
https://www.aimspress.com/journal/Math

AIMS Mathematics, 11(1): 1954–1967.
DOI:10.3934/math.2026081
Received: 01 December 2025
Revised: 06 January 2026
Accepted: 13 January 2026
Published: 21 January 2026

Research article

Gauss sums over some subsets

Xiaoying Liu and Zhefeng Xu*

Research Center for Number Theory and Its Applications, Northwest University, Xi’an 710127, China

* Correspondence: Email: zfxu@nwu.edu.cn.

Abstract: Let q ≥ 3 be an integer, χ a non-principal character modulo q, and A, B,H ≤ q with
(u, q) = 1 and (v, q) = 1. In this paper, by combining estimates for general Kloosterman sums and
Gauss sums with properties of trigonometric sums, we derive nontrivial bounds for Gauss sums over
the sets ℵ(n, q), ℏu,v(A, B,H), and ℵ(n, q) ∩ ℏu,v(A, B,H), where

ℵ(n, q) =
{
a ∈ Z | (a, q) = 1, n ∤ a + a

}
,

and
ℏu,v(A, B,H) = {a ∈ Z|(a, q) = 1, ab ≡ 1 mod q, 1 ≤ a ≤ A, 1 ≤ b ≤ B, |ua − vb| ≤ H}.
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1. Introduction

1.1. Motivation and background

For any Dirichlet character χ modulo q, the classical Gauss sums are defined by

G(m, χ) =
q∑

a=1

χ(a)e
(ma

q

)
, (1.1)

where e(y) = e2πiy. Various properties of G(m, χ) can be found in standard texts on analytic number
theory; see, for example, [8]. Perhaps the most famous properties of G(m, χ) are the following
identities:

G(m, χ∗) = χ∗(m) τ(χ∗) and |τ(χ∗)| =
√

q,

where χ∗ is a primitive character modulo q, χ∗ is the conjugate character of χ∗, and τ(χ∗) = G(1, χ∗).
If χ is a nonprimitive character modulo q, then the value distribution of τ(χ) is very irregular; in fact,
it can even be zero. The properties of G(m, χ) have been generalized by many scholars (see [12, 17]).
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When a ∈ [N + 1,N + H], the sum (1.1) takes the form

N+H∑
a=N+1

χ(a)e
(ma

q

)
. (1.2)

By extending his well-known work on character sums, Burgess [1–3] obtained several estimates
for (1.2).

For an integer a with (a, q) = 1, we denote by ā the multiplicative inverse of a modulo q. Put

ℵ(n, q) =
{
a ∈ Z | (a, q) = 1, n ∤ a + a

}
.

The elements of ℵ(n, q) are called the generalized Lehmer numbers modulo q. In the special case
n = 2, we have ℵ(2, q) = N(q), the set of classical Lehmer numbers. Let |N(q)| denote the cardinality
of the set N(q). D. H. Lehmer asked us to find |N(p)| or at least to say something nontrivial about it for
an odd prime p (see Problem F12 of [4]). W. P. Zhang [15, 16] obtained several asymptotic estimates
for |N(p)| and |N(q)|. The classical problem has been generalized by many scholars (see [6,10,11,18]).

Han and Zhang [5] obtained an upper bound estimate of the character sums over classical Lehmer
numbers as ∑

a∈N(p)

χ(a) =
p−1∑
a=1

2∤(a+ā)

χ(a) ≪ p1/2 ln2 p,

where χ is an arbitrary non-principal character modulo an odd prime p. Later, Ma, Chen, Qin, and
Zhang [7] extended the result of [5] by studying the character sums over ℵ(n, q).

In contrast to these works, which are devoted to character sums, the present paper turns to the study
of Gauss sums over the set ℵ(n, q), namely,∑

a∈ℵ(n,q)

χ(a)e
(ma

q

)
.

Using estimates for Gauss sums, together with properties of trigonometric sums, we obtain the
following result.

1.2. Main results

Theorem 1.1. Let q ≥ 3 be an integer and n ≥ 2 be a fixed integer with (n, q) = 1. For any non-
principal character χ modulo q, we obtain∑

a∈ℵ(n,q)

χ(a)e
(ma

q

)
≪ nq1/2d5(q) log2 q.

On the other hand, let A = A(q) ≤ q, B = B(q) ≤ q, (u, q) = 1, (v, q) = 1, and H = H(q) ≤ q. Define

ℏu,v(A, B,H) =
{
a ∈ Z

∣∣∣ (a, q) = 1, ab ≡ 1 mod q, 1 ≤ a ≤ A, 1 ≤ b ≤ B, |ua − vb| ≤ H
}
.

It directly generalizes the set of so-called H-flat numbers modulo q, which was studied extensively by
Xi and Yi [13] and the references therein. Moreover, Ren, He, and Zhang [9] dealt with general partial
Gauss sums over the set ℏ1,1(A, B,H).
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The present paper extends earlier work in two directions. We first derive nontrivial bounds for
Gauss sums over ℏu,v(A, B,H) with weights u and v. We then study Gauss sums over the intersection
ℵ(n, q)∩ ℏu,v(A, B,H), which has not been considered before. More precisely, we consider Gauss sums
of the form ∑

a∈ℏu,v(A,B,H)

χ(a)e
(ma

q

)
and

∑
a∈ℵ(n,q)∩ℏu,v(A,B,H)

χ(a)e
(ma

q

)
,

and our aim is to prove nontrivial upper bounds for these sums. Our main results may now be stated as
follows.

Theorem 1.2. Let q ≥ 3 be an integer and χ a non-principal Dirichlet character modulo q. Then,∑
a∈ℏu,v(A,B,H)

χ(a)e
(ma

q

)
≪ d(q)q

1
2

(umABd(q) log H
q2 +

vBd(q) log q log H
q

+ log3 q
)
,

which is uniformly nontrivial for any positive integer m such that m < q
1
2 .

Remark 1.3. The restriction m < q1/2 is imposed to ensure nontriviality. The bound holds for all m, but
its leading term depends linearly on m. A comparison with the trivial bound shows that the estimate is
nontrivial only when m < q1/2.

In addition, in the special case u = v = 1, Theorem 1.2 coincides with the corresponding result
in [9]. Similarly, we obtain the following result.

Theorem 1.4. Let q ≥ 3 be an integer, n ≥ 2 a fixed integer with (n, q) = 1, and χ a non-principal
Dirichlet character modulo q. Then,∑

a∈ℵ(n,q)∩ℏu,v(A,B,H)

χ(a)e
(ma

q

)
≪ nd(q)q

1
2

(umABd(q) log H
q2 +

vBd(q) log q log H
q

+ log3 q
)
,

which is uniformly nontrivial for any positive integer m such that m < q
1
2 .

1.3. Notations

The following notations will be used throughout this paper:

• e(x) = exp(2πix) = e2πix;
• (a, b) denotes the greatest common divisor of a and b;
• f ≪ g means | f | ⩽ cg for some unspecified positive constant c;
• ϕ(q) and d(q) denote the Euler function and divisor function, respectively; µ(q) denotes the

Möbius function;
• max{a, b} denotes the greatest number among a, b;
• min{a, b} denotes the least number among a, b;
• {x} denotes the fractional part of x, and ⟨x⟩ = min{{x}, 1 − {x}};
• x̄ denotes the multiplicative inverse of x modulo q; and
•
∑′

denotes the sum restricted to a reduced residue system mod q.
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2. Preliminaries

Lemma 2.1. Let Q, n, t, r be integers with Q > max{2, n} and t ≥ 0. Define h(r, t; n) =
∑n

a=1 ate
(

ra
Q

)
.

Then, we have

h(r, t; n)

 = nt+1

t+1 + O(nt), if Q | r,
≪ nt∣∣∣ sin

(
πs
Q

)∣∣∣ , if Q ∤ r,

where s = min{r, Q − r} with 1 ≤ r ≤ Q − 1.

Proof. See Lemma 3 of [14]. □

We need the following lemma by Xi and Yi; see [13, Lemma 1].

Lemma 2.2. Let q be a positive integer. Then, we have

|Kχ(m, n, q)| ≤ q
1
2 (m, n, q)

1
2 d(q),

where Kχ(m, n, q) =
∑

a mod q χ(a)e
(ma+nā

q

)
is the general Kloosterman sum.

Lemma 2.3. Let q ≥ 3 be an integer, and let χ, ψ be Dirichlet characters modulo q such that χ , ψ0

and χχ = ψ0. Then, we have the estimate∑
ψ mod q
ψ,ψ0
ψ,χ

G(r1, χψ) G(r2, ψ) ≪ ϕ(q) q1/2 (r1, q)1/2 (r2, q)1/2 d(q).

Proof. See Lemma 3 of [7]. □

Lemma 2.4. Let 0 < ρ ≤ 1
2 , x0, x1, . . . , xk be a sequence of real numbers such that

⟨xk − xk′⟩ ≥ ρ, xk , xk′ ,

and ⟨x0⟩ = min{⟨x1⟩, . . . , ⟨xk⟩}. Then, we have

K∑
k=1

1
⟨xk⟩

≪ ρ−1 log(K + 1).

Proof. See Lemma 2 of Chapter 5.1 in [8]. □

Lemma 2.5. Let q ≥ 3 be an integer, χ be a character modulo q, n ≥ 2 be a fixed integer with (n, q) = 1,
and l be an integer with 1 ≤ l ≤ n. Then, we have

q∑′

a=1

q∑′

b=1

χ(a)e
(ma

q

)
e
( (a + b)l

n

)
≪ q1/2ϕ(q)d2(q) log q.
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Proof. The exponential sums can be separated into two parts depending only on a and b, respectively,
which allows us to rewrite the double sum as

q∑′

a=1

q∑′

b=1

χ(a)e
(ma

q

)
e
( (a + b)l

n

)
=

q∑
a=1

χ(a)e
(ma

q

)
e
(al

n

) q∑′

b=1

e
(bl

n

)
. (2.1)

Note that

χ(a) =
1
q

q∑
r=1

G(r, χ)e
(
−

ar
q

)
.

Then, by (2.1), we obtain

q∑′

a=1

q∑′

b=1

χ(a)e
(ma

q

)
e
( (a + b)l

n

)
=

1
q

q−1∑
r=1

G(r, χ)
q∑′

b=1

e
(bl

n

) q∑
a=1

e
(( l

n
−

(r − m)
q

)
a
)

=
1
q

q∑′

b=1

e
(bl

n

)( q−1∑
r=1

G(r, χ)
fm(l, r, n, q)

e( l
n −

(r−m)
q ) − 1

)
, (2.2)

where
fm(l, r, n, q) = 1 − e

((
l
n −

(r−m)
q

)
q
)
.

Applying the upper bound

|G(r, χ)| ≤ q
1
2 (r, q),

we have
q−1∑
r=1

G(r, χ)
fm(l, r, n, q)

e
(

l
n −

(r−m)
q

)
− 1
≪ q

1
2

q−1∑
r=1

(r, q)∣∣∣∣e( l
n −

(r−m)
q

)
− 1
∣∣∣∣ . (2.3)

Let u ≡ r − m (mod q), 1 ≤ u ≤ q − 1, then

q−1∑
r=1

(r, q)∣∣∣e( l
n −

(r−m)
q

)
− 1
∣∣∣ =

q−1∑
u=1

(u + m, q)∣∣∣e( l
n −

u
q

)
− 1
∣∣∣ . (2.4)

We group the terms according to the value d = (u + m, q). For each such d | q, write u = dt − m with
1 ≤ t ≤ q/d and |e(x) − 1| = 2| sin(πx)| ≍ ⟨x⟩, and we obtain

q−1∑
u=1

(u + m, q)∣∣∣e( l
n −

u
q

)
− 1
∣∣∣ =∑d|q d

∑
1≤t≤q/d
(t,q/d)=1

1〈 l
n −

dt−m
q

〉 . (2.5)
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Applying the Möbius inversion, the inner sum of (2.5) becomes∑
k|q/d

