Research article Special Issues

The generalized $ k $-connectivity of conditional recursive networks

  • Published: 20 January 2026
  • MSC : 05C05, 05C40

  • The generalized $ k $-connectivity $ \kappa_k(G) $ of graph $ G $ is defined as the maximum number of internally disjoint Steiner trees in $ G $, which is a generalization of classical connectivity $ \kappa(G) $ of $ G $ just for $ k = 2 $. Conditional recursive networks (CRNs) form a new family of composite networks constructed from complete graphs. In this paper, we determine the generalized $ k $-connectivity of CRNs for $ k = 4 $.

    Citation: Yinkui Li, Yilin Song, Zhuomo An. The generalized $ k $-connectivity of conditional recursive networks[J]. AIMS Mathematics, 2026, 11(1): 1807-1819. doi: 10.3934/math.2026075

    Related Papers:

  • The generalized $ k $-connectivity $ \kappa_k(G) $ of graph $ G $ is defined as the maximum number of internally disjoint Steiner trees in $ G $, which is a generalization of classical connectivity $ \kappa(G) $ of $ G $ just for $ k = 2 $. Conditional recursive networks (CRNs) form a new family of composite networks constructed from complete graphs. In this paper, we determine the generalized $ k $-connectivity of CRNs for $ k = 4 $.



    加载中


    [1] L. W. Beineke, R. J. Wilson, Topics in structural graph theory, Cambrige University Press, 2013.
    [2] A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008.
    [3] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55 (2010), 360–367. http://doi.org/10.1002/net.20339 doi: 10.1002/net.20339
    [4] R. Gu, X. Li, Y. Shi, The generalized $3$-connectivity of random graphs, Acta Mathematica Sinica, Chinese Series, 57 (2014), 321–330. https://doi.org/10.12386/A2014sxxb0032 doi: 10.12386/A2014sxxb0032
    [5] C. Jin, H.-Y. Zhang, C. Wei, The bounds of generalized $4$-connectivity of alternating group graphs, J. Interconnect. Netw., 21 (2021), 2150011. http://doi.org/10.1142/S0219265921500110 doi: 10.1142/S0219265921500110
    [6] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combinatoria, 104 (2012), 65–79.
    [7] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition $3$-partite graphs, Bull. Malays. Math. Sci. Soc., 37 (2014), 103–121.
    [8] S. Li, J. Tu, C. Yu, The generalized $3$-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput., 274 (2016), 41–46. http://doi.org/10.1016/j.amc.2015.11.016 doi: 10.1016/j.amc.2015.11.016
    [9] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs, Discrete Appl. Math., 185 (2015), 102–112. http://doi.org/10.1016/j.dam.2014.12.009 doi: 10.1016/j.dam.2014.12.009
    [10] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Comb., 58 (2014), 304–319.
    [11] Y. Li, Y. Mao, Z. Wang, Z. Wei, Generalized connectivity of some total graphs, Czech. Math. J., 71 (2021), 623–640. http://doi.org/10.21136/CMJ.2021.0287-19 doi: 10.21136/CMJ.2021.0287-19
    [12] Y. Li, L. Wei, Note for the conjecture on the generalized $4$-connectivity of total graphs of the complete bipartite graph, Appl. Math. Comput., 458 (2023), 128225. http://doi.org/10.1016/j.amc.2023.128225 doi: 10.1016/j.amc.2023.128225
    [13] J. Wang, Y. Huang, Z. Ouyang, The generalized $4$-connectivity of godan graphs, arXiv: 2405.15147.
    [14] J. Wang, J. Wu, Z. Ouyang, Y. Huang, The generalized $4$-connectivity of burnt pancake graphs, Discrete Appl. Math., 360 (2025), 93–114. http://doi.org/10.1016/j.dam.2024.08.019 doi: 10.1016/j.dam.2024.08.019
    [15] J. Wang, Z. Zhang, Y. Huang, The generalized $3$-connectivity of burnt pancake graphs and godan graphs, AKCE Int. J. Graphs Comb., 20 (2023), 98–103. http://doi.org/10.1080/09728600.2023.2212293 doi: 10.1080/09728600.2023.2212293
    [16] Y. Wang, B. Cheng, Y. Wang, J. Yu, J. Fan, Strongly Menger connectedness of a class of recursive networks, Comput. J., 67 (2024), 2030–2038. https://doi.org/10.1093/comjnl/bxad121 doi: 10.1093/comjnl/bxad121
    [17] H. Zhang, H. Bian, J. Meng, Reliability evaluation of conditional recursive networks under h-conditional restriction, Appl. Math. Comput., 500 (2025), 129399. https://doi.org/10.1016/j.amc.2025.129399 doi: 10.1016/j.amc.2025.129399
    [18] S.-L. Zhao, J.-M. Chang, H.-Z. Li, The generalized $4$-connectivity of pancake graphs, Discrete Appl. Math., 327 (2023), 77–86. http://doi.org/10.1016/j.dam.2022.11.020 doi: 10.1016/j.dam.2022.11.020
    [19] S.-L. Zhao, R.-X. Hao, The generalized connectivity of alternating group graphs and $(n, k)$-star graphs, Discrete Appl. Math., 251 (2018), 310–321. http://doi.org/10.1016/j.dam.2018.05.059 doi: 10.1016/j.dam.2018.05.059
    [20] S.-L. Zhao, R.-X. Hao, J. Wu, The generalized $4$-connectivity of hierarchical cubic networks, Discrete Appl. Math., 289 (2021), 194–206. http://doi.org/10.1016/j.dam.2020.09.026 doi: 10.1016/j.dam.2020.09.026
    [21] Q. Zhou, H. Liu, B. Cheng, Y. Wang, Y. Han, J. Fan, Fault tolerance of recursive match networks based on $g$-good-neighbor fault pattern, Appl. Math. Comput., 461 (2024), 128318. https://doi.org/10.1016/j.amc.2023.128318 doi: 10.1016/j.amc.2023.128318
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(36) PDF downloads(10) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog