Research article

An efficient numerical method to solve 2D parabolic singularly perturbed coupled systems of convection-diffusion type with multi-parameters on a Bakhvalov–Shishkin mesh

  • Published: 20 January 2026
  • MSC : 35B25, 35J40, 35J25, 65N06, 65N15, 65N12, 65N50

  • This study addresses the efficient solution of a class of 2D parabolic singularly perturbed weakly coupled systems of convection-diffusion type. In the model problem, small positive parameters appear in both the diffusion and the convection terms. We assume that the diffusion parameters can be distinct, but the convection parameter remains the same for both equations. Then, for sufficiently small values of the parameters, overlapping boundary layers appear on the boundary of the spatial domain. To solve the problem, a numerical method is employed that combines the implicit Euler scheme, defined on a uniform mesh, with the upwind scheme for spatial discretization. Then, if the spatial discretization is carried out on an adequate nonuniform Bakhvalov–Shishkin (BS) mesh, the fully discrete scheme attains uniform convergence, with respect to all perturbation parameters; moreover, it has first-order accuracy in both temporal and spatial variables. Note that the construction of the BS mesh depends on the value and the ratio between the diffusion and the convection parameters, and special generating functions are needed to construct them. Numerical experiments illustrating the performance of the algorithm for some test problems are showed, which corroborate the uniform convergence of the method in agreement with the theoretical results.

    Citation: Ram Shiromani, Carmelo Clavero. An efficient numerical method to solve 2D parabolic singularly perturbed coupled systems of convection-diffusion type with multi-parameters on a Bakhvalov–Shishkin mesh[J]. AIMS Mathematics, 2026, 11(1): 1820-1856. doi: 10.3934/math.2026076

    Related Papers:

  • This study addresses the efficient solution of a class of 2D parabolic singularly perturbed weakly coupled systems of convection-diffusion type. In the model problem, small positive parameters appear in both the diffusion and the convection terms. We assume that the diffusion parameters can be distinct, but the convection parameter remains the same for both equations. Then, for sufficiently small values of the parameters, overlapping boundary layers appear on the boundary of the spatial domain. To solve the problem, a numerical method is employed that combines the implicit Euler scheme, defined on a uniform mesh, with the upwind scheme for spatial discretization. Then, if the spatial discretization is carried out on an adequate nonuniform Bakhvalov–Shishkin (BS) mesh, the fully discrete scheme attains uniform convergence, with respect to all perturbation parameters; moreover, it has first-order accuracy in both temporal and spatial variables. Note that the construction of the BS mesh depends on the value and the ratio between the diffusion and the convection parameters, and special generating functions are needed to construct them. Numerical experiments illustrating the performance of the algorithm for some test problems are showed, which corroborate the uniform convergence of the method in agreement with the theoretical results.



    加载中


    [1] K. Aarthika, V. Shanthi, H. Ramos, A computational approach for a two-parameter singularly perturbed system of partial differential equations with discontinuous coefficients, Appl. Math. Comput., 434 (2022), 127409. https://doi.org/10.1016/j.amc.2022.127409 doi: 10.1016/j.amc.2022.127409
    [2] D. Avijit, S. Natesan, SDFEM for singularly perturbed boundary-value problems with two parameters, J. Appl. Math. Comput., 64 (2020), 591–614. https://doi.org/10.1007/s12190-020-01370-3 doi: 10.1007/s12190-020-01370-3
    [3] Z. Cen, Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations, J. Syst. Sci. Compl., 18 (2005), 498–510.
    [4] Y. Cheng, M. Peng, Y. Cheng, A hybrid interpolating element-free galerkin method for 3D steady-state convection diffusion problems, Appl. Numer. Math., 208 (2025), 21–37. https://doi.org/10.1016/j.apnum.2024.09.024 doi: 10.1016/j.apnum.2024.09.024
    [5] C. Clavero, J. C. Jorge, An efficient numerical method for singularly perturbed time dependent parabolic 2D convection-diffusion systems, J. Comput. Appl. Math., 354 (2019), 431–444. https://doi.org/10.1016/j.cam.2018.10.033 doi: 10.1016/j.cam.2018.10.033
    [6] C. Clavero, J. C. Jorge, A splitting uniformly convergent method for one-dimensional parabolic singularly perturbed convection-diffusion systems, Appl. Numer. Math., 183 (2023), 317–3323. https://doi.org/10.1016/j.apnum.2022.09.012 doi: 10.1016/j.apnum.2022.09.012
    [7] C. Clavero, J. C. Jorge, An efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type, Appl. Numer. Math., 207 (2025), 174–192. https://doi.org/10.1016/j.apnum.2024.09.002 doi: 10.1016/j.apnum.2024.09.002
    [8] C. Clavero, R. Shiromani, An efficient numerical method for 2d elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, part Ⅱ, AIMS Math., 9 (2024), 35570–35598. https://doi.org/10.3934/math.20241688 doi: 10.3934/math.20241688
    [9] C. Clavero, R. Shiromani, An efficient numerical method for 2D elliptic singularly perturbed systems with different magnitude parameters in the diffusion and the convection terms, Comput. Math. Appl., 181 (2025), 287–322. https://doi.org/10.1016/j.camwa.2025.01.011 doi: 10.1016/j.camwa.2025.01.011
    [10] C. Clavero, R. Shiromani, V. Shanthi, A computational approach for 2d elliptic singularly perturbed weakly-coupled systems of convection-diffusion type with multiple scales and parameters in the diffusion and the convection terms, Math. Meth. Appl. Sci., 47 (2024), 13510–13541. https://doi.org/10.1002/mma.10204 doi: 10.1002/mma.10204
    [11] C. Clavero, R. Shiromani, V. Shanthi, A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2D elliptic convection-reaction-diffusion PDES, J. Comput. Appl. Math., 436 (2024), 115422. https://doi.org/10.1016/j.cam.2023.115422 doi: 10.1016/j.cam.2023.115422
    [12] I. R. Epstein, L. Lengyel, S. Kádár, M. Kagan, M. Yokoyama, New systems for pattern formation studies, Physica A: Stat. Mech. Appl., 188 (1992), 26–33.
    [13] P. l. Farrell, A. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press (2000). https://doi.org/10.1201/9781482285727
    [14] M. Ghil, A. W. Robertson, Climate dynamics and predictability, B. Am. Meteorol. Soc., 83 (2002), 571–591.
    [15] L. Govindarao, J. Mohapatra, S. R. Sahu, Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem, Int. J. Appl. Comput. Math., 5 (2019). https://doi.org/10.1007/s40819–019–0672–5 doi: 10.1007/s40819–019–0672–5
    [16] L. Govindarao, S. R. Sahu, J. Mohapatra, Uniformly convergent numerical method for singularly perturbed two parameter time delay parabolic problem with two small parameters, Iranian J. Sci. Tech., Transactions A: Sci., 43 (2019), 2373–2383. https://doi.org/10.1007/s40995-019-00697-2 doi: 10.1007/s40995-019-00697-2
    [17] A. Jha, M. K Kadalbajoo, A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems, Int. J. Comp. Math., 92 (2015), 204–1221.
    [18] Y. Kan-On, M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM J. Math. Anal., 29 (1998), 1519–15368. https://doi.org/10.1137/S0036141097318328 doi: 10.1137/S0036141097318328
    [19] S. Kumar, M. Kumar, An efficient hybrid numerical method based on an additive scheme for solving coupled systems of singularly perturbed linear parabolic problems, Math. Meth. Appl. Sci., 46 (2023), 1234–1256.
    [20] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York (1968).
    [21] T. Linß, Layer-adapted meshes for reaction-convection-diffusion problems, Springer (2009).
    [22] L. B. Liu, G. Long, Y. Zhang, Parameter uniform numerical method for a system of two coupled singularly perturbed parabolic convection-diffusion equations, Adv. Diff. Equat., 450 (2018). https://doi.org/10.1186/s13662–018–1907–13 doi: 10.1186/s13662–018–1907–13
    [23] J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Springer (2002). https://doi.org/10.1007/b98868
    [24] S. Nagarajan, A parameter robust fitted mesh finite difference method for a system of two reaction-convection-diffusion equations, Appl. Num. Math., 179 (2022), 87–104. https://doi.org/10.1016/j.apnum.2022.04.017 doi: 10.1016/j.apnum.2022.04.017
    [25] E O'Riordan, M. L. Pickett, G. I. Shishkin, Numerical methods for singularly perturbed elliptic problems containing two perturbation parameters, Math. Model. Anal., 11 (2006), 199–212. https://doi.org/10.3846/13926292.2006.9637313 doi: 10.3846/13926292.2006.9637313
    [26] E. O'Riordan, M. L. Pickett, A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem, Adv. Comput. Math., 35 (2011), 57–82. https://doi.org/10.1007/s10444-010-9164-1 doi: 10.1007/s10444-010-9164-1
    [27] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press (1992). https://doi.org/10.1007/978-1-4615-3034-3
    [28] P. Peng, H. Cheng, Yumin Cheng, A hybrid reproducing kernel particle method for three-dimensional elasticity problems, Int. J. Appl. Mech., 15 (2023), 2350080.
    [29] S. Priyadarshana, J. Mohapatra, An efficient computational technique for time dependent semilinear parabolic problems involving two small parameters, J. Appl. Math. Comput., 69 (2023), 3721–3754. https://doi.org/10.1007/s12190-023-01900-9 doi: 10.1007/s12190-023-01900-9
    [30] S. Priyadarshana, J. Mohapatra, An efficient fractional step numerical algorithm for time-delayed singularly perturbed 2D convection-diffusion–reaction problem with two small parameters, Numer. Algor., 97 (2024), 687–726. https://doi.org/10.1007/s11075-023-01720-9 doi: 10.1007/s11075-023-01720-9
    [31] S. Priyadarshana, J. Mohapatra, S. R. Pattaniak, Parameter uniform optimmal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314–022–01928–w doi: 10.1007/s40314–022–01928–w
    [32] R. M. Priyadharshini, N. Ramanujam, A. Tamilsevan, Hybrid difference schemes for a system of singularly perturbed convection-diffusion equations, J. Appl. Math. Infor., 27 (2009), 1001–1015.
    [33] M. K. Singh, S. Natesan, Numerical analysis of singularly perturbed system of parabolic convection-diffusion problem with regular boundary layers, Diff. Equat. Dyn. Syst., (2019). https://doi.org/10.1007/s12591–019–00462–2 doi: 10.1007/s12591–019–00462–2
    [34] M. K. Singh, S. Natesan, A robust computational method for singularly perurbed system of 2D parabolic convection-diffusion problems, Int. J. Math. Model. Numer. Optim., 9 (2019), 127–1579.
    [35] M. K. Singh, S. Natesan, A parameter-uniform hybrid finite difference schme for singularly perturbed system of parabolic convection-diffusion problems, Int. J. Comput. Math., 97 (2020), 875–903. https://doi.org/10.1080/00207160.2019.1597972 doi: 10.1080/00207160.2019.1597972
    [36] G. Zheng, Y. Cheng, The improved element-free galerkin method for diffusional drug release problems, Int. J. Appl. Mech.anics, 12 (2020), 2050096. https://doi.org/10.1142/S1758825120500969 doi: 10.1142/S1758825120500969
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(37) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog