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Abstract: The generalized k-connectivity κk(G) of graph G is defined as the maximum number of
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1. Introduction

We consider finite, simple, and undirected graphs; for notations and definitions not described here,
we refer to the book [1, 2]. As usual, we by V(G), E(G), ∆(G), δ(G) respectively denote the vertex
set, the edge set, the maximum degree, the minimum degree of graph G and by [n] denote the set of
positive integers {1, 2, . . . , n}. Use E(S 1, S 2) to denote the set of edges whose ends are respectively in
S 1 ⊂ V(G) and S 2 ⊂ V(G), which is simplified by E(S ) when S 1 = S 2.

For a graph G = (V, E) of order n and a vertex set S ⊆ V with at least two vertices, an S -Steiner tree
or a Steiner tree connecting S (or simply, an S -tree) is a subgraph T = (V ′, E′) of G that is a tree with
S ⊆ V ′. Two Steiner trees T and T ′ connecting S are said to be internally disjoint if V(T )∩V(T ′) = S
and E(T )∩E(T ′) = ∅ (or edge disjoint if E(T )∩E(T ′) = ∅). The generalized local connectivity κ(S ) (or
the generalized local edge-connectivity λ(S )) is the maximum number of internally (or edge) disjoint
S -trees connecting S in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity κk(G)
(or the generalized k-edge-connectivity λk(G)) of G is defined as κk(G) = min{κ(S ) | S ⊆ V(G), |S | =
k} and κ2(G) = κ(G) (or λk(G) = min{λ(S ) | S ⊆ V(G) , |S | = k} and λ2(G) = λ(G).) For exact
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values, further research can be found in [4, 12]; for generalized values, see [6, 7, 10, 11]. Clearly,
the generalized k-connectivity and generalized k-edge-connectivity measure the fault tolerance of an
interconnection network more accurately than the classical connectivity, evaluates the fault tolerance
in terms of the number of disjoint paths. Unfortunately, computing the exact values of generalized
k-(edge) connectivity for general k is NP-complete, even for special graphs.

In [8], S. Li determined the generalized 3-connectivity of graphs such as star graphs S n and bubble-
sort graphs Bn. J. Wang [15] considered the generalized 3-connectivity of burnt pancake graphs BPn

and godan graphs. S. Zhao [19] determined the generalized 3-connectivity of alternating group graphs
and (n, k)-star graphs. More recently, several authors have discussed the generalized 4-connectivity of
graphs such as burnt pancake graphs BPn [14], godan graphs [13], alternating Group Graphs AGn [5],
pancake graphs [18], and hierarchical cubic networks [20].

Conditional recursive networks (CRNs) form a new family of composite networks based on the
complete graph, which includes many common networks and shares the same structural properties as
alternating group networks. For further research on these networks, see [16, 21].

Definition 1.1. [17] Let l(≥ 3) be an integer and Kl be a complete graph. The l-order 1-dimensional
conditional recursive networks (simplified CRNs), denoted by Gl,1, is isomorphic to Kl. For m ≥ 2,
the l-order m-dimensional conditional recursive networks Gl,m � Kl for 1 ≤ m ≤ l and for m ≥ l + 1,
Gl,m can be divided into m disjoint subnetworks G j

l,m−1 for j ∈ {1, 2, . . . ,m}, where G j
l,m−1 � Gl,m−1.

Gl,m usually denoted by G1
l,m−1 ⊕ G2

l,m−1 ⊕ . . . ⊕ Gm
l,m−1 and satisfies the following conditions. G3,m for

1 ≤ m ≤ 5 illustrated in Figure 1.
(1) For any 1 ≤ i , j ≤ m, |E(Gi

l,m−1,G
j
l,m−1)| = (m−2)!

(l−1)! .
(2) Gl,m has a perfect matching M = E(Gl,m) − E(∪m

i=1G
i
l,m−1).

(3) For any vertex v ∈ V(Gi
l,m−1), v has only one external neighbor in Gl,m −Gi

l,m−1.
(4) Gl,m can be decomposed into m!

r! disjoint subnetworks Gl,r when m ≥ l + 1.

G3,1 3,2 3,3 3≌G G K≌ =

G3,4
G3,5

Figure 1. The CRNs G3,m for m ∈ {1, 2, 3, 4, 5}.

In this paper, we determine the generalized 4-connectivity of CRNs and show that κ4(Gl,m) =
λ4(Gl,m) = m − 2.
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2. Preliminary

Lemma 2.1. [17] Let Gl,m be l-order m-dimensional CRNs for m ≥ l ≥ 3. Then, (1) Gl,m is a (m − 1)-
regular graph with m!

(l−1)! vertices. (2) κ(Gl,m) = m − 1.

Lemma 2.2. [2] Let G be a k-connected graph, let x be a vertex of G and let Y ⊆ V(G)\{x} be a set
of at least k vertices of G. Then there exists a k-fan in G from x to Y, that is, there exists a family of k
internally disjoint (x,Y)-paths whose terminal vertices are distinct in Y.

Lemma 2.3. [2] Let G be a k-connected graph, and let X,Y ⊆ V(G) with |X|, |Y | ≥ k. Then there exists
a set of k pairwise vertex-disjoint (X,Y)-paths in G.

Lemma 2.4. [3] For every two integers n and k with 2 ≤ k ≤ n, κk(Kn) = n − ⌈ k
2⌉.

Lemma 2.5. [9] Let G be a connected graph of order n with minimum degree δ. If there are two
adjacent vertices of degree δ, then κk(G) ≤ λk(G) ≤ δ − 1 for 3 ≤ k ≤ n. Moreover, the upper bound is
sharp.

3. Main results

In this section, we determine the generalized 4-connectivity and the generalized 4-edge-connectivity
of conditional recursive networks Gl,m.

Theorem 3.1. Let Gl,m be l-order m-dimensional CRNs for l ≥ 3. Then

κ4(Gl,m) =

l − 2, If 1 ≤ m ≤ l;

m − 2, If m ≥ l + 1.

Proof. First, consider Gl,m � Kl for 1 ≤ m ≤ l, by Lemma 2.4, we directly get κ4(Gl,m) = κ4(Kl) =
l − ⌈4

2⌉ = l − 2. Here we mainly discuss the case for m ≥ l + 1 ≥ 4; since Gl,m is (m − 1)-regular, by
Lemma 2.5, we have κ4(Gl,m) ≤ δ − 1 = m − 2. Now we need only show κ4(Gl,m) ≥ m − 2, this suffice
to prove that there exist m− 2 internally disjoint S -trees in Gl,m for any 4-element set S ⊆ V(Gl,m). For
convenience to narrate, let Gl,m = G1 ⊕ G2 ⊕ . . . ⊕ Gm, where Gi � Gl,m−1 for i ∈ [m], and suppose
S = {x, y, z,w} is any 4-element subset of V(Gl,m). First, we consider m = 4; this means Gl,m = G3,4

and Gi = G3,3 = K3. By simple checking, there always exist 2 internally disjoint S -trees in G3,4, this
implies κ4(Gl,m) ≥ 2 = m − 2 holds. The following considers the case for m ≥ 5.
Case 1 |S ∩ V(Gi)| = 4 for some i ∈ [m]

Without loss of generality, suppose x, y, z,w ∈ V(G1). We proceed by induction on m. For the case
m = 5, it is clear that Gl,m is G3,5 with G1 = G3,4 or G4,5 with G1 = K4. Consider x, y, z,w ∈ V(G1); by
similar checking, we find that whether it is G3,5 or G4,5, it always contains 3 internally disjoint S -trees.
This implies κ4(Gl,m) ≥ m−2 holds for m = 5. Now we assume that the conclusion holds for m = k(≥ 6)
and go on to verify the conclusion holds for m = k+1. Notice Gl,k+1 = G1⊕G2⊕. . .⊕Gk+1 with Gi � Gl,k

for i ∈ [k + 1] and x, y, z,w ∈ V(G1), by induction hypothesis, we have κ4(G1) ≥ k − 2 for k ≥ l + 1.
This implies that there are at least k − 2 internally disjoint S -trees in G1, named T1,T2, . . . ,Tk−2. By
Definition 1.1(3), we know x, y, z,w have only one external neighbor in Gl,k+1 −G1, named x′, y′, z′ and
w′, respectively. Consider Gl,k+1 is k-regular and G1 is (k− 1)-regular; we can construct a {x′, y′, z′,w′}-
tree T in Gl,k+1. Now let Tk−1 = xx′ + yy′ + zz′ + T . Thus, T1,T2, . . . ,Tk−1 are k − 1 internally
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disjoint S -trees in Gl,k+1. This follows κ4(Gl,k+1) ≥ k − 1 = (k + 1) − 2, and the conclusion holds for
m = k + 1(k ≥ 6). By the above argument, we have κ4(Gl,m) ≥ m − 2 for m ≥ k + 1.
Case 2 |S ∩ V(Gi)| = 3, |S ∩ V(G j)| = 1 for some i , j ∈ [m]

