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1. Introduction

This article will focus on studying the quantitative weighted estimates for commutators of rough
singular integral operators. We will work on R", n > 2. The singular integral operator with rough
kernel T, is defined by

Q /
Taf() = po. f 09
re V"

where Q is a homogeneous function of degree zero and have a mean value of zero on the unit sphere
S"! throughout the paper.

The operator has been studied by numerous scholars since the 1950s, and was first introduced by
Calderén and Zygmund [1]. For p € (1,0), Q € Llog L(S"™"), Calderén and Zygmund [2] proved that
the operator Tg is bounded on L”(R"). Ricci and Weiss [3] gave the same results under the condition
Q € H'(S"!), an improvement upon the Calderén-Zygmund result, where notably, the space H'(S"™!)
contains Llog L(S"!). For other works concerning the L”(R") boundedness for the operator T, we
refer the reader to [3-5] and the references therein.

S(x—ydy, (1.1)
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Given a linear operator 7 and b € BMO(R"), the commutator [b, T] in the sense of Coifman-
Rochberg-Weiss is defined as follows:

[0, T1f(x) = b(X)T f(x) = T(bf)(x).

When Q € Lip,(S*™!) for some a € (0,1), Coifman, Rochberg, and Weiss [6] established that
b € BMO(R") is the sufficient and necessary condition for L”(R")(p > 1) boundedness of commutator
[b,Tq]. Via the weighted estimates for T together with the relationship between A, weights and
BMO functions, Alvarez, Bagby, Kurtz, and Pérez [7] established the L”(R") boundedness of the
commutator [b, Tq] under the condition Q € L4(S™ ') for some g € (1,c0). Hu [8] showed that if
Q € L(log L)*(S™™"), then the commutator [b, T] maps LP(R") to LP(R") for all p € (1, c0) with the
bound C||b||pmocrn). For other works about the boundedness of [b, Tq], see [9-12], among others.

During the last two decades, there have been many significant works on the quantitative weighted
bounds for singular integral operators and their commutators. Here we present a sharp, weighted
estimate for some principal operators in harmonic analysis, which can be traced back to Buckley [13].
He proved thatfor 1 < p < coandw € A,, the Hardy-Littlewood maximal operator M has the following
estimate:

1
M fllzrow < Cn,p[W],Z: LA 1o )

Subsequently, Astala, Iwaniec, and Saksman proposed the famous A, conjecture in [14], which was
solved by Petermichl and Volberg in [15]. This attracted great interest in researching the sharp weighted
estimate for the Hilbert transform, Riesz transform, and general Calderon-Zygmund operators.

Later, how to find sharp quantitative weighted estimates for rough singular integral operators
also received attention. In the following years, many researchers studied the quantitative weighted
boundedness of Tq defined in (1.1) with Q € L¥(S"™!). Hytdnen, Roncal, and Tapiola first gave the
following result in [16]: For p € (1,00) and w € A,

Zmax{l,%l]

ITafllron < CpllQllzs@nwly "l llron- (1.2)

Combining estimate (1.2) and the idea in [17] originating from the conjugate method in [6, p. 621],
authors in [18] proved that, for p € (1,00) andw € A,

3max{l,%}
[, TQ]f”LI’(w) < Cn,p||Q||L°°(S"‘1)”bHBMO(R”)[W]Ap ! ”f”LP(w)-

Later, Li, Pérez, Rivera-Rios, and Roncal [19] improved the bound in (1.2) for p € (1,00), w € A, and
Qe L>(S" .

1T fllron < caplwl], (D017, + w7 17 Jmin {Iw' 7 Lu, Dol il (13)

Using the conjugate method again and combining (1.3), the authors in [9] pointed out that, for p €
(1,00),w € A,, and Q € L¥(S"),

1

116, Talflluron < capbwl], (D917, + ' T ) (00 T + 091 ) Il
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We next recall the quantitative A; — A, weighted estimates for some operators. In [20], Reguera
and Thiele proposed that, for the Hilbert transform H, there exists a constant ¢ > 0 such that for any
weEA],

1H fll oo < clwla LNl ow-

This is the so-called A; conjecture. However, it was shown in [21], by using Bellman function
techniques, that the A; conjecture is incorrect.

