q(bF − µ(bFQ − λ + 2µ))

b2 . (3.10)

Here,
Q = λ − µ − 1,

where

F =
m2

(√
ϑ − λ

)
e
√
ϑη
b − m1

(
λ +
√
ϑ
)

bm2

(
−λ +

√
ϑ + 2

)
e
√
ϑη
b − bm1

(
λ +
√
ϑ − 2

) . (3.11)

Then Eq (3.10) becomes

u1 =

2k2Q
(
−2m1m2e

√
ϑη
b

(
λ2 + ϑ − 4µ

)
+ m2

2e
2
√
ϑη

b T + m2
1T

)
(
bm2

(
−λ +

√
ϑ + 2

)
e
√
ϑη
b − bm1

(
λ +
√
ϑ − 2

))2 . (3.12)

Here,
T = −λ2 + ϑ + 4µ.

• If
(λ − 2)(m2 − m1) −

√
ϑ(m2 + m1) = 0,

then Eq (3.10) becomes

u1,1 =

k2
(
−ϑ tanh2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
2b2 . (3.13)
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• If
(λ − 2)(m2 + m1) −

√
ϑ(m2 − m1) = 0,

then Eq (3.10) becomes

u1,2 =

k2
(
−ϑ coth2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
2b2 . (3.14)

Case 2. If
ϑ = λ2 − 4µ < 0,

then

u2 = −
2k2Q(bF − µ(bFQ − λ + 2µ))

b2 , (3.15)

where

F =
S 1 cos(

√
−ϑ

2b η) + S 2 sin(
√
−ϑ

2b η)

S 3 cos(
√
−ϑ

2b η) + S 4 sin(
√
−ϑ

2b η)
. (3.16)

Here,

λm1 −
√
−ϑm2 = S 1,

λm2 −
√
−ϑm1 = S 2,

b
(
(λ − 2)m1 −

√
−ϑm2

)
= S 3,

b
(
(λ − 2)m2 +

√
−ϑm1

)
= S 4,

and it turns Eq (3.15) into this form:

u2 = −

2k2Q


b
(
S 1 cos

(
η
√
−ϑ

2b

)
+S 2 sin

(
η
√
−ϑ

2b

)) bQ
(
S 1 cos

(
η
√
−ϑ

2b

)
+S 2 sin

(
η
√
−ϑ

2b

))
S 3 cos

(
η
√
−ϑ

2b

)
+S 4 sin

(
η
√
−ϑ

2b

) −λ+2µ


S 3 cos

(
η
√
−ϑ

2b

)
+S 4 sin

(
η
√
−ϑ

2b

) − µ


b2 . (3.17)

• If
(λ − 2)m2 +

√
−ϑm1 = 0,

then (3.17) becomes

u2,1 =

k2
(
−ϑ tanh2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
2b2 . (3.18)

• If
(λ − 2)m1 −

√
−ϑm2 = 0,

then (3.17) becomes

u2,2 =

k2
(
−ϑ coth2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
2b2 . (3.19)
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Set 2.
Case 1. If

ϑ = λ2 − 4µ > 0,

then

U1 =
k2

(
−6b2F2(−λ + µ + 1)2 + 6bFQ(λ − 2µ) − λ2 + 6λµ − 2µ(3µ + 1)

)
3b2 , (3.20)

where

F =
m2

(√
ϑ − λ

)
e
√
ϑx
b − m1

(
λ +
√
ϑ
)

bm2

(
−λ +

√
ϑ + 2

)
e
√
ϑx
b − bm1

(
λ +
√
ϑ − 2

) . (3.21)

Then Eq (3.20) will be transformed into

u1 =
k2

3b2

[
−

6(λ − 2µ)Q
(
m2(λ −

√
ϑ)e

√
ϑx
b + m1(λ +

√
ϑ)

)
m2(−λ +

√
ϑ + 2)e

√
ϑx
b − m1(λ +

√
ϑ − 2)

−

6(−λ + µ + 1)2
(
m2(λ −

√
ϑ)e

√
ϑx
b + m1(λ +

√
ϑ)

)2

[
m2(−λ +

√
ϑ + 2)e

√
ϑx
b − m1(λ +

√
ϑ − 2)

]2 − λ2 + 6λµ − 2µ(3µ + 1)
]
. (3.22)

• If
(λ − 2)(m2 − m1) −

√
ϑ(m2 + m1) = 0,

then Eq (3.20) becomes

u1,1 =

k2
(
−3ϑ tanh2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
6b2 . (3.23)

• If
(λ − 2)(m2 + m1) −

√
ϑ(m2 − m1) = 0,

then Eq (3.20) becomes

u1,2 =

k2
(
−3ϑ coth2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
6b2 . (3.24)

Case 2. If
ϑ = λ2 − 4µ < 0,

then

u2 =
k2

(
−6b2F2(−λ + µ + 1)2 + 6bFQ(λ − 2µ) − λ2 + 6λµ − 2µ(3µ + 1)

)
3b2 , (3.25)

where

F =
S 1 cos(

√
−ϑ

2b η) + S 2 sin(
√
−ϑ

2b η)

S 3 cos(
√
−ϑ

2b η) + S 4 sin(
√
−ϑ

2b η)
. (3.26)
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Substitute Eq (3.26) into Eq (3.25) to get

u2 =
k2

3b2

[6bQ(λ − 2µ)
(
S 1 cos

(
η
√
−ϑ

2b

)
+ S 2 sin

(
η
√
−ϑ

2b

))
S 3 cos

(
η
√
−ϑ

2b

)
+ S 4 sin

(
η
√
−ϑ

2b

) − λ2 + 6λµ − 2µ(3µ + 1)

−

6b2(−λ + µ + 1)2
(
S 1 cos

(
η
√
−ϑ

2b

)
+ S 2 sin

(
η
√
−ϑ

2b

))2

(
S 3 cos

(
η
√
−ϑ

2b

)
+ S 4 sin

(
η
√
−ϑ

2b

))2

]
,

(3.27)

• If
(λ − 2)m2 +

√
−ϑm1 = 0,

then Eq (3.25) becomes

u2,1 =

k2
(
−3ϑ tanh2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
6b2 . (3.28)

• If
(λ − 2)m1 −

√
−ϑm2 = 0,

then Eq (3.25) becomes

u2,2(x, y, z, t) =
k2

(
−3ϑ coth2

(
η
√
ϑ

2b

)
+ λ2 − 4µ

)
6b2 . (3.29)

• This detailed study helps us understand the physical processes better by looking at both the
movement and mathematical features of these solutions. Using pictures, we make it easier to see
how waves interact and what happens in complex situations. This visual approach makes it
simpler to grasp the results and how they apply in real-world scenarios.

• To check that our solution is correct, an analytical technique is performed, namely the finite
difference method with periodic boundary condition. The results from the simulation closely
resemble the analytical solution, keeping the same shape and strength. This confirms that the
soliton solution is accurate and reliable.

• Both methods work by finding a balanced solution and use certain types of solutions, which may
exclude other possible solutions. It also involves turning the PDE into an ODE, which makes
it less applicable for complicated or irregular equations. In those situations, other methods like
analytical or numerical techniques might be better choices to get the exact solution.

4. Physical interpretation

The solutions to the (3+1)-dimensional KP equation form localized, stable wave patterns that exhibit
solitons. These solutions can have multiple peaks that interact with each other, causing phases shifts
and amplitudes. The additional spatial dimensions generate more complex wave patterns, such as
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sideways oscillations and waves that combine localized and oscillatory behaviors. These characteristics
highlight the complicated nonlinear systems in higher dimensions. In this section, we will discuss
some of the solutions we found for the KP equation using graphs. We use mainly the GA method and

the
G′

bG′ +G + a
expansion method to uncover soliton solutions. Depending on the parameters, these

solutions describe waves that are focused in certain areas, wave packets that interact with each other,
and waves that change in their side-to-side movement while moving mainly in one direction. These
types of waves can represent stable patterns in shallow water waves in fluid dynamics, waves in plasma
like ion-acoustic or Alfvén waves, and pulses of light in materials that respond to light in a non-linear
way. In all these cases, the way the wave bends and spreads out is controlled by a balance between
nonlinearity and dispersion. By selecting specific values of the parameters, we can obtain different
types of solutions, such as bright, dark, and singular solitons. It is important to mention that the results
and solutions we found in this paper are new and have never been shared before.

Figure 1 shows how the solution of the GA method behaves over time, with parameters set as
follows:

k = 1, ρ = 0.05, y = 0, z = 0, κ = 0.25, and B = 3

for −5 < x, t < 5 . We use three different time slots for two-dimensional representation. ρ is one of
the parameters where the behavior of the graph changes. Figure 2 shows the solution of Eq 3.6 with
parameter values

κ = 0.25, z = 0, B = 3, k = 1, y = 0, and ρ = 0.05.

The graph in ρ = 0.5 behaves as a bright soliton, whereas in ρ = −0.1, the singular soliton structure
shows a sharp peak and sudden breaks. For Eq (3.8), the soliton solution is shown in Figure 3 with the
parameter values

y = 0, z = 0, B = 3, ρ = 0.05, κ = 0.25, and k = 1.

Three different time intervals are used to check how soliton solutions behave over time for
two-dimensional graphs. Parameter values

ρ = −0.01, κ = 0.25, k = 1, y = 0, z = 0, and B = 3

are used to show the solution of Eq (3.8) in Figure 4. Taking into account the above statement, we can
say that for different values of ρ, different shapes of graphs are produced.

Figure 5 shows the behavior of the solution of Eq (3.12) of the
G′

bG′ +G + a
expansion method, with

different parameter values
λ = 3, µ = 1, m1 = 2, and m2 = −1

for −10 < x, t < 10. For Eq (3.17), the solution is shown in Figure 6 with parameter values

λ = 1, µ = 1, m1 = −2, and m2 = 1.

Figure 7 shows the solution of Eq (3.22) with parameter values

m1 = 2, m2 = −1, λ = 3, and µ = 1.

Figure 8 shows sharp peaks in a continuous way, which means it is stable and well behaved in a periodic
manner for Eq (3.27). By changing the values of m1,m2, the graph demonstrates different behaviors.
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(a) (b)

Figure 5. 3D and 2D with λ = 3, µ = 1, m1 = 2, and m2 = −1 for −10 < x, t < 10.

(a) (b)

Figure 6. 3D and 2Dwith λ = 1, µ = 1, m1 = −2, and m2 = 1 for −10 < x, t < 10.

(a) (b)

Figure 7. 3D and 2D with λ = 3, µ = 1, m1 = 2, and m2 = −1 for −10 < x, t < 10.
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(a) (b)

Figure 8. 3D and 2D with λ = 1, µ = 1, m1 = −2, and m2 = 1 for −10 < x, t < 10.

For positive values of m1 and negative m2, the graph represents a bright soliton. When we change
the signs of m1 and m2, it displays the periodic soliton structure. From this observation, we can say
that different shapes of graphs are obtained for different values of m1 and m2.

