Research article

Gauss sums over some subsets

  • Published: 21 January 2026
  • MSC : 11L05, 11L40

  • Let $ q \ge 3 $ be an integer, $ \chi $ a non-principal character modulo $ q $, and $ A, B, H\leq q $ with $ (u, q) = 1 $ and $ (v, q) = 1 $. In this paper, by combining estimates for general Kloosterman sums and Gauss sums with properties of trigonometric sums, we derive nontrivial bounds for Gauss sums over the sets $ \aleph(n, q), $ $ \hbar_{u, v}(A, B, H) $, and $ \aleph(n, q)\cap\hbar_{u, v}(A, B, H), $ where

    $ \aleph(n,q) = \big\{ a \in\mathbb{Z} \mid (a, q) = 1,\ n \nmid a + \overline{a} \big\}, $

    and

    $ \hbar_{u,v}(A, B, H) = \{a\in\mathbb{Z}|(a,q) = 1, ab\equiv 1\bmod q, 1\le a\le A, 1\le b\le B, |ua-vb|\le H\}. $

    Citation: Xiaoying Liu, Zhefeng Xu. Gauss sums over some subsets[J]. AIMS Mathematics, 2026, 11(1): 1954-1967. doi: 10.3934/math.2026081

    Related Papers:

  • Let $ q \ge 3 $ be an integer, $ \chi $ a non-principal character modulo $ q $, and $ A, B, H\leq q $ with $ (u, q) = 1 $ and $ (v, q) = 1 $. In this paper, by combining estimates for general Kloosterman sums and Gauss sums with properties of trigonometric sums, we derive nontrivial bounds for Gauss sums over the sets $ \aleph(n, q), $ $ \hbar_{u, v}(A, B, H) $, and $ \aleph(n, q)\cap\hbar_{u, v}(A, B, H), $ where

    $ \aleph(n,q) = \big\{ a \in\mathbb{Z} \mid (a, q) = 1,\ n \nmid a + \overline{a} \big\}, $

    and

    $ \hbar_{u,v}(A, B, H) = \{a\in\mathbb{Z}|(a,q) = 1, ab\equiv 1\bmod q, 1\le a\le A, 1\le b\le B, |ua-vb|\le H\}. $



    加载中


    [1] D. A. Burgess, Partial Gaussian sums, Bull. London Math. Soc., 20 (1988), 589–592. https://doi.org/10.1112/blms/20.6.589 doi: 10.1112/blms/20.6.589
    [2] D. A. Burgess, Partial Gaussian sums Ⅱ, Bull. London Math. Soc., 21 (1989), 153–158. https://doi.org/10.1112/blms/21.2.153 doi: 10.1112/blms/21.2.153
    [3] D. A. Burgess, Partial Gaussian sums Ⅲ, Glasgow Math. J., 34 (1992), 253–261. https://doi.org/10.1017/S001708950000879X doi: 10.1017/S001708950000879X
    [4] R. K. Guy, Unsolved problems in number theory, 3 Eds., New York: Springer, 2004. https://doi.org/10.1007/978-0-387-26677-0
    [5] D. Han, W. P. Zhang, Upper bound estimate of character sums over Lehmer's numbers, J. Inequal. Appl., 2013 (2013), 392. https://doi.org/10.1186/1029-242x-2013-392 doi: 10.1186/1029-242x-2013-392
    [6] D. Han, Z. F. Xu, Y. Yi, T. P. Zhang, A note on high-dimensional D. H. Lehmer problem, Taiwanese J. Math., 25 (2021), 1137–1157. https://doi.org/10.11650/tjm/210705 doi: 10.11650/tjm/210705
    [7] Y. K. Ma, H. Chen, Z. Z. Qin, T. P. Zhang, Character sums over generalized Lehmer numbers, J. Inequal. Appl., 2016 (2016), 270. https://doi.org/10.1186/s13660-016-1213-y doi: 10.1186/s13660-016-1213-y
    [8] C. D. Pan, Goldbach conjecture, Beijing: Science Press, 1981.
    [9] G. L. Ren, D. D. He, T. P. Zhang, On general partial Gaussian sums, J. Inequal. Appl., 2016 (2016), 295. https://doi.org/10.1186/s13660-016-1238-2 doi: 10.1186/s13660-016-1238-2
    [10] I. E. Shparlinski, On a generalization of a Lehmer problem, Math. Z., 263 (2009), 619–631. https://doi.org/10.1007/s00209-008-0434-2 doi: 10.1007/s00209-008-0434-2
    [11] J. K. Wang, Z. F. Xu, Partitions into two Lehmer numbers in $\Bbb Z_q$, Math. Slovaca, 75 (2025), 45–54. https://doi.org/10.1515/ms-2025-0004 doi: 10.1515/ms-2025-0004
    [12] X. Wang, L. Wang, G. H. Chen, The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters, AIMS Mathematics, 9 (2024), 17774–17783. https://doi.org/10.3934/math.2024864 doi: 10.3934/math.2024864
    [13] P. Xi, Y. Yi, On character sums over flat numbers, J. Number Theory, 130 (2010), 1234–1240. https://doi.org/10.1016/j.jnt.2009.10.011 doi: 10.1016/j.jnt.2009.10.011
    [14] Z. F. Xu, Distribution of the difference of an integer and its $m$-th power mod $ n$ over incomplete intervals, J. Number Theory, 133 (2013), 4200–4223. https://doi.org/10.1016/j.jnt.2013.06.006 doi: 10.1016/j.jnt.2013.06.006
    [15] W. P. Zhang, On a problem of D. H. Lehmer and its generalization, Compos. Math., 86 (1993), 307–316.
    [16] W. P. Zhang, A problem of D. H. Lehmer and its generalization (Ⅱ), Compos. Math., 91 (1994), 47–56.
    [17] W. P. Zhang, L. Wang, New product formulas for classical Gauss sums, Acta. Math. Sin.-English Ser., 41 (2025), 1580–1590. https://doi.org/10.1007/s10114-025-3543-5 doi: 10.1007/s10114-025-3543-5
    [18] M. X. Zhong, T. P. Zhang, Partitions into three generalized D. H. Lehmer numbers, AIMS Mathematics, 9 (2024), 4021–4031. https://doi.org/10.3934/math.2024196 doi: 10.3934/math.2024196
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(51) PDF downloads(8) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog