The generalized $ k $-connectivity $ \kappa_k(G) $ of graph $ G $ is defined as the maximum number of internally disjoint Steiner trees in $ G $, which is a generalization of classical connectivity $ \kappa(G) $ of $ G $ just for $ k = 2 $. Conditional recursive networks (CRNs) form a new family of composite networks constructed from complete graphs. In this paper, we determine the generalized $ k $-connectivity of CRNs for $ k = 4 $.
Citation: Yinkui Li, Yilin Song, Zhuomo An. The generalized $ k $-connectivity of conditional recursive networks[J]. AIMS Mathematics, 2026, 11(1): 1807-1819. doi: 10.3934/math.2026075
The generalized $ k $-connectivity $ \kappa_k(G) $ of graph $ G $ is defined as the maximum number of internally disjoint Steiner trees in $ G $, which is a generalization of classical connectivity $ \kappa(G) $ of $ G $ just for $ k = 2 $. Conditional recursive networks (CRNs) form a new family of composite networks constructed from complete graphs. In this paper, we determine the generalized $ k $-connectivity of CRNs for $ k = 4 $.
| [1] | L. W. Beineke, R. J. Wilson, Topics in structural graph theory, Cambrige University Press, 2013. |
| [2] | A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008. |
| [3] |
G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55 (2010), 360–367. http://doi.org/10.1002/net.20339 doi: 10.1002/net.20339
|
| [4] |
R. Gu, X. Li, Y. Shi, The generalized $3$-connectivity of random graphs, Acta Mathematica Sinica, Chinese Series, 57 (2014), 321–330. https://doi.org/10.12386/A2014sxxb0032 doi: 10.12386/A2014sxxb0032
|
| [5] |
C. Jin, H.-Y. Zhang, C. Wei, The bounds of generalized $4$-connectivity of alternating group graphs, J. Interconnect. Netw., 21 (2021), 2150011. http://doi.org/10.1142/S0219265921500110 doi: 10.1142/S0219265921500110
|
| [6] | S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combinatoria, 104 (2012), 65–79. |
| [7] | S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition $3$-partite graphs, Bull. Malays. Math. Sci. Soc., 37 (2014), 103–121. |
| [8] |
S. Li, J. Tu, C. Yu, The generalized $3$-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput., 274 (2016), 41–46. http://doi.org/10.1016/j.amc.2015.11.016 doi: 10.1016/j.amc.2015.11.016
|
| [9] |
X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs, Discrete Appl. Math., 185 (2015), 102–112. http://doi.org/10.1016/j.dam.2014.12.009 doi: 10.1016/j.dam.2014.12.009
|
| [10] | X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Comb., 58 (2014), 304–319. |
| [11] |
Y. Li, Y. Mao, Z. Wang, Z. Wei, Generalized connectivity of some total graphs, Czech. Math. J., 71 (2021), 623–640. http://doi.org/10.21136/CMJ.2021.0287-19 doi: 10.21136/CMJ.2021.0287-19
|
| [12] |
Y. Li, L. Wei, Note for the conjecture on the generalized $4$-connectivity of total graphs of the complete bipartite graph, Appl. Math. Comput., 458 (2023), 128225. http://doi.org/10.1016/j.amc.2023.128225 doi: 10.1016/j.amc.2023.128225
|
| [13] | J. Wang, Y. Huang, Z. Ouyang, The generalized $4$-connectivity of godan graphs, arXiv: 2405.15147. |
| [14] |
J. Wang, J. Wu, Z. Ouyang, Y. Huang, The generalized $4$-connectivity of burnt pancake graphs, Discrete Appl. Math., 360 (2025), 93–114. http://doi.org/10.1016/j.dam.2024.08.019 doi: 10.1016/j.dam.2024.08.019
|
| [15] |
J. Wang, Z. Zhang, Y. Huang, The generalized $3$-connectivity of burnt pancake graphs and godan graphs, AKCE Int. J. Graphs Comb., 20 (2023), 98–103. http://doi.org/10.1080/09728600.2023.2212293 doi: 10.1080/09728600.2023.2212293
|
| [16] |
Y. Wang, B. Cheng, Y. Wang, J. Yu, J. Fan, Strongly Menger connectedness of a class of recursive networks, Comput. J., 67 (2024), 2030–2038. https://doi.org/10.1093/comjnl/bxad121 doi: 10.1093/comjnl/bxad121
|
| [17] |
H. Zhang, H. Bian, J. Meng, Reliability evaluation of conditional recursive networks under h-conditional restriction, Appl. Math. Comput., 500 (2025), 129399. https://doi.org/10.1016/j.amc.2025.129399 doi: 10.1016/j.amc.2025.129399
|
| [18] |
S.-L. Zhao, J.-M. Chang, H.-Z. Li, The generalized $4$-connectivity of pancake graphs, Discrete Appl. Math., 327 (2023), 77–86. http://doi.org/10.1016/j.dam.2022.11.020 doi: 10.1016/j.dam.2022.11.020
|
| [19] |
S.-L. Zhao, R.-X. Hao, The generalized connectivity of alternating group graphs and $(n, k)$-star graphs, Discrete Appl. Math., 251 (2018), 310–321. http://doi.org/10.1016/j.dam.2018.05.059 doi: 10.1016/j.dam.2018.05.059
|
| [20] |
S.-L. Zhao, R.-X. Hao, J. Wu, The generalized $4$-connectivity of hierarchical cubic networks, Discrete Appl. Math., 289 (2021), 194–206. http://doi.org/10.1016/j.dam.2020.09.026 doi: 10.1016/j.dam.2020.09.026
|
| [21] |
Q. Zhou, H. Liu, B. Cheng, Y. Wang, Y. Han, J. Fan, Fault tolerance of recursive match networks based on $g$-good-neighbor fault pattern, Appl. Math. Comput., 461 (2024), 128318. https://doi.org/10.1016/j.amc.2023.128318 doi: 10.1016/j.amc.2023.128318
|