5. Modulation instability

The balance between spreading out and bending effects causes modulation instability in steady
states during many nonlinear processes. When a small disturbance is added, a continuous wave state
grows rapidly, which is a fundamental nonlinear behavior. This leads to the continuous wave splitting
into many very short pulses. In this section, we use the linear stability method to study the modulation
instability of the KP equation. We look at the steady-state solution for Eq (1.2),

u = U(x, y, z, t) + n. (5.1)

Then changing to linear form will give the next equations:

6nUxx(x, y, z, t) − 3Uzz(x, y, z, t) − 3Uyy(x, y, z, t) + Uxt(x, y, z, t) + Uxxxx(x, y, z, t) = 0. (5.2)

The wave transformation is

U(x, y, z, t) = P1e−i( f x+gy+dz−ht) + Q1ei( f x+gy+dz−ht). (5.3)

Substitute Eq (5.3) into (5.2), we get

3d2P1e−i(dz+ f x+gy−ht) + 3d2Q1ei(dz+ f x+gy−ht) + f 4P1e−i(dz+ f x+gy−ht) + f 4Q1ei(dz+ f x+gy−ht)

− 6 f 2nP1e−i(dz+ f x+gy−ht) − 6 f 2nQ1ei(dz+ f x+gy−ht) + 3g2P1e−i(dz+ f x+gy−ht) + 3g2Q1ei(dz+ f x+gy−ht)

+ f hP1e−i(dz+ f x+gy−ht) + f hQ1ei(dz+ f x+gy−ht) = 0. (5.4)

Setting the determinant of the coefficient matrix equal to zero gives this relationship:

3d2 + f 4 + 3g2 + f h − 6 f 2n = 0. (5.5)
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After some simplification, we get

h→
−3d2 − f 4 + 6 f 2n − 3g2

f
. (5.6)

It gives following dispersion relation:

−3d2 − f 4 + 6 f 2n − 3g2

f
. (5.7)

The steady-state stability is shown by the dispersion relation (5.7). When the wave number is real,
the steady state appears to be able to tackle small perturbation. However, when the wave number is
imaginary, the steady state becomes unstable, and the disturbance grows exponentially. In this case,
the growth rate is

−3d2 − f 4 + 6 f 2n − 3g2

f
< 0. (5.8)

The dispersion relation illustrates how the growth rate m(w) changes with the wave number w for
different values of the parameter n. When m(w) is positive, it indicates that the wave is unstable
due to modulation instability, but when it is negative, the wave is stable. As the value of n increases in
Figure 9, the range of unstable waves becomes wider, and the highest growth rate gets larger, indicating
the stronger modulation effects. The sharp change near

w = 0

shows that long-wavelength disturbances play an important role in causing wave localization and
forming patterns in KP wave behavior. A decrease in n in Figure 10 causes both the growth rate and
the range of unstable wave numbers to decrease, which helps reduce modulation instability. As a
result, the wave propagation becomes more stable and less likely to form localized patterns or
structures.

Figure 9. Dispersion relation vs wave number for increasing n.
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Figure 10. Dispersion curve showing the dependency of wave stability for decreasing n.

6. Conclusions

In this piece of research, we studied the (3+1)-dimensional KP equation by using the GA method

and the
G′

bG′ +G + a
expansion method. With the implementation of these methods, the solutions

emerged in the form of hyperbolic, trigonometric, and rational functions. The results of our study
have many applications in plasma physics, and our suggested mathematical techniques are stronger as
a result. This suggests that these techniques are more reliable and successful in identifying precise
solutions to nonlinear PDEs. These techniques can be used for create a variety of original solutions.
With different parameter values in figures, these solutions showed solitary, bright, singular, and
periodic solitons, which have many applications in physics. These techniques can be used to other
similar nonlinear equations and systems of equations. These methods can be naturally extended to
other multidimensional nonlinear models, such as the (3+1)-dimensional
Wazwaz–Benjamin–Bona–Mahony equations or the (3+1)-dimensional Zakharov–Kuznetsov
equations in plasma physics. They are ideal for studying complicated wave phenomena in such
higher–dimensional systems because of their methodical derivation procedure and capacity to produce
a variety of correct solutions. The solutions discovered in this study were found using the
Mathematica package program. In this work, we were able to get precise traveling wave solutions for
this equation. Many of the results are original solutions that have never been put forth in the literature.

Use of Generative-AI tools declaration

The author declares he has not used artificial intelligence (AI) tools in the creation of this article.

Acknowledgments

The author is thankful to the Deanship of Graduate Studies and Scientific Research at University of
Bisha for supporting this work through the Fast-Track Research Support Program.

AIMS Mathematics Volume 11, Issue 1, 2088–2110.



2108

Conflict of interest

The author declares that there is no conflict of interest.

References

1. M. A. Abdou, An analytical method for space-time fractional nonlinear differential
equations arising in plasma physics, J. Ocean Eng. Sci., 2 (2017), 288292.
https://doi.org/10.1016/j.joes.2017.09.002

2. L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. Khater, A. Jhangeer, et al., Nonlinear
dispersion in parabolic law medium and its optical solitons, Results Phys., 26 (2021), 104411.
https://doi.org/10.1016/j.rinp.2021.104411

3. C. Qiao, X. Long, L. Yang, Y. Zhu, W. Cai, Calculation of a dynamical substitute for
the real earth-moon system based on Hamiltonian analysis, Astrophys. J., 991 (2025), 46.
https://doi.org/10.3847/1538-4357/adf73a

4. M. Tanaka, The stability of solitary waves, Phys. Fluids, 29 (1986), 650–655.
https://doi.org/10.1063/1.865459

5. J. E. Allen, The early history of solitons (solitary waves), Phys. Scr., 57 (1998), 436.
https://doi.org/10.1088/0031-8949/57/3/016

6. K. K. Ali, M. S. Mohamed, M. Maneea, Optimal homotopy analysis method for (2+1) time-
fractional nonlinear biological population model using-transform, AIMS Math., 9 (2024), 32757–
32781. https://doi.org/10.3934/math.20241567

7. N. Raza, A. Javid, Dynamics of optical solitons with Radhakrishnan–Kundu–
Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566.
https://doi.org/10.1016/j.ijleo.2018.09.133

8. A. M. Wazwaz, The tanh–coth method for solitons and kink solutions for
nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467–1475.
https://doi.org/10.1016/j.amc.2006.11.013

9. M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, Philadelphia, 1981.
https://doi.org/10.1137/1.9781611970883

10. M. A. Noor, S. T. Mohyud-Din, A. Waheed, E. A. Al-Said, Exp-function method for traveling
wave solutions of nonlinear evolution equations, Appl. Math. Comput., 216 (2010), 477–483.
https://doi.org/10.1016/j.amc.2010.01.042

11. R. Conte, M. Musette, Link between solitary waves and projective Riccati equations, J. Phys. A,
25 (1992), 5609. https://doi.org/10.1088/0305-4470/25/21/019

12. A. T. Ali, New generalized Jacobi elliptic function rational expansion method, J. Comput. Appl.
Math., 235 (2011), 4117–4127. https://doi.org/10.1016/j.cam.2011.03.002

13. S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving di erence scheme and analytical
solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455.
https://doi.org/10.1098/rspa.2021.0455

AIMS Mathematics Volume 11, Issue 1, 2088–2110.

https://dx.doi.org/https://doi.org/10.1016/j.joes.2017.09.002
https://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.104411
https://dx.doi.org/https://doi.org/10.3847/1538-4357/adf73a
https://dx.doi.org/https://doi.org/10.1063/1.865459
https://dx.doi.org/https://doi.org/10.1088/0031-8949/57/3/016
https://dx.doi.org/https://doi.org/10.3934/math.20241567
https://dx.doi.org/https://doi.org/10.1016/j.ijleo.2018.09.133
https://dx.doi.org/https://doi.org/10.1016/j.amc.2006.11.013
https://dx.doi.org/https://doi.org/10.1137/1.9781611970883
https://dx.doi.org/https://doi.org/10.1016/j.amc.2010.01.042
https://dx.doi.org/https://doi.org/10.1088/0305-4470/25/21/019
https://dx.doi.org/https://doi.org/10.1016/j.cam.2011.03.002
https://dx.doi.org/https://doi.org/10.1098/rspa.2021.0455


2109

14. E. M. Zayed, K. A. Gepreel, R. M. Shohib, M. E. Alngar, Y. Yildirim, Optical solitons for
the perturbed Biswas-Milovic equation with Kudryashovs law of refractive index by the unified
auxiliary equation method, Optik, 230 (2021), 166286. https://doi.org/10.1016/j.ijleo.2021.166286

15. T. A. Sulaiman, A. Yusuf, Dynamics of lump-periodic and breather waves solutions with variable
coecients in liquid with gas bubbles, Waves Random Complex Media, 33 (2014), 1085–1098.
https://doi.org/10.1080/17455030.2021.1897708

16. A. Zafar, M. Shakeel, A. Ali, L. Akinyemi, H. Rezazadeh, Optical solitons of nonlinear complex
Ginzburg–Landau equation via two modified expansion schemes, Opt. Quant. Electron., 54 (2022),
5. https://doi.org/10.1007/s11082-021-03393-x

17. I. S. O’Keir, E. J. Parkes, The derivation of a modified Kadomtsev–Petviashvili equation and the
stability of its solutions, Phys. Scr., 55 (1997), 135. https://doi.org/10.1088/0031-8949/55/2/003

18. S. F. Tian, P. L. Ma, On the quasi-periodic wave solutions and asymptotic analysis to a (3+1)-
dimensional generalized Kadomtsev–Petviashvili equation, Commun. Theor. Phys., 62 (2014), 245.
https://doi.org/10.1088/0253-6102/62/2/12

19. M. J. Ablowitz, H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979),
691–715. https://doi.org/10.1017/S0022112079000835

20. G. P. Agrawal, Nonlinear fiber optics, In: P. L. Christiansen, M. P. Sørensen, A. C. Scott, Nonlinear
science at the dawn of the 21st century, Springer Berlin, 2000. https://doi.org/10.1007/3-540-
46629-0 9

21. R. Grimshaw, Internal solitary waves, In: R. Grimshaw, Environmental stratified flows, Springer,
2001. https://doi.org/10.1007/0-306-48024-7 1

22. B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, Are all the equations of the
Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys., 27 (1986), 2848–2852.
https://doi.org/10.1063/1.527260

23. T. Alagesan, A. Uthayakumar, K. Porsezian, Painlevé analysis and Bäcklund transformation for
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Appendix

Computational details

Mathematica commands for Figures 1–4

(* T r a v e l i n g wave s o l u t i o n * )
u [ x , y , z , t ] := \ f r a c {32 \ kappa ˆ2 k ˆ2 \ rho
\ l n ˆ 2 (B) B ˆ { 2 \ e t a } } { \ l e f t ( \ rho +4 \ kappa ˆ2 \ l n ˆ 2 (B)
B ˆ { 2 \ e t a } \ r i g h t ) ˆ 2 }

(* Parame ter s used i n F ig ure 1 *)
\ rho = 0 . 5 ; k = 1 ; \ kappa = 0 . 2 5 ; y= 0 ; z = 0 ;B = 3

Plot3D [ u [ x , y , z , t ] , { x , −5 ,
5 } , { t , −10 , 1 0 } , ColorFunct ion −> ( Co lo rDa ta [ ” Rainbow ” ] ) ,

AxesLabel −> { S t y l e [ x , FontS ize −> 1 4 ] , S t y l e [ t , FontS ize −> 1 4 ] ,
S t y l e [ ” u ( x , y , z , t ) ” , FontS ize −> 1 4 ] } ,

L a b e l S t y l e −> D i r e c t i v e [ Black , Bold ] , P l o t S t y l e −> ” S u r f a c e ” ,
PlotRange −> A l l ]

All the figures are generated by using this command with different parameter values, which is
illustrated in section.
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