Inspired by the A; conjecture, Lerner, Ombrosi, and Pérez [22] established the following
quantitative weighted endpoint estimate for any Calderén-Zygmund operator 7 for p > 1 and w € A;:

||Tf||L1~°°(w) < c[wla, log(e + [W]Al)”f”Ll(w)' (1.4)

The key to obtain (1.4) is to prove the following two-weight L? estimate, for p € (1, 00), r € (1, 00),
and w > 0:

1
T fllrowy < crpp’ )P N fllrom)s (1.5)

. . . 1/r
where M,w is the maximal function defined by M,w(x) := sup,,, (ﬁ fQ Iw(t)lrdt) , and the supremum

is taken over all cubes Q in R”. It should be noted that (r/)# in (1.5) is crucial to obtain the next
estimate: for p € (1,00) and w € Ay,

T fllzeowy < cpp' Iwla L lerow-

For Q € L*(S"1), 1 < p < o0, and w € A,, Pérez, Rivera-Rios, and Roncal in [18] established the
following quantitative weighted estimate for Tq:

1 1+L4
ITafllron < callQlpesnIwli, Wl " I llrans (1.6)

and the following quantitative weighted estimate for the commutator [b, Tq] with b € BMO(R"):

1 241
B, Tal fllerony < CallQllze-1 w1y W, "1 llLrn- (1.7)

Later the quantitative weighted estimates (1.6) and (1.7) were improved in [23] such that

1

1
ITafllron < CallQllpsnn Wl Wl 1fllzoo,

and
1 1
1B, Tal Flloriy < CallQll e Bllson (0 P2 1T, I llen-

Motivated by the works mentioned above, our goal in this paper is to weaken the kernel Q €
L>(S" 1) to Q € LI(S"") for some g > 1 and establish the quantitative A; — A,, weighted estimates
for the commutator [b, T] with rough kernel Q € L4(S"™!) and function b € BMO(R"). We will adapt
the idea in [18], i.e., we decompose T, into a sequence of suitable operators, whose kernels satisfy
the locally L?-Hormander condition. Using some new refined arguments, we will get a two-weight
estimate for the related commutator via sparse domination and the conjugate method.
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Theorem 1.1. Let Q € LI(S™ ") with2 < g < 00, b € BMOR"), and ¢’ < p < q. Then for any y > #
and weight w > 0, there exists a constant c, > 0 depending only on n such that

L 2+
— q — P
116, Tal fllores) < c,,||b||BM0(Rn>||Q||Lq(Sn-I)(p')z(”q 4 pp ) ((qqp y)) ooy (18)

Corollary 1.2. Let Q € Li(S™ ") with2 < g < co and b € BMO(R"). Then, if w € A, there exists a
constant T, > 0 depending only on n such that, for ¢ < p < q/(1 + 1,[w]a.),

7\ 2+
q-p 1 T
Wb, Talfllrowy < CnpgllbllBMoEn 1 L1y ((T (1 + P )) ) (w1x N 1lzr -

The paper is organized as follows. In Section 2, we will present some basic definitions and give
a decomposition of To. In Section 3, we will present the unweighted L? estimate and two-weight
estimate for the pieces of the operator sequence. In Section 4, we will prove the main result.

2. Preliminary

2.1. Notations

In this article, ¢, and C, stand for the positive dimensional constants. C denotes the positive
constants not depending on the essential variables. C, c,, and C, may vary at each occurrence. Given
a function f, f denotes the Fourier transform of f. Q indicates a cube in R" with sides parallel to the

P

coordinate axes. For 1 < p < oo, we denote the conjugate index of ital by p’ = o 4~ b indicates

that there exists an absolute constant ¢ > 0 such that %b <a<cbh.

2.2. A, weight

For 1 < p < oo, a weight w belongs to the Muckenhoupt class A,(R") if w7 e L}OC(R”), where
(p'-D(p-1=1,and

I R
W, _SuP(IQIf W) )(IQIf 1_p(x)dx) R

where the supremum is taken over all cubes in R". For w € U,.;A,(R"), we will use the following
definition of the A, constant for w (see [24,25]):

Wl : =su ) f M (wx o) (x)dx,

with w(Q) = fQ w(x)dx and )¢ being the characteristic function of Q. For brevity, we use the following
notations [16,26]:

Wh, = [w]jp max {[W]X;@’ [Wl_p,]ﬁm} ,

(W), := max {[wla,, (W' 7 Ia.}

{W}A,,,r;v: [W]A max{[w](l r)+ [Wlp,]jm}’
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where (1 — §)+ = max({! — i, 0}. Moreover, by the fact that
=

1-p’ 1-p’
Wla, < calwla,. D077 L, < calw'™ L, = cawlf

we know that

max[l,p%l} max{

e
(W)Ap < Cn{W}A,, < C;;[W]Ap ’ {W}A,,,r;s < Cn[W]Ap o

“

(2.1)
We now need some results concerning the sharp reverse Holder inequality.
Lemma 2.1. [16]

(1) If w € A, then there is a dimensional constant c, such that, for any 0 < 6 < ¢,/[w]a..,

ifw1+‘5(x)dx<2(ifw(x)dx)l+§
21 Jo ~ 2l Jo ’

1+6/2 1+6/2
[WHeoR], < Culwl

and

(2) Let 1 < p <ocoandw € A,. Then, by choosing c, small enough, we have

1+6 1+6
<
[W ]A[, <4 [W]AI’ ’

Jorevery 0 <6 < ¢,/(W)a,. Moreover, it follows that w!*2 e A, and

1+6/2 < 1+6/2 1+6/2 < 1+6/2
(W17902), < Calwy?2, (WP} < Cutwl ™",

2.3. Sparse operator

The collection S of cubes is r7-sparse for 0 < n < 1, if for each fixed Q € S, there exists a measurable
set Ep C Q such that |EQ| > 17|Q| and the sets {Ep}ocs are pairwise disjoint.
Given a sparse family S, r € (0, ), and f € L; (R"), we define the sparse operator A, s by
. 1
Arsf(x) = (— f lfol'd ) (x), (2.2)
sf0 =2 |15 Ody) o

QeS
and another sparse operator A’; by

1/r

l r
A =13 (& J 0| oo

QeS

For p € (1,0), f € Ll’; [R"), and b € BMO(R"), we also define two sparse operators related to the
commutator by

Tspf () = D 16(x) = bollfl,.0x0(*) (2.3)

QeS
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and

Tsppf(0) = f|(b bQ)f|p) Xo(x), (2.4)

QeS(|Q|

where b = & [, b(x)dx and 11,0 = (7 [, flf’(x)dx)".

A general dyadic grid D is the collection of cubes satisfying the following properties: (i) for any
cube Q € D, its side length £(Q) is of the form 2* for some k € Z; (ii) for any cubes Q;, Q> € D,
Q1 N O, € {01, Q», 0}; (iii) for each k € Z, the cubes of side length 2* form a partition of R”.

The sparse operators A, Tspp. and Tg by play an important role in getting the quantitative
weighted bound, which is crucial for us.

2.4. Young functions and general maximal functions

We call a function ¥ a Young function if it is a continuous, convex, increasing function and ¥ :
[0, 00) —> [0, 00) . Let f be a measurable function defined on a set £ with finite measure in R". The
Y — norm of f over E is defined by

1
If e = inf{/l>0: EL‘P(lf;x)l)dxs 1}.

Let ¥ be a Young function, and we define the Orlicz maximal operator My, by

My f(x) = sup || fllew).0-
O>x

In particular, let W(f) = ¢" for 1 < r < oo, and then My, is the maximal operator M, defined by

1 1/r
Mrf(x):sup(— f |f|’dt) . (2.5)
O>x |Q| 0

Let W(7) = tlog(l + t), and My, is the maximal operator M, 1) defined by

M og ) f(x) = sup || fllzaog 1),0-
O>x

Noting log(1 + 1) < %t‘s forany 0 < ¢ < 1 and all # > 0, we can deduce that

1
Mf(x) £ Miogr) f(x) < 5M1+5f(x), x € R (2.6)

2.5. A decomposition for rough homogeneous singular integral operator Tq
Let T be the singular integral operator defined in (1.1), and one can write

Taf = D Tuf = Y K™ u fy KO = o

n
mez mezZ |X|

Lemma 2.2. [27, Lemma 2] Let Q be homogeneous of degree zero and have a mean value of zero on
the unit sphere S"', and Q € LI(S"™) with g > 1. The following inequality holds:

Xom<|y|<om+l M€ Z. (27)

K@) < Il min {1271, 27617}

for 0 < a < 1/q" independent of Q and m € Z.

AIMS Mathematics Volume 11, Issue 1, 2111-2130.



2117

Lety € C; (R") be aradial nonnegative function with supp ¢ C {x eR": x| < i}, and f e(x)dx = 1.
For f € LP(R") with p > 1, let g (x) = 27 (Z‘dx) and S 4(f) = ¢4 * f. Then S, f converges in f

when d — —oo in the sense of the L” norm.
Take a sequence of integer numbers {N ()}, with

j=0
0= NO) < N(1) < N2) < - < N(j) = oo.

Then we have

Tm = TmSm + Z Tm (Sm—N(jH) - Sm—N(j)) .
=0
If we let, for j € {0} UN,

TN = Y TuSmnipf(6) = KY x f(), KN = )" K™ 5 @y (x),

meZ meZ

TN _ TN N
and Tj = Tj+l - Tj , then

To = T{)V+§:(TJ.N+1 -TY) = T{)V+ifj.v.
j=0 Jj=0

(2.8)

(2.9)

Lemma 2.3. Let Q be a homogeneous function of degree zero and have a mean value of zero on the
unit sphere S™!, and Q € L1(S"™") with q > 1. Then there are constants C and 0 < § < % independent

of ¢ and j € N such that for all j > 0,

) |K@|+[KF@)| < Qe @ [K© - K@) < 2Pl

Proof. By asimilar argument as that in [27], we obtain Lemma 2.3. For brevity, we omit the details. O

Lemma 2.3 shows that the sum in (2.9) converges strongly in the L?-operator norm.

Lemma 2.4. Let Q € LY(S"") with g > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere S"™™'. Then K;V satisfies the L1-Hormander condition, i.e., there is a

constant ¢ > 0 such that, for any y € R" \ {0} and |y| < R, we have

00 , 1/q
> (2R)" ( f [KY(x - y) - KY ()| dx) < CugN(j).
2kR<|x|<2k+1R

k=1

Proof. By the fact that

supp (K(’") ¢ (pm_N(j)) C {x eR": 2" < |x < 2’”+2} ,
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we have
0 q 1/q
D @Ry ( f KV (x - y) - KY ()| dx
=1 2kR<|x|<2k+1R
00 . 1/q
= Z DI (f K™ % onip(r =) = K™ % ()] dx)
= = 2kR<|x|<2t+1R
0 q 1/q
Z QR (f [K™ % @uon(x = ) = K™ 5 @y (X)) dx)
k=1 momokR 2kR<|x|<2k+1R
N() 1/q
=Y >, @R ( f K™ 5 @i = 3) = K™ % @y ()] dx)
k=1 m:m—kR 2kR<|x|<2k+1R
0 q 1/q
" @R (f |K " Cn-N)(x =) = K ) SDm—N(j)(X)| dx)
k=NG)+1 m:2m~2kR ZR<lxi<2*IR
=1+1I.
For I, by the Minkowski inequality and the fact that ||K (’")” Ly S eng2
NQ)
1< > 1K™ 2’<R) "< NG
k=1 m:2m~2kR

For 11, a direct computation shows that

= Z Z ”‘Pm—N(j)(‘ =Y) — @m-N(j) (')”U(Rn) < Cg-

k=N(j)+1 m:2m~2kR

Combining the estimate for / and /1, we complete the proof. O

Given a linear operator 7, we define the grand maximal operator My by

Mef(x) = sup ess sup T (fxrmso) @) (2.10)

For any fixed cube Q,, we define the local analogy of My ¢, by

Mz, f(x) = sup esssup|T (fxsgnse) @)
03x,0CQo éeQ

By Lemma 2.4, a standard argument shows the following two lemmas.

Lemma 2.5. Let Q € LY(S™ ') with g > 1 be a homogeneous function of degree zero and have a
mean value of zero on the unit sphere S"'. Then TY maps from L'(R") to L"*(R") with the bound
CN(DIIQ a1y, and is bounded on LF(R") for 1 < p < co with the bound CN(j)||2| a1y

Lemma 2.6. Let Q € LY(S"") with g > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere S"™'. Then

My ) < el @l (NGIMy £ + MT () + NGIMF()).

Moreover, My is bounded from LY (R") to LY°(R") with the bound CN(j)||| La(sn1)e
J
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Remark 2."7. The proofs of Lemmas 2.5 and 2.6 are similar to Lemmas 3 and 4 in [27] and we omit the
details.

Lemma 2.8. [28] Assume that T is bounded from L"(R") to L™*(R") and My is bounded from L*(R")
to L"*(R") with 1 < m < u < co. Then, for every f € L'(R") with compact support, there exists a
sparse family S such that for a.e. x € R",

ITf(0)] < CA.s (11D (%),

where C = Cypmu (I lpmuym + WMl )
Lemma 2.9. [29] Let A be defined as (2.2), p € (1,00), r € (0,00), and w € A,. Then for a sparse
Sfamily S C D with D as the dyadic grid,

Aoy < nnlwl, ([ 1078y sty )||f||Lp(w),

3. Some lemmas

3.1. Unweighted L? estimates with good decay for ij

Recall that TN T,Ai1 — TN for j € {0} UN. We will get the quantitative weighted estimates for 7~"]N ,

which are cru01al for the estimate of [b, T]N ] in Lemma 3.5.

Lemma 3.1. Let Q € LY(S"™") with g > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere S*'. Then for any 1 < p < co and j € N,

TN ~5pgNG) NI( 3
|75 Ly < €np27 NG + DI |l
with some constant 6, , > 0 independent of Tq and j.

Proof. By Lemmas 2.3 and 2.5, we know that the operator fj\’ is bounded on L*(R") with the bound
C27ND||Q|4¢sn-1y, and bounded on LP(R") with the bound CN(j + D||Q|l 41y for all 1 < p < oo.
Therefore, the Riesz-Thorin interpolation theorem implies the lemma. O

3.2. Unweighted L? estimates with good decay for [b, ij ]

We first present the sharp John-Nirenberg inequality and its application.

Lemma 3.2. [30] [Sharp John-Nirenberg] Let b € BMO(R"). There are dimensional constants
a, = # and B, > 1 such that

= b(y) — bo||dy < .. 31
IQIf (|b||BMO<R,,|(” Q|)y<ﬁ 3.1)
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Lemma 3.3. Let b € BMO(R") and let a,, < 1 < B, be the dimensional constants from (3.1). Then for
all 1 < p < oo,

nmﬂLp—l}:eWEApmwFWLASBi

a
sER, |5 < ——
lIbllBMOGRn)

Proof. By a direct computation, we have

@ Jy e )\ J e (—S—_bl)dx)p_l
(I(lzlfex;)(s(b bQ))dx)(élfe p(_%)dx)p_1

For the case where p > 2, Holder’s inequality and Lemma 3.2 imply

1 1 (b-by)\  \
(IQIf exp (sth - bQ))dx)(lQlf eXp(_Spflg)dx) <P

For the case where 1 < p < 2, by a direct computation and again by Lemma 3.2,

b-b p-l
(|Q|fe"p(s(b bQ))dx)(lgf Xp(_%—lg))dx) <P <

Thus by the definition of the constant A,, we complete the proof. O
We also need the quantitative weighted L” estimate for Tj’.v as follow.

Lemma 3.4. Ler Q € LY(S" ") with g > 1. Then for p € (¢',0) and w € A, T;V is bounded on LP(w)
with the bound c, , N( )|l a1y {w}a

pla P31

Proof. One may refer to [27] for specific proof details. In fact, combining Lemma 2.5, Lemma 2.6,
and Lemma 2.8, we obtain that

Y (0] < CNGIQA a1, Ay 51D
Then by Lemma 2.9, we get the lemma. O
Next we give the unweighted L estimate for [b, T‘J’.\’ ] with the decay bound.

Lemma 3.5. Let Q € LY(S™ ') with g > 1, and b € BMO(R"). Then, for ¢’ < p < oo,

(2. 7]

—0pqnN(J »
L@ < clbllsmoen Qo127 P4V N(j + DI Lo gn)-

Proof. We may assume that ||b|[smor+ = 1. Using the conjugation method, for any ¢ > 0,

b TN —zb
[b, TI_V]f — Lf Mdz.
lzI=¢

27 2
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Therefore, for any ¢ > 0,

Jlo-715

- TN —zh
o = 3z 500 [T (777)

Lp(epReZb) :

max{l 1, }

e

For|z| = ¢ > 0, we let w, := ey, := ¢ and W, := [w,], . ") Take £ = a, mm{% qL - ﬁ},
plq

and one can see that |pRez| < a,min {1, qﬁ - 1}, which implies w, € A, by Lemma 3.3, and so

w.la,, = "4, < B 3.2)

Lete =¢,/ (wZ)AP o and we get from Lemma 2.1 that wé*a €A, and

I+e I+e
{WZ }Al’/q/’p;l = Cn {WZ}Ap/q”PZl :
Thus by Lemma 3.4, we have
||TNf||LP(W|+g) = CN(] + 1)”Q“Lq(Sn D) {Wz}}ﬁ/gq,’p;l ”f”Lp(W%m) . (33)

Combining with Lemma 3.1 and (3.3), we apply the Stein-Weiss interpolation theorem of variable
measure to get that

|7 ()|

i —0p.qnN(D/Wa , , -1
Lotw,) < CN(] + I)HQ”Lq(Sn—l)Z plq {Wz}Ap/qr,p;l ||fVZ ||L1’(wz)
< CN(j + DIz 2 M P W | fll e,

< CN(j + DI o127 ™ PN fll ey

where the second inequality follows from (2.1), and the last inequality follows from (3.2). Thus we
complete the proof. O

3.3. Two-weight estimate for [b, TY]

In this subsection, we will prove the following lemma.

Lemma 3.6. Let Q € LY(S" ) with g > 1 and b € BMO(R"). Then, for | <p<gq, r > ﬁ, andw > 0,
we have

”f”LI’(M,w)-

Qe
N
—_—

S
X
| |
—_ =
~
N ——
<~
S

H[b, ij] fHLP(W) < llQl o IBllmoEn N () (p') ((Z_,I) )

3.3.1. Pointwise domination for [b, TJI.V ]

Lemma 3.7. Let T be a sublinear operator and My be defined in (2.10). Suppose that T is bounded
on L? (R") with bound A. Then for the bounded function f with compact support and a.e. x € R",

IT (0l < cn (Alf (O] + Mz f(X)) .
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Proof. Let f be a bounded function with compact support. Let x € R" and Q(x,r) C R” be a cube
centered at x having side length r. It follows from Holder’s inequality and the L? (R") boundedness of
T that

. oy < —  ITra]e
T o TG00l
< (| 0 Jow |T(f)mQu,r)xy)de)é + Mz f(x)
<c, [A (m - If(y)lzdy); " MTﬂx)) .
Let r — 0 and we get the result. 0

Lemma 3.8. For any cube Q C R", there exists 3" dyadic lattices OV and a cube P € O for some i
such that 3Q C P and |P| < 9"|Q|.

Proof. This lemma is the consequence of [31, Remark 2.2] and we omit the details. O

Lemma 3.9. Let Q € LI(S™") with g > 1 and let b € L}(}C(R"). For every compactly supported f €

L*(R"), there exist 3" dyadic lattices O and 2_19,, -sparse families S; C OY such that for a.e. x € R",

3n

6. 7] £0)| < call sy NG D (Tsiarl 1) + T, ,1110).

i=1

Proof. By Lemma 3.8, one can see that for every Q c R”, there exists 3" dyadic lattices O,..., 00"
and a cube R = Ry € O for some i, such that 30 C Ry and |Ry| < 9"|Q|.

We follow the idea in [28] and first prove a local version. Let Cq ; = [|Q||14sn-1)N(j), and we claim
that, for a fixed cube Qy C R”, there exists a %—sparse family ¥ c O (Qy) such that for a.e. x € Q,,

[6.72] (Frs0000)] < enCay Y (60 = brgl 1o + (=) £] Jeoto G4y

QeF

Following the idea of recursion, it suffices to prove that there exist pairwise disjoint cubes P; € O(Qy)
such that }}, |P)| < %|Q0| and

[2. 7] Prsedxan < enCa([b66) = by | flasen + (b = b, ) ]

* Z '[b’ TJN] (f)(apl)(x)‘)([,l_
1

Q',3Q0)

In fact, we obtain (3.4) by establishing a %—sparse family ¥ = {P’l‘},l € Z,, which is the union of
the cubes obtained from the iterative process. Next, for arbitrary pairwise disjoint cubes P; € O(Qy),

6. 7] (Fxs00)

Xo, can be dominated by the sum of three parts:

6. T] (Fxse0| xonur Z 6. 7] xsomsrd| Z 16, 7] Fxsm|
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It remains to show that for a.e. x € Qy,

H ](fX%QO )| Xoonup + Z ' (fX3Q0\3P1)|XP,
3.5)
<c,Cq (|b(x) - bRQ0| |flg 300 + '(b - bRQO)f‘q/SQO)-
By the fact that [b, T]f = [b — ¢, T]f for any ¢ € R, one has
'[b T ](f)(?)Qo Xoo\up, T Z ‘ (fX3QO\3P[)‘XPl
< |b - bry, | (lT,N (Fxso) Xonue + ) |TY (fX3Q0\3P1)|XP,] (3.6)
]

+ |ij ((b - bRQO)fX3Q0) Xoo\up, T Z ‘ T ((b - bRQO)fX3Qo\3P/)'XPl~
i

Set E = E| U E,, where
E;={x€ Qo:Ifl> alflyso} U {x € Qo : Myv(fixsg,) > ancg,,,-|ﬁ|q.3go},

for i = 1,2, where we take fi = f and f, = (b — bRQO)f. By Lemma 2.6, one can choose «, large
enough so that |E| < ZJﬁIQoL Applying Calder6n-Zygmund decomposition to the function y g on Qy at
height A = 2,1%, we obtain a class of pairwise disjoint cubes P; € O((Qy) such that

1 1
2n+1|Pl| <|PNE|< §|Pl|

and |[E \ U,P| = 0. It follows that ), |P)| < %|Qo| and by the fact that P, N E¢ # 0,

ess sup | T2 (fix30032)@)] < call Qs NI fily 30,
£ep;

Also, by Lemma 2.3 and the Plancherel theorem, we have that HTI.V
J N L2RM)—L2(RY)

can see that by applying Lemma 3.7 and |E \ U,P)| = 0, for a.e. x € Qg \ U,P,,

< C”Q”Lq(gn—l). One

T} (fxse))| < e (||Q||Lq(sn-.)|ﬁ<x>| + MT_,N(ﬁon)(x))
< llQl Loy NI fily 30, -
Combining the estimates above together with (3.6) proves (3.5), and then (3.4) is also proved.
The remaining is similar to [28] and we omit the details. We take a cube Q, containing supp(f),

and then give a partition of R” by a union of cubes produced by Q,. Applying (3.4) to each cube of the
union and by Lemma 3.8, the proof is complete. O
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3.3.2. Proof of Lemma 3.6

We need the folowing two lemmas.

Lemma 3.10. [I8, Lemma 3.8] Let w € A. Let © be a dyadic lattice and S C D be an n-sparse
family. Let Y be a Young function. Given a measurable function f on R", define

Bsf(0) 1= D Iflley.oxo.

Q€S

Then we have

4
1BsfllLiow) < E[W]Am”M‘P(L)f”LI(w)-

Lemma 3.11. [32, Lemma 2.9] Let 1 < p,r < oo and let M be the Hardy-Littlewood maximal operator.
Then for any w > 0,

1
”Mf”Lp((M,w)l—p) < cp'(r)r ||f||Lp(wl—p) .

We now prove Lemma 3.6. By duality, it suffices to prove that

[ 7))

, 3.7
M,.w (3.7)

‘i

WIIL (w)

">
w2 ((PYN, et
< ullQll Lagen1l1bllBMOEmN () (P) ; (s") "

L? (Myw)

o

where we set s = £—r. Again by the duality argument, we can write
p'-1

[ 7}] £

Mo = sup

”h”LI’(Mrw):l

f |6. 77| fOh(x)dx| .
-

LY (M,w)

We follow the idea in [18], which is called the Rubio de Francia algorithm (see [33, 34] for details).
For any h € LP(M,w) such that ||h||L»a,) = 1, let

[ee)

1 Skp, M(h (Mrw)%)

Rh) =Y — S(h) := 1
; 2 1S 1 2o, w) (M,w)»

which has the following properties:

(@) 0 <h <R, BIR L ww) < 2AlLeo,m)s
(0) R(h)(M,w)% € Ay with [R(h) (M,w)%]A <cp'.

One can also see that [Rh], < [Rh],, < c,p’. By property (a) and Lemma 3.9, we have

J.
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Using the John-Nirenberg inequality, (2.6), Lemma 2.1, and property (c) above, we have

f T | FICORR)Ax < " [fly.0 f |b(x) — bo| Rh(x)dx

Q€S;

< 2lbllsvoey Y 1011 ly ollRAllL1ng 0
QeS;
1

< 25, l1bllBMog) Z (IQI f Rh(x)sR”dX) 10l f1q.0

QeS;

< culRh), IIbllsvoen ) | RA(Q)|fly0

Q€S

< cup/Ibllsvoen ), RO\ fly .0,

Q€S;

where we take sg; 1= 1 + —-—— [Rh] . We apply Lemma 3.10 with () = /', and we have

D RO g0 < BRI [|My ]y <

L'(Rh) "
Q€S;
By property (b) above with [|A||»m,w) = 1, we have
L 1
I = ) p ! My f
1My 1o < |M S (M) dx (R’ M,wdx| <2 :
Rn MW |1 (a1

We note that ¢’ < p’ < oo, 1 <s<r,and 2(p’' - 1) = ”—, — 1. By Lemma 3.11, one has that

M, f
M,.w

( [ (M(|f|)q’)5; (M) dx)p'
7 (o1, () dx)”'

LP (Myw)

and then

L
q

f T sub.q |FIORR(x)dx < cy||bllBMOEN ((Z ) ) () ()7

WIILY (w)

(3.8)

(3.9)

AIMS Mathematics Volume 11, Issue 1, 2111-2130.



2126

On the other hand, the John-Nirenberg inequality tells us that

1
f T | FICORR(x)dx < Z(@ f (b - bo)fO)! dy) Rh(Q)
= QeS;
< > (b= bol”
Q€S;

< cullbllsvoen Y A7 ;(logm RI(Q).

Q€S;

1
expL!4 .0 |||f|q ||L(logL)q’,Q)q Rh(Q)

By Lemma 3.10 with W(¢) = tlog"’(l + 1), (2.6), and property (b), we can deduce that

i 7 ’
> AN e o RO < 8IRALs [Myqog iy 1A |1
Q€S

Myassqyf
M,w

b

L? (Myw)

’
el <265 |

for any 0 < ¢ < 1. A similar argument as the estimate of (3.8) implies

1
’ Vs % p—’ —_ ! F
e A L (3.10)
vonw 0 \@'(1+q6) -1 Wllzy o)
»

-1 ")y
Recall the notion that s = hr > 1, and set A = % Then 0 < A < 1 and ﬁ =25 — 1. Now take

4 HM g1+

o= min{%%, 1}, and one has
14 14 2
————— =max{A(— -1+ 1, ———},
q'(1+4'6) q g1 +q)
and so
fi’(lliq’é) -1 N q’(ll-)i—lq'é) -1 Al 1 1
—7 =] ———= < ((As))” =(Q2s)7, (3.11)
p—1 r_1
q
1 1-A)p +Ag’ !
— = max ( )P 9 q’, 1 < max{ 9 11 <24's. (3.12)
0 (I=-Mp' +4q) I-A

Combining the inequalities (3.10)—(3.12), we have

(3.13)

f TSbq'fl(x)Rh<x>dx<cnnanmeq( ) ()7 Hf

L (w)

Now the desired inequality (3.7) follows from (3.9) and (3.13).
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4. Proof of the main results

Lemma 4.1. Let N(j) = 2/ — 1 for j € {0} UN. Then, for any 0 < 6 < 1,

= N |
Z NG + 127N < 16,
J=0 0

Proof. In fact, note that 27 < 2x72 for x > 1, and a simple computation shows

N(Gj+ 127N « N " itlp=@I=d - g N " 0in=20 o _
Z G ) Z Z B

=0 =0 j=0

4.1. Proof of Theorem 1.1

Let Q € LY(S™ ') and b € BMO(R"). For ¢’ < p < g, by using Lemmas 3.5 and 3.6 and applying
the interpolation theorem with a change of measures in [35], we have, for 0 < § < 1 and any weight
function w > 0,

Jlo. 71

Lr(w)

’ i/ p_' — 1 ’
, p q ’
< Cn||Q||Lq(sn-l)||b||BM0(R”) (P )26 (?) [[;, _ 1”] ] ||f||Ll’(M,</Hw)

X N(j + 1)270panND0-60),

By the triangle inequality and Lemma 4.1 with N(j) = 2/ — 1, we have

ILb. Tal il < [[2-78] ], + > o1 |,
=0

1
1+

oY\ ((E-1Y)) "
S n Q n— b n —_— a 2 w)e
CnllQlzoqen-1)lIDllBMOR 1—¢ (q,) [[p’ _ 1”] ] ”f”LI(M,/g )
Changing the indicator by letting r = 8y, and taking 6 = (2%) and n = £Lvy > 1, then the term on the

q
right-hand side of the last inequality above is equal to

1 n1+L
1 o(pa-pr\" ((a—P 7
Call @l 1Blsios T (» )2( qq_p) ((qq ey)) ANty o0

1

_p\7 B
< 19 IBllanton 27 () (’;q_—lf) @) floon, o0,

which completes the proof.

4.2. Proof of Corollary 1.2

By Lemma 2.1, if we take y = 1 + Tn[vih , then M, (w)(x) < ¢,M(w)(x) for w € A,,. Moreover we

have M(w)(x) < c,[w]a,w(x) for w € A,. Therefore, Theorem 1.1 implies Corollary 1.2.
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5. Conclusions

In this article, the two-weight estimate was studied for the commutator [b, To] with b € BMO(R")
and the singular integral operator T, with the rough kernel Q. We extended the previous works by
weakening the kernel Q € L*(S"!) to Q € LI(S"!) for some ¢ > 1, and established the quantitative
A — A, weighted estimates for the commutator [b, T] with the rough kernel Q € LY(S"!) (¢ > 1) and
the function b € BMO(R").
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