µ(k)
∑

t≤q/(kd)

1〈 l
n −

tkd−m
q

〉 . (2.6)

The points

xt =
tkd − m

q
−

l
n

form an arithmetic progression with spacing kd/q

〈
xti − xt j

〉
=
〈kd

q
(ti − t j)

〉
≥

kd
q
,

then by Lemma 2.4, we obtain ∑
t≤q/(kd)

1
⟨xt⟩
≪

q
kd

log q. (2.7)

It follows from (2.4)–(2.7) that

q−1∑
r=1

(r, q)∣∣∣e( l
n −

(r−m)
q

)
− 1
∣∣∣ ≪∑d|q d

∑
k|q/d

q
kd

log q ≪ q d2(q) log q. (2.8)

Combining (2.2), (2.3), and (2.8), we obtain

q∑′

a=1

q∑′

b=1

χ(a)e
(ma

q

)
e
( (a + b)l

n

)
≪ q1/2ϕ(q)d2(q) log q.

This completes the proof of Lemma 2.5. □

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. By the definition of ℵ(n, q), we obtain∑
a∈ℵ(n,q)

χ(a)e
(ma

q

)
=

q∑
a=1

χ(a)e
(ma

q

)
−

q∑
a=1

n|(a+ā)

χ(a)e
(ma

q

)

=

q∑
a=1

χ(a)e
(ma

q

)
−

q∑′

a=1

q∑′

b=1
n|(a+b),ab≡1 mod q

χ(a)e
(ma

q

)

=

q∑
a=1

χ(a)e
(ma

q

)
−

1
ϕ(q)

∑
ψ mod q

q∑′

a=1

q∑′

b=1
n|(a+b)

χ(a)ψ(ab)e
(ma

q

)
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=

q∑
a=1

χ(a)e
(ma

q

)
−

1
nϕ(q)

∑
ψ mod q

q∑′

a=1

q∑′

b=1

χ(a)ψ(ab)e
(ma

q

) n∑
l=1

e
( (a + b)l

n

)

=

q∑
a=1

χ(a)e
(ma

q

)
−

1
nϕ(q)

∑
ψ mod q
ψ,ψ0
ψ,χ̄

q∑′

a=1

q∑′

b=1

χ(a)ψ(ab)e
(ma

q

) n∑
l=1

e
( (a + b)l

n

)

−
1

nϕ(q)

n∑
l=1

q∑′

a=1

q∑′

b=1

χ(a)e
(ma

q

)
e
( (a + b)l

n

)
−

1
nϕ(q)

n∑
l=1

q∑′

a=1

q∑′

b=1

χ(b)e
(ma

q

)
e
( (a + b)l

n

)
= S 1 − S 2 − S 3 − S 4. (3.1)

We now proceed to estimate S 2.

S 2 =
1

nϕ(q)

∑
ψ mod q
ψ,ψ0
ψ,χ̄

n∑
l=1

q∑′

a=1

χψ(a)e
(ma

q

)
e
(al

n

) q∑′

b=1

ψ(b) e
(bl

n

)

=
1

nϕ(q)

∑
ψ mod q
ψ,ψ0
ψ,χ̄

n∑
l=1

q∑
a=1

1
q

q−1∑
r1=1

G(r1, χψ)e
(
−

ar1

q

)
e
(al

n

)
e
(ma

q

)

×

q∑
b=1

1
q

q−1∑
r2=1

G(r2, ψ)e
(
−

br2

q

)
e
(bl

n

)
=

1
nϕ(q)q2

∑
ψ mod q
ψ,ψ0
ψ,χ̄

n∑
l=1

q−1∑
r1=1

G(r1, χψ)
q−1∑
r2=1

G(r2, ψ)

×

q∑
a=1

e
(( l

n
−

(r1 − m)
q

)
a
) q∑

b=1

e
(( l

n
−

r2

q

)
b
)

=
1

nϕ(q)q2

∑
ψ mod q
ψ,ψ0
ψ,χ̄

n∑
l=1

q−1∑
s=1

q−1∑
r2=1

G(s + m, χψ)G(r2, ψ)

×

q∑
a=1

e
(( l

n
−

s
q

)
a
) q∑

b=1

e
(( l

n
−

r2

q

)
b
)

=
1

nϕ(q)q2

n∑
l=1

q−1∑
s=1

q−1∑
r2=1

f1(l, s, n, q) f2(l, r2, n, q)(
e
(

l
n −

s
q

)
− 1
)(

e
(

l
n −

r2
q

)
− 1
)
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×
∑

ψ mod q
ψ,ψ0
ψ,χ̄

G(s + m, χψ) G(r2, ψ).

Then, from Lemma 2.3, we have

S 2 ≪
1

nϕ(q)q2

n∑
l=1

q−1∑
s=1

q−1∑
r2=1

ϕ(q)q1/2(s + m, q)1/2(r2, q)1/2d(q)∣∣∣e( l
n −

s
q

)
− 1
∣∣∣∣∣∣e( l

n −
r2
q

)
− 1
∣∣∣ . (3.2)

Similar to (2.8), we have
q−1∑
s=1

(s + m, q)1/2∣∣∣e( l
n −

s
q

)
− 1
∣∣∣ ≪ qd2(q) log q. (3.3)

Combining (3.2) and (3.3), we obtain

S 2 ≪ n
d(q)
q3/2 q2d4(q) log2 q = nq1/2 d5(q) log2 q. (3.4)

Now, we estimate S 3. By Lemma 2.5, we have

S 3 ≪ n
1
ϕ(q)

q1/2ϕ(q)d2(q) log q = nq1/2d2(q) log q. (3.5)

Similarly, we obtain the estimate
S 4 ≪ nq1/2d2(q) log q. (3.6)

Combining (3.1) and (3.4)–(3.6), we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2

From the orthogonality relation for character sums modulo q and the definition of ℏu,v(A, B,H), we
have ∑

a∈ℏu,v(A,B,H)

χ(a)e
(ma

q

)
=
∑
t≤H

∑′

a≤A, b≤B
ua−vb≡t mod q

ab≡1 mod q

χ(a)e
(ma

q

)

=
1
q

∑
t≤H

∑
s≤q

e
(
−

st
q

) ∑′

a≤A, b≤B
ab≡1 mod q

χ(a)e
(ma

q

)
e
( (ua − vb)s

q

)

=
1
q3

∑
t≤H

∑
s≤q

e
(
−

st
q

) ∑′

a,b≤q
ab≡1 mod q

χ(a)e
( (m + us + r)a − (vs − w)b

q

)

×
∑
c≤A

∑
r≤q

e
(−rc

q

)∑
d≤B

∑
w≤q

e
(−wd

q

)
AIMS Mathematics Volume 11, Issue 1, 1954–1967.
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=
1
q3

∑
r,w≤q

∑
s≤q

∑
t≤H

e
(
−

st
q

)
Kχ(m + us + r, −vs + w; q) h(−r, 0; A) h(−w, 0; B).

Then, we obtain∑
a∈ℏu,v(A,B,H)

χ(a)e
(ma

q

)
=

1
q3

∑
s≤q

∑
t≤H

e
(
−

st
q

)
Kχ(m + us, −vs; q) h(−q, 0; A) h(−q, 0; B)

+
1
q3

∑
r≤q−1

∑
s≤q

∑
t≤H

e
(
−

st
q

)
Kχ(m + us + r, −vs; q) h(−r, 0; A) h(−q, 0; B)

+
1
q3

∑
w≤q−1

∑
s≤q

∑
t≤H

e
(
−

st
q

)
Kχ(m + us, −vs + w; q) h(−q, 0; A) h(−w, 0; B)

+
1
q3

∑
r,w≤q−1

∑
s≤q

∑
t≤H

e
(
−

st
q

)
Kχ(m + us + r, −vs + w; q) h(−r, 0; A) h(−w, 0; B)

= T1 + T2 + T3 + T4. (4.1)

First, we estimate T1. By Lemmas 2.1 and 2.2, we have

T1 ≪
1
q3

∑
s≤q

min
{

H,
〈 s

q

〉−1}
|Kχ(m + us,−vs; q)| |h(−q, 0; A)| |h(−q, 0; B)|

≪ HABq−5/2d(q)
∑

s≤q/H

(m + us, q)1/2 + ABq−3/2d(q)
∑

q/H<s≤q−1

(m + us, q)1/2

s
.

Note the estimates ∑
s≤q/H

(m + us, q)1/2 =
∑
d|q

d1/2
∑

s≤q/H
d|(m+us)

1

≪
∑
d|q

d1/2
(m

d
+

uq
dH

)
≪ md(q) + H−1qud(q)

and ∑
q/H<s≤q−1

(m + us, q)1/2

s
=
∑
d|q

d1/2
∑

q/H<s≤q−1
us≡−m mod d

1
s

=
∑
d|q

d1/2 (u, d)
d

log H ≪ ud(q) log H.

Then, we have
T1 ≪ uABq−3/2d2(q) log H + mABq−3/2d2(q). (4.2)

Now, we estimate T2. It follows from Lemmas 2.1 and 2.2 that

T2 ≪
1
q3

∑
r≤q−1

∑
s≤q

min
{

H,
〈 s

q

〉−1}
|Kχ(m + us + r, −vs; q)| |h(−r, 0; A)| |h(−q, 0; B)|
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≪ HBq−5/2d(q)
∑

r≤q−1

∑
s≤q/H

(m + us + r,−vs, q)1/2 1
| sin(πr

q )|

+ Bq−3/2d(q)
∑

r≤q−1

∑
q/H<s≤q−1

(m + us + r,−vs, q)1/2

s
1

| sin(πr
q )|

≪ HBq−3/2d(q)
∑

r≤q−1

1
r

∑
s≤q/H

(m + us + r,−vs, q)1/2

+ Bq−1/2d(q)
∑

r≤q−1

1
r

∑
q/H<s≤q−1

(m + us + r,−vs, q)1/2

s
.

Combine ∑
r≤q−1

1
r

∑
s≤q/H

(m + us + r,−vs, q)1/2

=
∑
d|q

d1/2
∑

s≤q/H
d|vs

∑
r≤q−1

r≡−(m+us) mod d

1
r

≪
∑
d|q

d1/2 q(v, d)
dH

∑
r≤q−1

r≡−(m+us) mod d

1
r

≪
∑
d|q

d1/2 q(v, d)
dH

log q
d
≪ vH−1qd(q) log q,

and ∑
r≤q−1

1
r

∑
q/H<s≤q−1

(m + us + r,−vs, q)1/2

s

=
∑
d|q

d1/2
∑

q/H<s≤q−1
d|vs

1
s

∑
r≤q−1

r≡−(m+us) mod d

1
r

≪
∑
d|q

d1/2 log q
d

∑
q/H<s≤q−1

d|vs

1
s

≪ log q
∑
d|q

d−1/2 (v, d)
d

log H

≪ vd(q) log H log q.

Then, we have
T2 ≪ vBq−1/2d2(q) log H log q. (4.3)

Similarly, we get the estimate
T3 ≪ vAq−3/2d2(q) log q. (4.4)

Next, we consider T4. By Lemmas 2.1 and 2.2, we have

T4 ≪ q−5/2d(q)
∑

r,w≤q−1

∑
s≤q

min
{

H,
〈 s

q

〉−1}
(m + us + r,w − vs, q)1/2 1

| sin(πr
q )|

1
| sin(πw

q )|
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≪ Hq−1/2d(q)
∑

r,w≤q−1

1
rw

∑
s≤q/H

(m + us + r,w − vs, q)1/2

+ q1/2d(q)
∑

r,w≤q−1

1
rw

∑
q/H<s≤q−1

(m + us + r,w − vs, q)1/2

s
.

By the estimates∑
r,w≤q−1

1
rw

∑
s≤q/H

(m + us + r,w − vs, q)1/2 =
∑
d|q

d1/2
∑

s≤q/H

∑
r≤q−1

d|m+us+r

1
r

∑
w≤q−1
d|w−vs

1
w

≪
∑
d|q

d1/2
∑

s≤q/H

∑
m+us+1

d <t≤m+us+q−1
d

1
dt − (m + us)

∑
1−vs

d <t′≤ q−1−vs
d

1
vs + dt′

≪ H−1qd(q) log2 q,

and ∑
r,w≤q−1

1
rw

∑
q/H<s≤q−1

(m + us + r,w − vs, q)1/2

s
=
∑
d|q

d1/2
∑

q/H<s≤q−1

1
s

∑
r≤q−1

d|m+us+r

1
r

∑
w≤q−1
d|w−vs

1
w

=
∑
d|q

d1/2
∑

q/H<s≤q−1

1
s

∑
m+us+1

d <t≤m+us+q−1
d

1
dt − (m + us)

∑
1−vs

d <t′≤ q−1−vs
d

1
vs + dt′

≪ d(q) log3 q,

we have
T4 ≪ q

1
2 d2(q) log3 q. (4.5)

By (4.1)–(4.5), we complete the proof of Theorem 1.2.

5. Proof of Theorem 1.4

From the orthogonality relation for character sums modulo q and the definition of ℵ(n, q), we have∑
a∈ℵ(n,q)∩ℏuv(A,B,H)

χ(a)e
(ma

q

)
=

∑
a∈ℏuv(A,B,H)

χ(a)e
(ma

q

)
−

∑
a∈ℏuv(A,B,H)

n|(a+ā)

χ(a)e
(ma

q

)
=M1 −M2. (5.1)

By Theorem 1.2, we obtain

M1 ≪ q
1
2 d(q)

(umABd(q) log H
q2 +

vBd(q) log q log H
q

+ log3 q
)
. (5.2)

AIMS Mathematics Volume 11, Issue 1, 1954–1967.



1965

Then, we estimateM2.

M2 =
1
n

∑
t≤H

∑′

a≤A,b≤B
ua−vb≡t mod q,ab≡1 mod q

χ(a)
n∑

l=1

e
( (a + b)l

n

)
e
(ma

q

)

=
1
nq

∑
s≤q

∑
t≤H

e
(−st

q

) ∑′

a≤A,b≤B
ab≡1 mod q

χ(a)e
( (m + us)a − vsb

q

) n∑
l=1

e
( (a + b)l

n

)

=
1

nq3

∑
s≤q

∑
t≤H

e
(−st

q

) ∑
a≤A,b≤B

ab≡1 mod q

χ(a)e
( (m + us)a − vsb

q

)

×
∑
c≤A

∑
r≤q

e
(r(a − c)

q

)∑
d≤B

∑
w≤q

e
(w(b − d)

q

) n∑
l=1

e
( (a + b)l

n

)
=

1
nq3

∑
r,w≤q

∑
s≤q

∑
t≤H

e
(−st

q

) ∑
a,b≤q

ab≡1 mod q

χ(a)e
( (m + us + r)a − (vs − w)b

q

)

×

n∑
l=1

∑
c≤A

e
(( l

n
−

r
q

)
c
)∑

d≤B

e
(( l

n
−

w
q

)
d
)

=
1

nq3

∑
r,w≤q

∑
s≤q

∑
t≤H

e
(−st

q

) n∑
l=1

Kχ(m + us + r,w − vs, q)h(lq − nr, 0, A)h(lq − nw, 0, B).

Similarly, following the proof of Theorem 1.2, we obtain

M2 ≪ nd(q)q
1
2

(umABd(q) log H
q2 +

vBd(q) log q log H
q

+ log3 q
)
. (5.3)

Then, by (5.1)–(5.3), we complete the proof of Theorem 1.4.
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