Research article Special Issues

Primary resonance suppression in spur gear systems using hybrid proportional and fractional-order derivative displacement feedback control

  • Published: 20 January 2026
  • MSC : 34A08, 70K42, 93C95

  • This paper investigated primary resonance suppression in nonlinear spur gear systems using a hybrid proportional and fractional-order derivative displacement feedback (P-FDDF) controller. The dynamic model of the system was established through a second-order non-autonomous differential equation incorporating time-varying meshing stiffness, backlash, and external excitations. The amplitude-frequency response equation of primary resonance was derived via the multiple scale method, while Lyapunov stability theory was employed to analyze the stability of steady-state solutions. Numerical analyses examined the effects of meshing damping, load fluctuations, meshing stiffness variations, and control parameters on resonance characteristics. Time history responses and phase diagrams demonstrated that the P-FDDF strategy achieves simultaneous resonant amplitude suppression and frequency tuning. The fractional-order component's frequency-weighting and memory properties enhance adaptability to complex nonlinear dynamics induced by time-varying meshing stiffness and backlash, establishing the P-FDDF as a reliable solution for gear system vibration control.

    Citation: Zhongyang Su, Zhoujin Cui, Hanlin Huang. Primary resonance suppression in spur gear systems using hybrid proportional and fractional-order derivative displacement feedback control[J]. AIMS Mathematics, 2026, 11(1): 1857-1877. doi: 10.3934/math.2026077

    Related Papers:

  • This paper investigated primary resonance suppression in nonlinear spur gear systems using a hybrid proportional and fractional-order derivative displacement feedback (P-FDDF) controller. The dynamic model of the system was established through a second-order non-autonomous differential equation incorporating time-varying meshing stiffness, backlash, and external excitations. The amplitude-frequency response equation of primary resonance was derived via the multiple scale method, while Lyapunov stability theory was employed to analyze the stability of steady-state solutions. Numerical analyses examined the effects of meshing damping, load fluctuations, meshing stiffness variations, and control parameters on resonance characteristics. Time history responses and phase diagrams demonstrated that the P-FDDF strategy achieves simultaneous resonant amplitude suppression and frequency tuning. The fractional-order component's frequency-weighting and memory properties enhance adaptability to complex nonlinear dynamics induced by time-varying meshing stiffness and backlash, establishing the P-FDDF as a reliable solution for gear system vibration control.



    加载中


    [1] S. P. Radzevich, Theory of gearing: Kinematics, geometry, and synthesis, 3 Eds., CRC Press, 2022. https://doi.org/10.1201/9781003311744
    [2] S. P. Radzevich, Recent advances in gearing, Switzerland: Springer Cham, 2022. https://doi.org/10.1007/978-3-030-64638-7
    [3] M. Faggioni, F. S. Samani, G. Bertacchi, F. Pellicano, Dynamic optimization of spur gears, Mech. Mach. Theory, 46 (2011), 544–557. https://doi.org/10.1016/j.mechmachtheory.2010.11.005 doi: 10.1016/j.mechmachtheory.2010.11.005
    [4] A. Kahraman, R. Singh, Non-linear dynamics of a spur gear pair, J. Sound Vib., 142 (1990), 49–75. https://doi.org/10.1016/0022-460x(90)90582-k doi: 10.1016/0022-460x(90)90582-k
    [5] A. Kahraman, R. Singh, Interactions between timevarying mesh stiffness and clearance non-linearities in a geared system, J. Sound Vib., 146 (1991), 135–156. https://doi.org/10.1016/0022-460x(91)90527-q doi: 10.1016/0022-460x(91)90527-q
    [6] A. Kahraman, R. Singh, Non-linear dynamics of a geared rotor-bearing system with multiple clearances, J. Sound Vib., 144 (1991), 469–506. https://doi.org/10.1016/0022-460x(91)90564-z doi: 10.1016/0022-460x(91)90564-z
    [7] I. Howard, S. Jia, J. Wang, The dynamic modelling of a spur gear in mesh including friction and a crack, Mech. Syst. Signal Pr., 15 (2001), 831–853. https://doi.org/10.1006/mssp.2001.1414 doi: 10.1006/mssp.2001.1414
    [8] G. Liu, R. G. Parker, Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration, J. Mech. Design, 130 (2008), 1–13. https://doi.org/10.1115/1.2976803 doi: 10.1115/1.2976803
    [9] G. Liu, R. G. Parker, Nonlinear dynamics of idler gear systems, Nonlinear Dynam., 53 (2008), 345–367. https://doi.org/10.1007/s11071-007-9317-z doi: 10.1007/s11071-007-9317-z
    [10] Y. Yang, M. Xu, Y. Du, P. Zhao, Y. P. Dai, Dynamic analysis of nonlinear time-varying spur gear system subjected to multi-frequency excitation, J. Vib. Control, 25 (2019), 1210–1226. https://doi.org/10.1177/1077546318814951 doi: 10.1177/1077546318814951
    [11] H. Moradi, H. Salarieh, Analysis of nonlinear oscillations in spur gear pairs with approximate modeling backlash nonlinearity, Mech. Mach. Theory, 51 (2012), 14–31. https://doi.org/10.1016/j.mechmachtheory.2011.12.005 doi: 10.1016/j.mechmachtheory.2011.12.005
    [12] C. I. Park, Dynamic behavior of the spur gear system with time varying stiffness by gear positions in the backlash, J. Mech. Sci. Technol., 34 (2020), 565–572. https://doi.org/10.1007/s12206-020-0104-9 doi: 10.1007/s12206-020-0104-9
    [13] J. Zhao, L. Hou, Z. Q. Li, H. Zhang, R. P. Zhu, Prediction of tribological and dynamical behaviors of spur gear pair considering tooth root crack, Eng. Fail. Anal., 135 (2022), 106145. https://doi.org/10.1016/j.engfailanal.2022.106145 doi: 10.1016/j.engfailanal.2022.106145
    [14] A. Celikay, A. Donmez, A. Kahraman, An experimental and theoretical study of subharmonic resonances of a spur gear pair, J. Sound Vib., 515 (2021), 116421. https://doi.org/10.1016/j.jsv.2021.116421 doi: 10.1016/j.jsv.2021.116421
    [15] J. Z. Ye, J. Wei, A. Q. Zhang, S. L. Chen, T. Ran, R. Z. Shu, Theoretical and experimental study on the dynamic behavior of spur gear transmission system during hovering maneuver flights, Mech. Syst. Signal Pr., 212 (2024), 111296. https://doi.org/10.1016/j.ymssp.2024.111296 doi: 10.1016/j.ymssp.2024.111296
    [16] M. H. Chen, M. J. Brennan, Active control of gear vibration using special integrated sensors and actuators, Smart Mater. Struct., 9 (2000), 342–350. https://doi.org/10.1201/9781482268560-16 doi: 10.1201/9781482268560-16
    [17] M. F. Li, T. C. Lim, W. S. Shepard, Y. H. Guan, Experimental active vibration control of gear mesh harmonics in a power recirculation gearbox system using a piezoelectric stack actuator, Smart Mater. Struct., 14 (2005), 917–927. https://doi.org/10.1088/0964-1726/14/5/028 doi: 10.1088/0964-1726/14/5/028
    [18] S. Liu, S. Zhao, B. Niu, J. X. Li, H. B. Li, Stability analysis of a nonlinear electromechanical coupling transmission system with time delay feedback, Nonlinear Dynam., 86 (2016), 1863–1874. https://doi.org/10.1007/s11071-016-3000-1 doi: 10.1007/s11071-016-3000-1
    [19] H. B. Li, J. J. Hu, Y. T. Shi, S. Liu, Dynamic behavior analysis and time delay feedback control of gear pair system with backlash non-smooth characteristic, J. Vibroeng., 19 (2017), 302–313. https://doi.org/10.21595/jve.2016.17157 doi: 10.21595/jve.2016.17157
    [20] H. Shi, D. Zhao, Z. Li, Primary resonance analysis for a spur gear system with time delay feedback control, J. Vib. Shock, 38 (2019), 91–96.
    [21] Z. Yue, Y. Wang, Z. Chen, G. Yu, L. Pavel, Z. Michael, et al., Resonance and stability of piezoelectric Herringbone gears under time-delay feedback, Appl. Math. Model., 147 (2025), 116216. https://doi.org/10.1016/j.apm.2025.116216 doi: 10.1016/j.apm.2025.116216
    [22] H. S. Bauomy, A. T. EL-Sayed, Oscillation controlling in nonlinear motorcycle scheme with bifurcation study, Mathematics, 13 (2025), 3120. https://doi.org/10.3390/math13193120 doi: 10.3390/math13193120
    [23] A. Alanazy, A. T. EL-Sayed, F. T. El-Bahrawy, A non-perturbative methodology for a cantilever-beam dynamical system with bifurcation and negative derivative feedback controlling, AIMS Math., 10 (2025), 17832–17867. https://doi.org/10.3934/math.2025795 doi: 10.3934/math.2025795
    [24] Y. Shen, J. Niu, S. Yang, S. Li, Primary resonance of dry-friction oscillator with fractional-order Proportional-Integral-Derivative controller of velocity feedback, J. Comput. Nonlinear Dyn., 11 (2016), 051027. https://doi.org/10.1115/1.4033443 doi: 10.1115/1.4033443
    [25] J. Chen, X. Li, J. Tang, Y. Liu, Primary resonance of van der Pol oscillator under fractional-order delayed feedback and forced excitation, Shock Vib., 2017 (2017), 5975329. https://doi.org/10.1155/2017/5975329 doi: 10.1155/2017/5975329
    [26] L. Liu, J. C. Niu, X. H. Li, Dynamic analysis of gear system under fractional-order PID control with the feedback of meshing error change rate, Acta Mech., 229 (2018), 3833–3851. https://doi.org/10.1007/s00707-018-2194-3 doi: 10.1007/s00707-018-2194-3
    [27] L. Marinangeli, F. Alijani, S. H. HosseinNia, Fractional-order positive position feedback compensator for active vibration control of a smart composite plate, J. Sound Vib., 412 (2018), 1–16. https://doi.org/10.1016/j.jsv.2017.09.009 doi: 10.1016/j.jsv.2017.09.009
    [28] H. Yan, Q. Ma, J. Wang, H. Huang, Fractional-order time-delay feedback control for nonlinear dynamics in giant magnetostrictive actuators, Nonlinear Dynam., 112 (2024), 3055–3079. https://doi.org/10.1007/s11071-023-09228-6 doi: 10.1007/s11071-023-09228-6
    [29] M. N. A. El-Salam, R. K. Hussein, Reducing the primary resonance vibrations of a cantilever beam using a proportional fractional-order derivative controller, Mathematics, 13 (2025), 1886. https://doi.org/10.3390/math13111886 doi: 10.3390/math13111886
    [30] A. H. Nayfeh, Perturbation methods, New York: John Wiley & Sons, 2000. https://doi.org/10.1002/9783527617609
    [31] A. H. Nayfeh, D. T. Mook, Nonlinear oscillations, New York: Wiley-Interscience, 1995. https://doi.org/10.1002/9783527617586
    [32] A. H. Nayfeh, Introduction to perturbation techniques, New York: John Wiley & Sons, 1981. https://doi.org/10.1137/1024080
    [33] Z. J. Cui, Z. H. Wang, Primary resonance of a nonlinear fractional model for cerebral aneurysm at the circle of Willis, Nonlinear Dynam., 108 (2022), 4301–4314. http://dx.doi.org/10.1007/s11071-022-07445-z doi: 10.1007/s11071-022-07445-z
    [34] Z. J. Cui, X. R. Zhang, W. Zong, Superharmonic resonance analysis and time-delay feedback controllability of a forced fractional Mathieu-Duffing equation, Mediterr. J. Math., 22 (2025), 219. https://doi.org/10.1007/s00009-025-02989-x doi: 10.1007/s00009-025-02989-x
    [35] Z. J. Cui, X. R. Zhang, T. Lu, Resonance analysis and time-delay feedback controllability for a fractional horizontal nonlinear roller system, AIMS Math., 9 (2024), 24832–24853. https://doi.org/10.3934/math.20241209 doi: 10.3934/math.20241209
    [36] J. P. Lasalle, The stability of dynamical systems, Phila: Society for Industrial and Applied Mathematics, 1976. https://doi.org/10.1137/1.9781611970432
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(43) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog