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1. Introduction

This article will focus on studying the quantitative weighted estimates for commutators of rough
singular integral operators. We will work on Rn, n ≥ 2. The singular integral operator with rough
kernel TΩ is defined by

TΩ f (x) = p.v.
∫
Rn

Ω(y′)
|y|n

f (x − y)dy, (1.1)

where Ω is a homogeneous function of degree zero and have a mean value of zero on the unit sphere
Sn−1 throughout the paper.

The operator has been studied by numerous scholars since the 1950s, and was first introduced by
Calderón and Zygmund [1]. For p ∈ (1,∞), Ω ∈ L log L(Sn−1), Calderón and Zygmund [2] proved that
the operator TΩ is bounded on Lp(Rn). Ricci and Weiss [3] gave the same results under the condition
Ω ∈ H1(Sn−1), an improvement upon the Calderón-Zygmund result, where notably, the space H1(Sn−1)
contains L log L(Sn−1). For other works concerning the Lp(Rn) boundedness for the operator TΩ, we
refer the reader to [3–5] and the references therein.
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Given a linear operator T and b ∈ BMO(Rn), the commutator [b,T ] in the sense of Coifman-
Rochberg-Weiss is defined as follows:

[b,T ] f (x) = b(x)T f (x) − T (b f )(x).

When Ω ∈ Lipα(Sn−1) for some α ∈ (0, 1), Coifman, Rochberg, and Weiss [6] established that
b ∈ BMO(Rn) is the sufficient and necessary condition for Lp(Rn)(p > 1) boundedness of commutator
[b,TΩ]. Via the weighted estimates for TΩ together with the relationship between Ap weights and
BMO functions, Alvarez, Bagby, Kurtz, and Pérez [7] established the Lp(Rn) boundedness of the
commutator [b,TΩ] under the condition Ω ∈ Lq(Sn−1) for some q ∈ (1,∞). Hu [8] showed that if
Ω ∈ L(log L)2(Sn−1), then the commutator [b,TΩ] maps Lp(Rn) to Lp(Rn) for all p ∈ (1,∞) with the
bound C‖b‖BMO(Rn). For other works about the boundedness of [b,TΩ], see [9–12], among others.

During the last two decades, there have been many significant works on the quantitative weighted
bounds for singular integral operators and their commutators. Here we present a sharp, weighted
estimate for some principal operators in harmonic analysis, which can be traced back to Buckley [13].
He proved that for 1 < p < ∞ and w ∈ Ap, the Hardy-Littlewood maximal operator M has the following
estimate:

‖M f ‖Lp(w) ≤ cn,p[w]
1

p−1

Ap
‖ f ‖Lp(w).

Subsequently, Astala, Iwaniec, and Saksman proposed the famous A2 conjecture in [14], which was
solved by Petermichl and Volberg in [15]. This attracted great interest in researching the sharp weighted
estimate for the Hilbert transform, Riesz transform, and general Calderón-Zygmund operators.

Later, how to find sharp quantitative weighted estimates for rough singular integral operators
also received attention. In the following years, many researchers studied the quantitative weighted
boundedness of TΩ defined in (1.1) with Ω ∈ L∞(Sn−1). Hytönen, Roncal, and Tapiola first gave the
following result in [16]: For p ∈ (1,∞) and w ∈ Ap,

‖TΩ f ‖Lp(w) ≤ cn,p‖Ω‖L∞(Sn−1)[w]
2 max

{
1, 1

p−1

}
Ap

‖ f ‖Lp(w). (1.2)

Combining estimate (1.2) and the idea in [17] originating from the conjugate method in [6, p. 621],
authors in [18] proved that, for p ∈ (1,∞) and w ∈ Ap,

‖[b,TΩ] f ‖Lp(w) ≤ cn,p‖Ω‖L∞(Sn−1)‖b‖BMO(Rn)[w]
3 max

{
1, 1

p−1

}
Ap

‖ f ‖Lp(w).

Later, Li, Pérez, Rivera-Rios, and Roncal [19] improved the bound in (1.2) for p ∈ (1,∞), w ∈ Ap, and
Ω ∈ L∞(Sn−1):

‖TΩ f ‖Lp(w) ≤ cn,p[w]
1
p

Ap

(
[w]

1
p′

A∞
+ [w1−p′]

1
p

A∞

)
min

{
[w1−p′]A∞ , [w]A∞

}
‖ f ‖Lp(w). (1.3)

Using the conjugate method again and combining (1.3), the authors in [9] pointed out that, for p ∈
(1,∞), w ∈ Ap, and Ω ∈ L∞(Sn−1),

‖[b,TΩ] f ‖Lp(w) ≤ cn,p[w]
1
p

Ap

(
[w]

1
p′

A∞
+ [w1−p′]

1
p

A∞

) (
[w1−p′]A∞ + [w]A∞

)2
‖ f ‖Lp(w).
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We next recall the quantitative A1 − A∞ weighted estimates for some operators. In [20], Reguera
and Thiele proposed that, for the Hilbert transform H, there exists a constant c > 0 such that for any
w ∈ A1,

‖H f ‖L1,∞(w) ≤ c[w]A1‖ f ‖L1(w).

This is the so-called A1 conjecture. However, it was shown in [21], by using Bellman function
techniques, that the A1 conjecture is incorrect.

Inspired by the A1 conjecture, Lerner, Ombrosi, and Pérez [22] established the following
quantitative weighted endpoint estimate for any Calderón-Zygmund operator T for p > 1 and w ∈ A1:

‖T f ‖L1,∞(w) ≤ c[w]A1 log(e + [w]A1)‖ f ‖L1(w). (1.4)

The key to obtain (1.4) is to prove the following two-weight Lp estimate, for p ∈ (1,∞), r ∈ (1,∞),
and w > 0:

‖T f ‖Lp(w) ≤ cT pp′(r′)
1
p′ ‖ f ‖Lp(Mrw), (1.5)

where Mrw is the maximal function defined by Mrw(x) := supQ3x

(
1
|Q|

∫
Q
|w(t)|rdt

)1/r
, and the supremum

is taken over all cubes Q in Rn. It should be noted that (r′)
1
p′ in (1.5) is crucial to obtain the next

estimate: for p ∈ (1,∞) and w ∈ A1,

‖T f ‖Lp(w) ≤ cpp′[w]A1‖ f ‖Lp(w).

For Ω ∈ L∞(Sn−1), 1 < p < ∞, and w ∈ A1, Pérez, Rivera-Rios, and Roncal in [18] established the
following quantitative weighted estimate for TΩ:

‖TΩ f ‖Lp(w) ≤ cn‖Ω‖L∞(Sn−1)[w]
1
p

A1
[w]

1+ 1
p′

A∞
‖ f ‖Lp(w), (1.6)

and the following quantitative weighted estimate for the commutator [b,TΩ] with b ∈ BMO(Rn):

‖[b,TΩ] f ‖Lp(w) ≤ cn‖Ω‖L∞(Sn−1)[w]
1
p

A1
[w]

2+ 1
p

A∞
‖ f ‖Lp(w). (1.7)

Later the quantitative weighted estimates (1.6) and (1.7) were improved in [23] such that

‖TΩ f ‖Lp(w) ≤ cn‖Ω‖L∞(Sn−1)[w]
1
p

A1
[w]

1
p′

A∞
‖ f ‖Lp(w),

and
‖[b,TΩ] f ‖Lp(w) ≤ cn‖Ω‖L∞(Sn−1)‖b‖BMO(Rn)(p′)3 p2[w]

1
p

A1
[w]

1+ 1
p′

A∞
‖ f ‖Lp(w).

Motivated by the works mentioned above, our goal in this paper is to weaken the kernel Ω ∈

L∞(Sn−1) to Ω ∈ Lq(Sn−1) for some q > 1 and establish the quantitative A1 − A∞ weighted estimates
for the commutator [b,TΩ] with rough kernel Ω ∈ Lq(Sn−1) and function b ∈ BMO(Rn). We will adapt
the idea in [18], i.e., we decompose TΩ into a sequence of suitable operators, whose kernels satisfy
the locally Lq-Hörmander condition. Using some new refined arguments, we will get a two-weight
estimate for the related commutator via sparse domination and the conjugate method.
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Theorem 1.1. Let Ω ∈ Lq(Sn−1) with 2 < q <∞, b ∈ BMO(Rn), and q′ < p < q. Then for any γ > q
q−p

and weight w > 0, there exists a constant cn > 0 depending only on n such that

‖[b,TΩ] f ‖Lp(w) ≤ cn‖b‖BMO(Rn)‖Ω‖Lq(Sn−1)
(
p′

)2
(

pq − p
q − p

) 1
q′

((
q − p

q
γ

)′)2+ 1
p′

‖ f ‖Lp(Mγ(w)). (1.8)

Corollary 1.2. Let Ω ∈ Lq(Sn−1) with 2 < q < ∞ and b ∈ BMO(Rn). Then, if w ∈ A∞, there exists a
constant τn > 0 depending only on n such that, for q′ < p < q/(1 + τn[w]A∞),

‖[b,TΩ] f ‖Lp(w) ≤ cn,p,q‖b‖BMO(Rn)‖Ω‖Lq(Sn−1)

((
q − p

q

(
1 +

1
τn[w]A∞

))′)2+ 1
p′

[w]
1
p

A1
‖ f ‖Lp(w).

The paper is organized as follows. In Section 2, we will present some basic definitions and give
a decomposition of TΩ. In Section 3, we will present the unweighted Lp estimate and two-weight
estimate for the pieces of the operator sequence. In Section 4, we will prove the main result.

2. Preliminary

2.1. Notations

In this article, cn and Cn stand for the positive dimensional constants. C denotes the positive
constants not depending on the essential variables. C, cn, and Cn may vary at each occurrence. Given
a function f , f̂ denotes the Fourier transform of f . Q indicates a cube in Rn with sides parallel to the
coordinate axes. For 1 < p < ∞, we denote the conjugate index of ital by p′ =

p
p−1 . a ∼ b indicates

that there exists an absolute constant c > 0 such that 1
c b ≤ a ≤ cb.

2.2. Ap weight

For 1 < p < ∞, a weight w belongs to the Muckenhoupt class Ap(Rn) if w1−p′ ∈ L1
loc(R

n), where
(p′ − 1)(p − 1) = 1, and

[w]Ap := sup
Q

(
1
|Q|

∫
Q

w(x)dx
) (

1
|Q|

∫
Q

w1−p′(x)dx
)p−1

<∞,

where the supremum is taken over all cubes in Rn. For w ∈ ∪p>1Ap(Rn), we will use the following
definition of the A∞ constant for w (see [24, 25]):

[w]A∞ := sup
Q

1
w(Q)

∫
Q

M
(
wχQ

)
(x)dx,

with w(Q) =
∫

Q
w(x)dx and χQ being the characteristic function of Q. For brevity, we use the following

notations [16, 26]:

{w}Ap := [w]
1
p

Ap
max

{
[w]

1
p′

A∞
, [w1−p′]

1
p

A∞

}
,

(w)Ap := max
{
[w]A∞ , [w

1−p′]A∞

}
,

{w}Ap,r;s := [w]
1
r
Ap

max
{
[w]( 1

s−
1
r )+

A∞
, [w1−p′]

1
r
A∞

}
,
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where ( 1
r −

1
p )+ = max{ 1r −

1
p , 0}. Moreover, by the fact that

[w]A∞ ≤ cn[w]Ap , [w1−p′]A∞ ≤ cn[w1−p′]Ap′ = cn[w]
1

p−1

Ap
,

we know that
(w)Ap ≤ cn{w}Ap ≤ c′n[w]

max
{
1, 1

p−1

}
Ap

, {w}Ap,r;s ≤ cn[w]
max

{
1
s ,

p
p−1

1
r

}
Ap

. (2.1)

We now need some results concerning the sharp reverse Hölder inequality.

Lemma 2.1. [16]

(1) If w ∈ A∞, then there is a dimensional constant cn such that, for any 0 < δ < cn/[w]A∞ ,

1
|Q|

∫
Q

w1+δ(x)dx ≤ 2
(

1
|Q|

∫
Q

w(x)dx
)1+δ

,

and [
w1+δ/2

]
A∞
≤ Cn[w]1+δ/2

A∞
.

(2) Let 1 < p < ∞ and w ∈ Ap. Then, by choosing cn small enough, we have[
w1+δ

]
Ap
≤ 4 [w]1+δ

Ap
,

for every 0 < δ ≤ cn/(w)Ap . Moreover, it follows that w1+δ/2 ∈ Ap and(
w1+δ/2

)
Ap
≤ Cn(w)1+δ/2

Ap
,

{
w1+δ/2

}
Ap
≤ Cn{w}

1+δ/2
Ap

.

2.3. Sparse operator

The collection S of cubes is η-sparse for 0 < η < 1, if for each fixed Q ∈ S, there exists a measurable
set EQ ⊂ Q such that

∣∣∣EQ

∣∣∣ ≥ η |Q| and the sets {EQ}Q∈S are pairwise disjoint.
Given a sparse family S, r ∈ (0,∞), and f ∈ Lr

loc(R
n), we define the sparse operatorAr,S by

Ar,S f (x) =
∑
Q∈S

(
1
|Q|

∫
Q
| f (y)|rdy

) 1
r

χQ(x), (2.2)

and another sparse operatorAr
S

by

Ar
S

f (x) =

∑Q∈S
(

1
|Q|

∫
Q
| f (y)|dy

)r

χQ(x)


1/r

.

For p ∈ (1,∞), f ∈ Lp
loc(R

n), and b ∈ BMO(Rn), we also define two sparse operators related to the
commutator by

TS,b,p f (x) =
∑
Q∈S

|b(x) − bQ|| f |p,QχQ(x) (2.3)
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and

T ?
S,b,p f (x) =

∑
Q∈S

(
1
|Q|

∫
Q
|(b − bQ) f |p

) 1
p

χQ(x), (2.4)

where bQ = 1
|Q|

∫
Q

b(x)dx and | f |p,Q =
(

1
|Q|

∫
Q
| f |p(x)dx

) 1
p .

A general dyadic grid D is the collection of cubes satisfying the following properties: (i) for any
cube Q ∈ D, its side length `(Q) is of the form 2k for some k ∈ Z; (ii) for any cubes Q1,Q2 ∈ D,
Q1 ∩ Q2 ∈ {Q1,Q2, ∅}; (iii) for each k ∈ Z, the cubes of side length 2k form a partition of Rn.

The sparse operators Ar
S
, TS,b,p, and T ?

S,b,p play an important role in getting the quantitative
weighted bound, which is crucial for us.

2.4. Young functions and general maximal functions

We call a function Ψ a Young function if it is a continuous, convex, increasing function and Ψ :
[0,∞) 7−→ [0,∞) . Let f be a measurable function defined on a set E with finite measure in Rn. The
Ψ − norm of f over E is defined by

‖ f ‖Ψ(L),E := inf
{
λ > 0 :

1
|E|

∫
E

Ψ

(
| f (x)|
λ

)
dx ≤ 1

}
.

Let Ψ be a Young function, and we define the Orlicz maximal operator MΨ(L) by

MΨ(L) f (x) = sup
Q3x
‖ f ‖Ψ(L),Q.

In particular, let Ψ(t) = tr for 1 ≤ r < ∞, and then MΨ(L) is the maximal operator Mr defined by

Mr f (x) = sup
Q3x

(
1
|Q|

∫
Q
| f |rdt

)1/r

. (2.5)

Let Ψ(t) = t log(1 + t), and MΨ(L) is the maximal operator ML(log L) defined by

ML(log L) f (x) = sup
Q3x
‖ f ‖L(log L),Q.

Noting log(1 + t) ≤ 1
δ
tδ for any 0 < δ < 1 and all t > 0, we can deduce that

M f (x) ≤ ML(log L) f (x) ≤
1
δ

M1+δ f (x), x ∈ Rn. (2.6)

2.5. A decomposition for rough homogeneous singular integral operator TΩ

Let TΩ be the singular integral operator defined in (1.1), and one can write

TΩ f :=
∑
m∈Z

Tm f :=
∑
m∈Z

K(m) ∗ f , K(m)(x) :=
Ω(x)
|x|n

χ2m<|x|<2m+1 m ∈ Z. (2.7)

Lemma 2.2. [27, Lemma 2] Let Ω be homogeneous of degree zero and have a mean value of zero on
the unit sphere Sn−1, and Ω ∈ Lq(Sn−1) with q > 1. The following inequality holds:∣∣∣∣K̂(m)(ξ)

∣∣∣∣ ≤ C‖Ω‖Lq(Sn−1) min
{
|2mξ|α, |2mξ|−α

}
for 0 < α < 1/q′ independent of Ω and m ∈ Z.
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Let ϕ ∈ C∞0 (Rn) be a radial nonnegative function with suppϕ ⊂
{
x ∈ Rn : |x| < 1

4

}
, and

∫
ϕ(x)dx = 1.

For f ∈ Lp(Rn) with p > 1, let ϕd(x) = 2−ndϕ
(
2−d x

)
and S d( f ) = ϕd ∗ f . Then S d f converges in f

when d → −∞ in the sense of the Lp norm.
Take a sequence of integer numbers {N( j)}∞j=0 with

0 = N(0) < N(1) < N(2) < · · · < N( j)→ ∞.

Then we have

Tm = TmS m +

∞∑
j=0

Tm

(
S m−N( j+1) − S m−N( j)

)
.

If we let, for j ∈ {0} ∪ N,

T N
j f (x) =

∑
m∈Z

TmS m−N( j) f (x) = KN
j ∗ f (x), KN

j (x) =
∑
m∈Z

K(m) ∗ ϕm−N( j)(x), (2.8)

and T̃ N
j = T N

j+1 − T N
j , then

TΩ = T N
0 +

∞∑
j=0

(
T N

j+1 − T N
j

)
= T N

0 +

∞∑
j=0

T̃ N
j . (2.9)

Lemma 2.3. Let Ω be a homogeneous function of degree zero and have a mean value of zero on the
unit sphere Sn−1, and Ω ∈ Lq(Sn−1) with q > 1. Then there are constants C and 0 < δ < 1

q′ independent
of ξ and j ∈ N such that for all j ≥ 0,

(1)
∣∣∣∣K̂(ξ)

∣∣∣∣ +
∣∣∣∣K̂N

j (ξ)
∣∣∣∣ ≤ C‖Ω‖Lq(Sn−1); (2)

∣∣∣∣K̂(ξ) − K̂N
j (ξ)

∣∣∣∣ ≤ C2−δN( j)‖Ω‖Lq(Sn−1).

Proof. By a similar argument as that in [27], we obtain Lemma 2.3. For brevity, we omit the details. �

Lemma 2.3 shows that the sum in (2.9) converges strongly in the L2-operator norm.

Lemma 2.4. Let Ω ∈ Lq(Sn−1) with q > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere Sn−1. Then KN

j satisfies the Lq-Hörmander condition, i.e., there is a
constant c > 0 such that, for any y ∈ Rn \ {0} and |y| < R, we have

∞∑
k=1

(
2kR

)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣KN
j (x − y) − KN

j (x)
∣∣∣q dx

)1/q

6 cn,qN( j).

Proof. By the fact that

supp
(
K(m) ∗ ϕm−N( j)

)
⊂

{
x ∈ Rn : 2m−2 6 |x| 6 2m+2

}
,
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we have
∞∑

k=1

(2kR)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣KN
j (x − y) − KN

j (x)
∣∣∣q dx

)1/q

≤

∞∑
k=1

∑
m∈Z

(2kR)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣K(m) ∗ ϕm−N( j)(x − y) − K(m) ∗ ϕm−N( j)(x)
∣∣∣q dx

)1/q

≤

∞∑
k=1

∑
m:2m∼2kR

(2kR)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣K(m) ∗ ϕm−N( j)(x − y) − K(m) ∗ ϕm−N( j)(x)
∣∣∣q dx

)1/q

=

N( j)∑
k=1

∑
m:2m∼2kR

(2kR)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣K(m) ∗ ϕm−N( j)(x − y) − K(m) ∗ ϕm−N( j)(x)
∣∣∣q dx

)1/q

+

∞∑
k=N( j)+1

∑
m:2m∼2kR

(2kR)n/q′
(∫

2kR<|x|<2k+1R

∣∣∣K(m) ∗ ϕm−N( j)(x − y) − K(m) ∗ ϕm−N( j)(x)
∣∣∣q dx

)1/q

:= I + II.

For I, by the Minkowski inequality and the fact that
∥∥∥K(m)

∥∥∥
Lq(Rn) ≤ cn,q2

−mn
q′ ,

I ≤
N( j)∑
k=1

∑
m:2m∼2kR

∥∥∥K(m)
∥∥∥

Lq(Rn)

(
2kR

)n/q′
≤ cn,qN( j).

For II, a direct computation shows that

II ≤
∞∑

k=N( j)+1

∑
m:2m∼2kR

∥∥∥ϕm−N( j)(· − y) − ϕm−N( j) (·)
∥∥∥

L1(Rn) ≤ cn,q.

Combining the estimate for I and II, we complete the proof. �

Given a linear operator T , we define the grand maximal operatorMT by

MT f (x) = sup
Q3x

ess sup
ξ∈Q

∣∣∣T (
fχRn\3Q

)
(ξ)

∣∣∣ . (2.10)

For any fixed cube Q0, we define the local analogy ofMT,Q0 by

MT,Q0 f (x) = sup
Q3x,Q⊂Q0

ess sup
ξ∈Q

∣∣∣T (
fχ3Q0\3Q

)
(ξ)

∣∣∣ .
By Lemma 2.4, a standard argument shows the following two lemmas.

Lemma 2.5. Let Ω ∈ Lq(Sn−1) with q > 1 be a homogeneous function of degree zero and have a
mean value of zero on the unit sphere Sn−1. Then T N

j maps from L1(Rn) to L1,∞(Rn) with the bound
CN( j)‖Ω‖Lq(Sn−1), and is bounded on Lp(Rn) for 1 < p < ∞ with the bound CN( j)‖Ω‖Lq(Sn−1).

Lemma 2.6. Let Ω ∈ Lq(Sn−1) with q > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere Sn−1. Then

MT N
j

f (x) ≤ cn‖Ω‖Lq(Sn−1)

(
N( j)Mq′ f (x) + MT N

j f (x) + N( j)M f (x)
)
.

Moreover,MT N
j

is bounded from Lq′(Rn) to Lq′,∞(Rn) with the bound CN( j)‖Ω‖Lq(Sn−1).
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Remark 2.7. The proofs of Lemmas 2.5 and 2.6 are similar to Lemmas 3 and 4 in [27] and we omit the
details.

Lemma 2.8. [28] Assume that T is bounded from Lm(Rn) to Lm,∞(Rn) andMT is bounded from Lu(Rn)
to Lu,∞(Rn) with 1 ≤ m ≤ u ≤ ∞. Then, for every f ∈ Lr(Rn) with compact support, there exists a
sparse family S such that for a.e. x ∈ Rn,

|T f (x)| ≤ CAr,S (| f |) (x),

where C = Cn,m,u

(
‖T‖Lm(w)→Lm,∞(w) + ‖MT ‖Lu(w)→Lu,∞(w)

)
.

Lemma 2.9. [29] Let Ar
S

be defined as (2.2), p ∈ (1,∞), r ∈ (0,∞), and w ∈ Ap. Then for a sparse
family S ⊂ D withD as the dyadic grid,

∥∥∥Ar
S

f
∥∥∥

Lp(w)
≤ cn,p[w]

1
p

Ap

(
[w]

(
1
r −

1
p

)
+

A∞
+ [w−

1
p−1 ]

1
p

A∞

)
‖ f ‖Lp(w),

where
(

1
r −

1
p

)
+

= max
{

1
r −

1
p , 0

}
.

3. Some lemmas

3.1. Unweighted Lp estimates with good decay for T̃ N
j

Recall that T̃ N
j = T N

j+1 − T N
j for j ∈ {0} ∪N. We will get the quantitative weighted estimates for T̃ N

j ,
which are crucial for the estimate of [b, T̃ N

j ] in Lemma 3.5.

Lemma 3.1. Let Ω ∈ Lq(Sn−1) with q > 1 be a homogeneous function of degree zero and have a mean
value of zero on the unit sphere Sn−1. Then for any 1 < p < ∞ and j ∈ N,∥∥∥T̃ N

j f
∥∥∥

Lp(Rn)
≤ cn,p2−δp,qN( j)N( j + 1)‖Ω‖Lq(Sn−1)‖ f ‖Lp(Rn),

with some constant δp,q > 0 independent of TΩ and j.

Proof. By Lemmas 2.3 and 2.5, we know that the operator T̃ N
j is bounded on L2(Rn) with the bound

C2−δN( j)‖Ω‖Lq(S n−1), and bounded on Lp(Rn) with the bound CN( j + 1)‖Ω‖Lq(S n−1) for all 1 < p < ∞.
Therefore, the Riesz-Thorin interpolation theorem implies the lemma. �

3.2. Unweighted Lp estimates with good decay for
[
b, T̃ N

j

]
We first present the sharp John-Nirenberg inequality and its application.

Lemma 3.2. [30] [Sharp John-Nirenberg] Let b ∈ BMO(Rn). There are dimensional constants
αn = 1

2n+2 and βn > 1 such that

sup
Q

1
|Q|

∫
Q

exp
(

αn

‖b‖BMO(Rn)

∣∣∣b(y) − bQ

∣∣∣) dy ≤ βn. (3.1)
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Lemma 3.3. Let b ∈ BMO(Rn) and let αn < 1 < βn be the dimensional constants from (3.1). Then for
all 1 < p < ∞,

s ∈ R, |s| ≤
αn

‖b‖BMO(Rn)
min {1, p − 1} ⇒ esb ∈ Ap and

[
esb

]
Ap
≤ β2

n.

Proof. By a direct computation, we have(
1
|Q|

∫
Q

exp (sb) dx
) (

1
|Q|

∫
Q

exp
(
−

sb
p − 1

)
dx

)p−1

=

(
1
|Q|

∫
Q

exp
(
s
(
b − bQ

))
dx

) (
1
|Q|

∫
Q

exp
(
−

s(b − bQ)
p − 1

)
dx

)p−1

.

For the case where p ≥ 2, Hölder’s inequality and Lemma 3.2 imply(
1
|Q|

∫
Q

exp
(
s(b − bQ)

)
dx

) (
1
|Q|

∫
Q

exp
(
−

s(b − bQ)
p − 1

)
dx

)p−1

≤ β2
n.

For the case where 1 < p < 2, by a direct computation and again by Lemma 3.2,(
1
|Q|

∫
Q

exp
(
s(b − bQ)

)
dx

) (
1
|Q|

∫
Q

exp
(
−

s(b − bQ)
p − 1

)
dx

)p−1

≤ βp
n ≤ β

2
n.

Thus by the definition of the constant Ap, we complete the proof. �

We also need the quantitative weighted Lp estimate for T N
j as follow.

Lemma 3.4. Let Ω ∈ Lq(Sn−1) with q > 1. Then for p ∈ (q′,∞) and w ∈ Ap/q′ , T N
j is bounded on Lp(w)

with the bound cn,pN( j)‖Ω‖Lq(Sn−1){w}Ap/q′ ,p;1.

Proof. One may refer to [27] for specific proof details. In fact, combining Lemma 2.5, Lemma 2.6,
and Lemma 2.8, we obtain that∣∣∣T N

j f (x)
∣∣∣ ≤ CN( j)‖Ω‖Lq(Sn−1)Aq′,S(| f |)(x).

Then by Lemma 2.9, we get the lemma. �

Next we give the unweighted Lp estimate for
[
b, T̃ N

j

]
with the decay bound.

Lemma 3.5. Let Ω ∈ Lq(Sn−1) with q > 1, and b ∈ BMO(Rn). Then, for q′ < p < ∞,∥∥∥∥[b, T̃ N
j

]
f
∥∥∥∥

Lp(Rn)
≤ cn‖b‖BMO(Rn)‖Ω‖Lq(Sn−1)2−δp,q,nN( j)N( j + 1)‖ f ‖Lp(Rn).

Proof. We may assume that ‖b‖BMO(Rn) = 1. Using the conjugation method, for any ζ > 0,

[
b, T̃ N

j

]
f =

1
2πi

∫
|z|=ζ

ezbT̃ N
j

(
f e−zb

)
z2 dz.
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Therefore, for any ζ > 0, ∥∥∥∥[b, T̃ N
j

]
f
∥∥∥∥

Lp(Rn)
≤

1
2πζ

sup
|z|=ζ

∥∥∥∥T̃ N
j

(
f e−zb

)∥∥∥∥
Lp(epRezb)

.

For |z| = ζ > 0, we let wz := epRezb, vz := ezb, and Wz := [wz]
max

{
1, 1

p/q′−1

}
Ap/q′

. Take ζ = αn min
{

1
p ,

1
q′ −

1
p

}
,

and one can see that |pRez| ≤ αnmin
{
1, p

q′ − 1
}
, which implies wz ∈ Ap/q′ by Lemma 3.3, and so

[wz]Ap/q′ = [epRezb]Ap/q′ ≤ β
2
n. (3.2)

Let ε = cn/(wz)Ap/q′ , and we get from Lemma 2.1 that w1+ε
z ∈ Ap/q′ and{

w1+ε
z

}
Ap/q′ ,p;1

≤ cn {wz}
1+ε
Ap/q′ ,p;1 .

Thus by Lemma 3.4, we have∥∥∥T̃ N
j f

∥∥∥
Lp(w1+ε

z )
≤ CN( j + 1)‖Ω‖Lq(Sn−1) {wz}

1+ε
Ap/q′ ,p;1 ‖ f ‖Lp(w1+ε

z ) . (3.3)

Combining with Lemma 3.1 and (3.3), we apply the Stein-Weiss interpolation theorem of variable
measure to get that∥∥∥∥T̃ N

j

(
f vz
−1

)∥∥∥∥
Lp(wz)

≤ CN( j + 1)‖Ω‖Lq(Sn−1)2
−δp,q,nN( j)/(wz)Ap/q′ {wz}Ap/q′ ,p;1

∥∥∥ f vz
−1

∥∥∥
Lp(wz)

≤ CN( j + 1)‖Ω‖Lq(Sn−1)2−δp,a,nN( j)/WzWz ‖ f ‖Lp(Rn)

≤ CN( j + 1)‖Ω‖Lq(Sn−1)2−δp,q,nN( j) ‖ f ‖Lp(Rn) ,

where the second inequality follows from (2.1), and the last inequality follows from (3.2). Thus we
complete the proof. �

3.3. Two-weight estimate for [b,T N
j ]

In this subsection, we will prove the following lemma.

Lemma 3.6. Let Ω ∈ Lq(Sn−1) with q > 1 and b ∈ BMO(Rn). Then, for 1 < p < q, r > q
q−p , and w > 0,

we have

∥∥∥∥[b,T N
j

]
f
∥∥∥∥

Lp(w)
≤ cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)N( j)

(
p′

)2
((

p′

q′

)′) 1
q′


 p′

q′ − 1

p′ − 1
r


′

1+ 1
p′

‖ f ‖Lp(Mrw).

3.3.1. Pointwise domination for [b,T N
j ]

Lemma 3.7. Let T be a sublinear operator andMT be defined in (2.10). Suppose that T is bounded
on L2 (Rn) with bound A. Then for the bounded function f with compact support and a.e. x ∈ Rn,

|T f (x)| ≤ cn (A| f (x)| +MT f (x)) .
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Proof. Let f be a bounded function with compact support. Let x ∈ Rn and Q(x, r) ⊂ Rn be a cube
centered at x having side length r. It follows from Hölder’s inequality and the L2 (Rn) boundedness of
T that

1
|Q(x, r)|

∫
Q(x,r)
|T f (y)|dy ≤

1
|Q(x, r)|

∫
Q(x,r)

∣∣∣T ( fχ3Q(x,r))(y)
∣∣∣ dy

+
1

|Q(x, r)|

∫
Q(x,r)
|T ( fχRd\3Q(x,r))(y)|dy

≤

(
1

|Q(x, r)|

∫
Q(x,r)
|T ( fχ3Q(x,r))(y)|2dy

) 1
2

+MT f (x)

≤ cn

A
(

1
|3Q(x, r)|

∫
3Q(x,r)

| f (y)|2dy
) 1

2

+MT f (x)

 .
Let r → 0 and we get the result. �

Lemma 3.8. For any cube Q ⊂ Rn, there exists 3n dyadic lattices O(i) and a cube P ∈ O(i) for some i
such that 3Q ⊂ P and |P| ≤ 9n|Q|.

Proof. This lemma is the consequence of [31, Remark 2.2] and we omit the details. �

Lemma 3.9. Let Ω ∈ Lq(Sn−1) with q > 1 and let b ∈ L1
loc(R

n). For every compactly supported f ∈
L∞(Rn), there exist 3n dyadic lattices O(i) and 1

2·9n -sparse families Si ⊂ O
(i) such that for a.e. x ∈ Rn,

∣∣∣∣[b,T N
j

]
f (x)

∣∣∣∣ ≤ cn‖Ω‖Lq(Sn−1)N( j)
3n∑
i=1

(
TSi,b,q′ | f |(x) + T ?

Si,b,q′ | f |(x)
)
.

Proof. By Lemma 3.8, one can see that for every Q ⊂ Rn, there exists 3n dyadic lattices O(1),...,O(3n)

and a cube R = RQ ∈ O
(i) for some i, such that 3Q ⊂ RQ and |RQ| ≤ 9n|Q|.

We follow the idea in [28] and first prove a local version. Let CΩ, j = ‖Ω‖Lq(Sn−1)N( j), and we claim
that, for a fixed cube Q0 ⊂ R

n, there exists a 1
2 -sparse family F ⊂ O (Q0) such that for a.e. x ∈ Q0,∣∣∣∣[b,T N

j

]
( fχ3Q0)(x)

∣∣∣∣ ≤ cnCΩ, j

∑
Q∈F

(∣∣∣b(x) − bRQ

∣∣∣ | f |q′,3Q +
∣∣∣∣(b − bRQ

)
f
∣∣∣∣
q′,3Q

)
χQ(x). (3.4)

Following the idea of recursion, it suffices to prove that there exist pairwise disjoint cubes Pl ∈ O(Q0)
such that

∑
l |Pl| ≤

1
2 |Q0| and∣∣∣∣[b,T N
j

]
( fχ3Q0)(x)

∣∣∣∣ χQ0 ≤ cnCΩ, j

(∣∣∣b(x) − bRQ0

∣∣∣ | f |q′,3Q0 +
∣∣∣∣(b − bRQ0

)
f
∣∣∣∣
q′,3Q0

)
+

∑
l

∣∣∣∣[b,T N
j

]
( fχ3Pl)(x)

∣∣∣∣ χPl .

In fact, we obtain (3.4) by establishing a 1
2 -sparse family F = {Pk

l }, l ∈ Z+, which is the union of
the cubes obtained from the iterative process. Next, for arbitrary pairwise disjoint cubes Pl ∈ O(Q0),∣∣∣∣[b,T N

j

]
( fχ3Q0)

∣∣∣∣ χQ0 can be dominated by the sum of three parts:∣∣∣∣[b,T N
j

]
( fχ3Q0)

∣∣∣∣ χQ0\∪lPl ,
∑

l

∣∣∣∣[b,T N
j

]
( fχ3Q0\3Pl)

∣∣∣∣ χPl ,
∑

l

∣∣∣∣[b,T N
j

]
( fχ3Pl)

∣∣∣∣ χPl .
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It remains to show that for a.e. x ∈ Q0,∣∣∣∣[b,T N
j

]
( fχ3Q0)

∣∣∣∣ χQ0\∪lPl +
∑

l

∣∣∣∣[b,T N
j

]
( fχ3Q0\3Pl)

∣∣∣∣ χPl

≤ cnCΩ, j

(∣∣∣b(x) − bRQ0

∣∣∣ | f |q′,3Q0 +
∣∣∣∣(b − bRQ0

)
f
∣∣∣∣
q′,3Q0

)
.

(3.5)

By the fact that [b,T ] f = [b − c,T ] f for any c ∈ R, one has∣∣∣∣[b,T N
j

]
( fχ3Q0)

∣∣∣∣ χQ0\∪lPl +
∑

l

∣∣∣∣[b,T N
j

]
( fχ3Q0\3Pl)

∣∣∣∣ χPl

≤
∣∣∣b − bRQ0

∣∣∣ ∣∣∣T N
j ( fχ3Q0)

∣∣∣ χQ0\∪lPl +
∑

l

∣∣∣T N
j ( fχ3Q0\3Pl)

∣∣∣ χPl


+

∣∣∣∣T N
j

((
b − bRQ0

)
fχ3Q0

)∣∣∣∣ χQ0\∪lPl +
∑

l

∣∣∣∣ T N
j

((
b − bRQ0

)
fχ3Q0\3Pl

)∣∣∣∣ χPl .

(3.6)

Set E = E1 ∪ E2, where

Ei =
{
x ∈ Q0 : | fi| > αn| fi|q′,3Q0

}
∪

{
x ∈ Q0 :MT N

j
( fiχ3Q0) > αnCΩ, j| fi|q′,3Q0

}
,

for i = 1, 2, where we take f1 = f and f2 =
(
b − bRQ0

)
f . By Lemma 2.6, one can choose αn large

enough so that |E| ≤ 1
2n+2 |Q0|. Applying Calderón-Zygmund decomposition to the function χE on Q0 at

height λ = 1
2n+1 , we obtain a class of pairwise disjoint cubes Pl ∈ O(Q0) such that

1
2n+1 |Pl| ≤ |Pl ∩ E| ≤

1
2
|Pl|

and |E \ ∪lPl| = 0. It follows that
∑

l |Pl| ≤
1
2 |Q0| and by the fact that Pl ∩ Ec , ∅,

ess sup
ξ∈Pl

∣∣∣T N
j ( fiχ3Q0\3Pl)(ξ)

∣∣∣ ≤ cn‖Ω‖Lq(Sn−1)N( j)| fi|q′,3Q0 .

Also, by Lemma 2.3 and the Plancherel theorem, we have that
∥∥∥∥T N

j

∥∥∥∥
L2(Rn)→L2(Rn)

≤ C‖Ω‖Lq(Sn−1). One
can see that by applying Lemma 3.7 and |E \ ∪lPl| = 0, for a.e. x ∈ Q0 \ ∪lPl,∣∣∣T N

j ( fiχ3Q0)
∣∣∣ ≤ cn

(
‖Ω‖Lq(Sn−1)| fi(x)| +MT N

j
( fiχ3Q0)(x)

)
≤ cn‖Ω‖Lq(Sn−1)N( j)| fi|q′,3Q0 .

Combining the estimates above together with (3.6) proves (3.5), and then (3.4) is also proved.
The remaining is similar to [28] and we omit the details. We take a cube Q0 containing supp( f ),

and then give a partition of Rn by a union of cubes produced by Q0. Applying (3.4) to each cube of the
union and by Lemma 3.8, the proof is complete. �
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3.3.2. Proof of Lemma 3.6

We need the folowing two lemmas.

Lemma 3.10. [18, Lemma 3.8] Let w ∈ A∞. Let D be a dyadic lattice and S ⊂ D be an η-sparse
family. Let Ψ be a Young function. Given a measurable function f on Rn, define

BS f (x) :=
∑
Q∈S

‖ f ‖Ψ(L),QχQ(x).

Then we have

‖BS f ‖L1(w) ≤
4
η

[w]A∞‖MΨ(L) f ‖L1(w).

Lemma 3.11. [32, Lemma 2.9] Let 1 < p, r < ∞ and let M be the Hardy-Littlewood maximal operator.
Then for any w > 0,

‖M f ‖Lp((Mrw)1−p) ≤ cp′(r′)
1
p ‖ f ‖Lp(w1−p) .

We now prove Lemma 3.6. By duality, it suffices to prove that∥∥∥∥∥∥∥∥
[
b,T N

j

]
f

Mrw

∥∥∥∥∥∥∥∥
Lp′ (Mrw)

≤ cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)N( j)
(
p′

)2
((

p′

q′

)′) 1
q′ (

s′
)1+ 1

p′

∥∥∥∥∥ f
w

∥∥∥∥∥
Lp′ (w)

, (3.7)

where we set s =
p′

q′ −1

p′−1 r. Again by the duality argument, we can write∥∥∥∥∥∥∥∥
[
b,T N

j

]
f

Mrw

∥∥∥∥∥∥∥∥
Lp′ (Mrw)

= sup
‖h‖Lp(Mrw)=1

∣∣∣∣∣∫
Rn

[
b,T N

j

]
f (x)h(x)dx

∣∣∣∣∣ .
We follow the idea in [18], which is called the Rubio de Francia algorithm (see [33, 34] for details).
For any h ∈ Lp(Mrw) such that ‖h‖Lp(Mrw) = 1, let

R(h) :=
∞∑

k=0

1
2k

S kh
‖S ‖kLp(Mrw)

, S (h) :=
M

(
h (Mrw)

1
p
)

(Mrw)
1
p

,

which has the following properties:

(a) 0 ≤ h ≤ R(h), (b)|Rh‖Lp(Mrw) ≤ 2‖h‖Lp(Mrw),

(c) R(h)(Mrw)
1
p ∈ A1 with

[
R(h) (Mrw)

1
p
]

A1
≤ cp′.

One can also see that [Rh]A∞ ≤ [Rh]A3 ≤ cn p′. By property (a) and Lemma 3.9, we have

∫
Rn

∣∣∣∣[b,T N
j

]
f (x)

∣∣∣∣ h(x)dx ≤ cn‖Ω‖Lq(Sn−1)N( j)
∫
Rn

3n∑
i=1

(
TSi,b,q′ | f |(x) + T ?

Si,b,q′ | f |(x)
)

Rh(x)dx.
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Using the John-Nirenberg inequality, (2.6), Lemma 2.1, and property (c) above, we have∫
Rn
TSi,b,q′ | f |(x)Rh(x)dx ≤

∑
Q∈Si

| f |q′,Q

∫
Q

∣∣∣b(x) − bQ

∣∣∣ Rh(x)dx

≤ 2‖b‖BMO(Rn)

∑
Q∈Si

|Q|| f |q′,Q‖Rh‖L log L,Q

≤ 2s′Rh‖b‖BMO(Rn)

∑
Q∈Si

(
1
|Q|

∫
Q

Rh(x)sRhdx
) 1

sRh

|Q|| f |q′,Q

≤ cn[Rh]A∞‖b‖BMO(Rn)

∑
Q∈Si

Rh(Q)| f |q′,Q

≤ cn p′‖b‖BMO(Rn)

∑
Q∈Si

Rh(Q)| f |q′,Q,

where we take sRh := 1 + 1
cn[Rh]A∞

. We apply Lemma 3.10 with Ψ(t) = tq′ , and we have

∑
Q∈Si

Rh(Q)| f |q′,Q ≤ 8[Rh]A∞

∥∥∥Mq′ f
∥∥∥

L1(Rh)
≤ cn p′

∥∥∥Mq′ f
∥∥∥

L1(Rh)
.

By property (b) above with ‖h‖Lp(Mrw) = 1, we have

∥∥∥Mq′ f
∥∥∥

L1(Rh)
≤

(∫
Rn

∣∣∣Mq′ f
∣∣∣p′ (Mrw)1−p′ dx

) 1
p′

(∫
Rn

(Rh)pMrwdx
) 1

p

≤ 2

∥∥∥∥∥∥Mq′ f
Mrw

∥∥∥∥∥∥
Lp′ (Mrw)

.

We note that q′ < p′ < ∞, 1 < s < r, and s
r (p′ − 1) =

p′

q′
− 1. By Lemma 3.11, one has that

∥∥∥∥∥∥Mq′ f
Mrw

∥∥∥∥∥∥
Lp′ (Mrw)

=

(∫
Rn

(
M(| f |)q′

) p′

q′ (Mrw)1−p′ dx
) 1

p′

=

(∫
Rn

(
M(| f |)q′

) p′

q′
(
Ms

(
w

r
s
)) s

r (1−p′)
dx

) 1
p′

≤ cn

((
p′

q′

)′(
s′
) q′

p′

) 1
q′ ∥∥∥| f |q′∥∥∥

L
p′
q′

w(
1− p′

q′
)

r
s



= cn

((
p′

q′

)′) 1
q′


 p′

q′ − 1

p′ − 1
r


′

1
p′ ∥∥∥∥∥ f

w

∥∥∥∥∥
Lp′ (w)

,

(3.8)

and then ∫
Rn
TSi,b,q′ | f |(x)Rh(x)dx ≤ cn‖b‖BMO(Rn)

((
p′

q′

)′) 1
q′

(p′)2 (
s′
) 1

p′

∥∥∥∥∥ f
w

∥∥∥∥∥
Lp′ (w)

. (3.9)
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On the other hand, the John-Nirenberg inequality tells us that

∫
Rn
T ?
Si,b,q′ | f |(x)Rh(x)dx ≤

∑
Q∈Si

(
1
|Q|

∫
Q

∣∣∣(b − bQ) f (y)
∣∣∣q′dy

) 1
q′

Rh(Q)

≤
∑
Q∈Si

(∥∥∥|b − bQ|
q′
∥∥∥

exp L1/q′ ,Q
·
∥∥∥| f |q′∥∥∥

L(log L)q′ ,Q

) 1
q′ Rh(Q)

≤ cn‖b‖BMO(Rn)

∑
Q∈Si

‖| f |q
′

‖
1
q′

L(log L)q′ ,Q
Rh(Q).

By Lemma 3.10 with Ψ(t) = t logq′(1 + t), (2.6), and property (b), we can deduce that∑
Q∈Si

∥∥∥| f |q′∥∥∥ 1
q′

L(log L)q′ ,Q
Rh(Q) ≤ 8[Rh]A∞

∥∥∥ML(log L)q′ (| f |q
′

)1/q′
∥∥∥

L1(Rh)

≤ cn
p′

δ

∥∥∥Mq′(1+δq′) f
∥∥∥

L1(Rh)
≤ 2cn

p′

δ

∥∥∥∥∥∥Mq′(1+δq′) f
Mrw

∥∥∥∥∥∥
Lp′ (Mrw)

,

for any 0 < δ < 1. A similar argument as the estimate of (3.8) implies

p′

δ

∥∥∥∥∥∥Mq′(1+δq′) f
Mrw

∥∥∥∥∥∥
Lp′ (Mrw)

≤
p′

δ

(
p′

q′(1 + q′δ)

) 1
q′ (1+q′δ)


 p′

q′(1+q′δ) − 1

p′ − 1
r


′

1
p′ ∥∥∥∥∥ f

w

∥∥∥∥∥
Lp′ (w)

. (3.10)

Recall the notion that s =
p′

q′ −1

p′−1 r > 1, and set ∆ =
(2s′)′

s . Then 0 < ∆ < 1 and 1
1−∆

= 2s′ − 1. Now take

δ = min{ (1−∆)(p′+q′)
(1−∆)p′+∆q′

1
q′ , 1}, and one has

p′

q′(1 + q′δ)
= max{∆(

p′

q′
− 1) + 1,

p′

q′(1 + q′)
},

and so 
 p′

q′(1+q′δ) − 1

p′ − 1
r


′

1
p′

=


 p′

q′(1+q′δ) − 1
p′

q′ − 1
s


′

1
p′

≤
(
(∆s)′

) 1
p′ =

(
2s′

) 1
p′ , (3.11)

1
δ

= max
{

(1 − ∆)p′ + ∆q′

(1 − ∆)(p′ + q′)
q′, 1

}
≤ max{

q′

1 − ∆
, 1} ≤ 2q′s′. (3.12)

Combining the inequalities (3.10)–(3.12), we have

∫
Rn
T ?
Si,b,q′ | f |(x)Rh(x)dx ≤ cn‖b‖BMO(Rn) p′q′

(
p′

q′

) 1
q′ (

s′
)1+ 1

p′

∥∥∥∥∥ f
w

∥∥∥∥∥
Lp′ (w)

. (3.13)

Now the desired inequality (3.7) follows from (3.9) and (3.13).
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4. Proof of the main results

Lemma 4.1. Let N( j) = 2 j − 1 for j ∈ {0} ∪ N. Then, for any 0 < δ < 1,
∞∑
j=0

N( j + 1)2−N( j)δ <
16
δ
.

Proof. In fact, note that 2−x < 2x−2 for x ≥ 1, and a simple computation shows
∞∑
j=0

N( j + 1)2−N( j)δ <

∞∑
j=0

2 j+12−(2 j−1)δ < 4
∞∑
j=0

2 j2−2 jδ ≤
16
δ
.

�

4.1. Proof of Theorem 1.1

Let Ω ∈ Lq(Sn−1) and b ∈ BMO(Rn). For q′ < p < q, by using Lemmas 3.5 and 3.6 and applying
the interpolation theorem with a change of measures in [35], we have, for 0 < θ < 1 and any weight
function w > 0,

∥∥∥∥[b, T̃ N
j

]
f
∥∥∥∥

Lp(w)
≤ cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)

(
p′

)2θ
(

p′

q′

) θ
q′


 p′

q′ − 1

p′ − 1
r


′
θ+ θ

p′

‖ f ‖Lp(Mr/θw)

× N( j + 1)2−δp,q,nN( j)(1−θ).

By the triangle inequality and Lemma 4.1 with N( j) = 2 j − 1, we have

‖[b,TΩ] f ‖Lp(w) ≤

∥∥∥∥[b,T N
0

]
f
∥∥∥∥

Lp(w)
+

∞∑
j=0

∥∥∥∥[b, T̃ N
j

]
f
∥∥∥∥

Lp(w)

≤ cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)
(p′)2

1 − θ

(
p′

q′

) 1
q′


 p′

q′ − 1

p′ − 1
r


′

1+ 1
p′

‖ f ‖Lp(Mr/θw).

Changing the indicator by letting r = θγ, and taking θ =
(2η′)′

η
and η =

q−p
q γ > 1, then the term on the

right-hand side of the last inequality above is equal to

cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)
1

1 − θ
(
p′

)2
(

pq − p
q − p

) 1
q′

((
q − p

q
θγ

)′)1+ 1
p′

‖ f ‖Lp(Mγ(w))

≤ cn‖Ω‖Lq(Sn−1)‖b‖BMO(Rn)2η′
(
p′

)2
(

pq − p
q − p

) 1
q′ (

2η′
)1+ 1

p′ ‖ f ‖Lp(Mγ(w)),

which completes the proof.

4.2. Proof of Corollary 1.2

By Lemma 2.1, if we take γ = 1 + 1
τn[w]A∞

, then Mγ(w)(x) ≤ cnM(w)(x) for w ∈ A∞. Moreover we
have M(w)(x) ≤ cn[w]A1w(x) for w ∈ A1. Therefore, Theorem 1.1 implies Corollary 1.2.
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5. Conclusions

In this article, the two-weight estimate was studied for the commutator [b,TΩ] with b ∈ BMO(Rn)
and the singular integral operator TΩ with the rough kernel Ω. We extended the previous works by
weakening the kernel Ω ∈ L∞(Sn−1) to Ω ∈ Lq(Sn−1) for some q > 1, and established the quantitative
A1 − A∞ weighted estimates for the commutator [b,TΩ] with the rough kernel Ω ∈ Lq(Sn−1) (q > 1) and
the function b ∈ BMO(Rn).
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