Without loss of generality, suppose x, y, z ∈ V(G1) and w ∈ V(G2). First, we consider the case
m = l + 1. Notice that Gl,l+1 = G1 ⊕ G2 ⊕ . . . ⊕ Gl+1, where Gi � Kl for i ∈ [l + 1]. Now we show
that κ4(Gl,l+1) ≥ l − 1. Consider x, y, z ∈ V(G1) = V(Kl) and w ∈ V(G2) = V(Kl). By Lemma 2.4, we
can get κ3(G1) = κ3(Kl) = l − ⌈ 3

2⌉ = l − 2. This means there are l − 2 internally disjoint {x, y, z}-trees
Ti(1 ≤ i ≤ l − 2) in G1. Further, we find that one edge of triangle xyz is always missed in the process
of forming {x, y, z}-trees Ti, without loss of generality, suppose xy is the missing edge. Now we turn
our attention to the external neighbors of x, y, z,w, named x′, y′, z′,w′. Consider x, y, z ∈ V(G1), then
x′, y′, z′ are in distinct Gi for i , 1.

If {x′, y′, z′}∩V(G2) = ∅, without loss of generality, suppose x′ ∈ V(G5), y′ ∈ V(G3), and z′ ∈ V(G4).
Then we form l − 1 internally disjoint S -trees in Gl,l+1 such as Ti + G j + w for 1 ≤ i ≤ l − 3 and
j ∈ [l+1]\{1, 3, 4, 5}, Tl−2+y′+G3+w and xy+x′+G5+w+G4+z′+z. Otherwise, if {x′, y′, z′}∩V(G2) , ∅,
suppose y′ ∈ V(G2), then l − 1 internally disjoint S -trees are Ti + G j + w for 1 ≤ i ≤ l − 3 and
j ∈ [l + 1] \ {1, 2, 4, 5}, Tl−2 + y′ + w and xy + x′ + G5 + w + G4 + z′ + z. By now, we show that
κ4(Gl,m) ≥ m − 2 for m = l + 1. An example of G4,5 illustrated in Figure 2.

G
2G

1

G
3

G
4 G

5

G4,5

x y

z

w
G

2G
1

G
3

G
4 G

5

G4,5

x

yz

w

Figure 2. Internally disjoint S -trees in G4,5 illustrated by distinct color.

Next, we consider the case for m > l+1. Recall Gl,m = G1⊕G2⊕ . . .⊕Gm, x, y, z ∈ V(G1), w ∈ V(G2)
for G1 = G2 = Gl,m−1, let G1 = G11

l,m−1 ⊕G12
l,m−1 ⊕ . . .⊕G1(m−1)

l,m−1 , G2 = G21
l,m−1 ⊕G22

l,m−1 ⊕ . . .⊕G2(m−1)
l,m−1 where

G1i
l,m−1 = G2i

l,m−1 = Gl,m−2 for 1 ≤ i ≤ m − 1. Suppose x ∈ V(G1r
l,m−1), y ∈ V(G1s

l,m−1), z ∈ V(G1t
l,m−1) for

r, s, t ∈ [m − 1]. Further, we find that the external neighbor u′ ∈ V(Gm) of vertex u ∈ V(G11
l,m−1) and the

external neighbor u′ ∈ V(Gb) of u ∈ V(G1b
l,m−1) for 1 ≤ b ≤ m.

Subcase 2.1 r , s , t ∈ [m − 1]
Clearly, x, y, and z are in distinct parts, this means the external neighbors x′, y′ z′ are also in distinct

parts. Consider κ(G1) = m − 2 and x, y, z ∈ V(G1); G1 contains at least m − 2 internally disjoint
(x, y)-paths, which are denoted by xP1y, xP2y, . . . , xPm−2y. Now we select m − 3 vertices xi ∈ V(Pi) ∩
NG1r

l,m−1
(x) \ {y} and their internal neighbors x̂i ∈ NG1(xi) \ {x, y} for 1 ≤ i ≤ m − 3. By Lemma 2.2, there

exists an (m − 3)-fan from z to Z = {x̂1, x̂2, . . . , x̂m−3}, which are internally disjoint (z,Z)-paths denoted
by x̂1Q1z, x̂2Q2z, . . . , x̂m−3Qm−3z. Further, we discuss as follows.
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Subcase 2.1.1 r , s , t , 2
Consider x ∈ V(G1r

l,m−1), y ∈ V(G1s
l,m−1), z ∈ V(G1t

l,m−1) for r , s , t , 2, suppose x ∈ V(G11
l,m−1),

y ∈ V(G14
l,m−1) and z ∈ V(G13

l,m−1). Then the external neighbors of x, y, z and xi are x′ ∈ V(Gm), y′ ∈ V(G4),
z′ ∈ V(G3) and x′i ∈ V(Gm) for i ∈ [m − 3]. If w < V(G2m

l,m−1), we choose m − 2 vertices wi ∈ V(G2m
l,m−1)

such that their external neighbors w′i ∈ V(Gm). Consider κ(G2) = m−2, there exists an (m−2)-fan from
w to W = {w1,w2, . . . ,wm−2} ⊆ V(G2)\{w}, and denoted by wW1w1,wW2w2, . . . ,wWm−2wm−2. Let X′ =
{x′1, x

′
2, . . . , x

′
m−3, x

′} and W ′ = {w′1,w
′
2, . . . ,w

′
m−2}. By Lemma 2.3, Gm contains a set of m − 2 pairwise

vertex disjoint (X′,W ′)-paths, which are denoted by x′1L1w′1, x
′
2L2w′2, . . . , x

′
m−3Lm−3w′m−3, x

′Lm−2w′m−2.
Now choose x̂′ ∈ V(Lm−2) such that its external neighbor (x̂′)′ ∈ V(Gl,m\(G1 ∪G2 ∪Gm)), and then we
get a {y′, z′, (x̂′)′}-tree T in Gl,m\(G1 ∪G2 ∪Gm) by using these external neighbors y′, z′, (x̂′)′. Now let
Ti = xPiy+xi x̂i+ x̂iQiz+xix′i+x′i Liw′i+wiWiw for i ∈ [m−3] and Tm−2 = xx′+x′Lm−2w′m−2+wm−2Wm−2w+
x′ x̂′ + x̂′(x̂′)′ + T + y′y+ z′z. Then we get m− 2 internally disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m. See
Figure 3. Otherwise, if w ∈ V(G2m

l,m−1), we have T ∗m−2 = xx′+x′Lm−2ww′+w′w+x′ x̂′+ x̂′(x̂′)′+T+y′y+z′z
replace Tm−2 for case w < V(G2m

l,m−1) to get m − 2 internally disjoint S -trees T1,T2, . . . ,Tm−3,T ∗m−2 in
Gl,m.

y

x1

x

P1

G2

x1’

wm-2

z

G1

P2 Pm-3

x2

xm-3

x2’

xm-3’

w1

wm-3

...

..
.

..
.

Q1

Q2

Qm-2

L1

L2

Lm-2

x1

x2

xm-3

x’

y’
z’

x’

w1’

w2’

wm-3’

wm-2’

w2

w

G \Gl ,m

1 2 m
∪ ∪G G

x’

Gm

(   )’

Lm-3

Figure 3. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Subcase 2.1.1.

In particular, if Lm−2 = P2, we choose a vertex ŵ ∈ NG2m
l,m−1

(w) such that its external neighbor
ŵ′ ∈ V(Gl,m\(G1 ∪G2 ∪Gm)) and use these external neighbors y′, z′, ŵ′ to construct a {y′, z′, ŵ′}-tree T
in Gl,m\(G1 ∪G2 ∪Gm). And then, we by xx′ + x′Lm−2w′m−2 + wm−2Wm−2w + wŵ + ŵŵ′ + T + y′y + z′z
replace Tm−2 for case w < V(G2m

l,m−1) and by xx′ + x′Lm−2ww′ + w′w + wŵ + ŵŵ′ + T + y′y + z′z replace
T ∗m−2 for case w ∈ V(G2m

l,m−1) to get m − 2 internally disjoint S -trees in Gl,m.
Subcase 2.1.2 One of r, s, t is 2
Suppose x ∈ V(G12

l,m−1), y ∈ V(G14
l,m−1) and z ∈ V(G13

l,m−1). Then external neighbors of x, y, z
and xi are x′ ∈ V(G2), y′ ∈ V(G4), z′ ∈ V(G3) and x′i ∈ V(G2) for i ∈ [m − 3]. Consider
κ(G2) = m − 2, there exists an (m − 2)-fan from w to X′ = {x′1, x

′
2, . . . , x

′
m−3, x

′}, which denoted by
wW1x′1,wW2x′2, . . . ,wWm−3x′m−3,wWm−2x′. Similar discussion as before, if w′ < V(G1), then external
neighbors of y, z,w are y′, z′,w′ ∈ V(Gl,m\(G1 ∪G2)) and we use these external neighbors to construct
a {y′, z′,w′}-tree T in Gl,m\(G1∪G2). Now we let Ti = xPiy+ xi x̂i + x̂iQiz+ xix′i + x′iWiw for i ∈ [m−3],
Tm−2 = xx′+x′Wm−2w+ww′+T+y′y+z′z and thus obtain m−2 internally disjoint S -trees T1,T2, . . . ,Tm−2

in Gl,m. See Figure 4.
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Figure 4. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Subcase 2.1.2.

Otherwise, if w′ ∈ V(G1), we choose an internal neighbor x̂′ of x′ such that its external neighbor
(x̂′)′ is in Gl,m\(G1 ∪G2) and by tree T ∗m−2 = xx′ + x′Wm−2w + x′ x̂′ + x̂′(x̂′)′ + T + y′y + z′z replace tree
Tm−2 for case w′ < V(G1). Then we get m − 2 internally disjoint S -trees T1,T2, . . . ,Tm−3,T ∗m−2 in Gl,m.

Subcase 2.2 Two of r, s, t are equal
Without loss of generality, suppose s = t and let x ∈ V(G1r

l,m−1) and y, z ∈ V(G1s
l,m−1) for some

r , s ∈ [m − 1]. By Lemma 2.1(2), G1 contains at least m − 2 internally disjoint (y, z)-paths,
named yP1z, yP2z, . . . , yPm−2z. Now we select m − 3 vertices yi ∈ V(Pi) ∩ NG1(y) \ {y, z} and let
Y = {y1, y2, . . . , ym−3}. By Lemma 2.2, there exists an (m − 3)-fan from x to Y in G1, which denoted
by y1Q1x, y2Q2x, . . . , ym−3Qm−3x. Now we choose m − 3 distinct vertices xi ∈ V(Qi) ∩ NG1i

l,m−1
(x).

Further, we discuss according to r, s. Cases for r, s , 2 and r = 2, by similar argument as Subcase
2.1.1 and Subcase 2.1.2, respectively, we would get m − 2 internally disjoint S -trees in Gl,m, details
omitted. As for case s = 2, let x ∈ V(G11

l,m−1) and y, z ∈ V(G12
l,m−1) and their external neighbors

x′, x′i ∈ V(Gm), y′, z′ ∈ V(G2). Similarly discuss as before, if w < V(G2m
l,m−1), choose m − 2 distinct

vertices wi ∈ V(G2m
l,m−1) with the external neighbors w′i ∈ V(Gm) and construct a such (m − 2)-fan from

w to W = {w1,w2, . . . ,wm−2} ⊆ V(G2)\{w} as wW1w1,wW2w2, . . . ,wWm−2wm−2. Then construct a set
of m − 2 pairwise vertex disjoint paths between X′ = {x′1, x

′
2, . . . , x

′
m−3, x

′} and W ′ = {w′1,w
′
2, . . . ,w

′
m−2}

as x′1L1w′1, x
′
2L2w′2, . . . , x

′
m−3Lm−3w′m−3, x

′Lm−2w′m−2. Notice wm−2, y′, z′ ∈ V(G2), suppose the path from
wm−2 to z′ (or y′) is R. Now let Ti = yPiz + yiQix + xix′i + x′i Liw′i + w′iwi + wiWiw for i ∈ [m − 3],
Tm−2 = xx′ + x′Lm−2w′m−2 + wm−2Wm−2w + wm−2Rz′ + z′z + yPm−2z and thus we get m − 2 internally
disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m. See Figure 5.

Otherwise, if w ∈ V(G2m
l,m−1), by the Definition 1.1(3), the external neighbors of y, z,w are y′, z′,w′ ∈

V(G2). We use these external neighbors to construct a new {y′, z′,w′}-tree T in G2 and by T ∗m−2 =

xx′+ x′Lm−2w′+w′w+T +yy′+ zz′ to replace Tm−2 for case w < V(G2m
l,m−1). Then we get m−2 internally

disjoint S -trees T1,T2, . . . ,Tm−3,T ∗m−2 in Gl,m.
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Figure 5. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Subcase 2.2.

Subcase 2.3 r = s = t ∈ [m − 1]
Subcase 2.3.1 r , 2
Suppose r = 1 and let x, y, z ∈ V(G11

l,m−1). Then the external neighbors of x, y and z are
x′, y′, z′ ∈ V(Gm). Similarly, choose m − 3 distinct vertices xi ∈ V(G12

l,m−1) such that their external
neighbors x′i ∈ V(G2). Consider x, y, z, xi ⊂ V(G1), by similar argument as Case 1, we would
get m − 3 internally disjoint {x, y, z, xi}-trees T ′1,T

′
2, . . . ,T

′
m−3. Then choose w1 ∈ V(G2m

l,m−1)\{w}
such that its external neighbor w′1 ∈ V(Gm). By Lemma 2.2, there exist and can be constructed
(m − 2)-fan from w to X′ = {x′1, x

′
2, . . . , x

′
m−3,w1} such as x′1Q1w, x′2Q2w, . . . , x′m−3Qm−3w,w1Qm−2w.

Consider the external neighbors of x, y, z and w1 are x′, y′, z′,w′1 ∈ V(Gm), we use these external
neighbors to construct a {w′1, x

′, y′, z′}-tree T in Gm. Let Ti = T ′i + xix′i + x′i Qiw for i ∈ [m − 3],
and Tm−2 = xx′ + yy′ + zz′ + T + w′1w1 + w1Qm−2w. Then we get m − 2 internally disjoint S -trees
T1,T2, . . . ,Tm−2 in Gl,m.

Subcase 2.3.2 r = 2
Consider x, y, z ∈ V(G12

l,m−1) and x′, y′, z′ ∈ V(G2); we discuss by w. If w < V(G21
l,m−1), then choose

m−3 distinct vertices xi ∈ V(G11
l,m−1) such that their external neighbors x′i ∈ V(Gm). By similar argument

as Case 1, we get m−3 internally disjoint {x, y, z, xi}-trees T ′1,T
′
2, . . . ,T

′
m−3. Then choose m−3 vertices

wi ∈ V(G2m
l,m−1)\{w} such that their external neighbors w′i ∈ V(Gm) and construct a (m− 3)-fan from w to

W = {w1,w2, . . . ,wm−3} such as w1Q1w,w2Q2w, . . . ,wm−3Qm−3w. Then, by Lemma 2.3, we construct a
set of m − 3 pairwise vertex disjoint paths between X′ = {x′1, x

′
2, . . . , x

′
m−3} and W ′ = {w′1,w

′
2, . . . ,w

′
m−3}

such as x′1L1w′1, x
′
2L2w′2, . . . , x

′
m−3Lm−3w′m−3. Notice x′, y′, z′ ∈ V(G2), then use these external neighbors

to construct a {x′, y′, z′,w}-tree T in G2. Finally, let Ti = T ′i +xix′i+x′i Liw′i+w′iwi+wiWiw for i ∈ [m−3],
Tm−2 = xx′ + yy′ + zz′ + T , and thus get m − 2 internally disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m.

AIMS Mathematics Volume 11, Issue 1, 1807–1819.



1814

Otherwise, if w ∈ V(G21
l,m−1), choose m − 4 distinct vertices xi ∈ V(G11

l,m−1) such that their external
neighbors x′i ∈ V(Gm) and similarly form m − 4 internally disjoint {x, y, z, xi}-trees T ′1,T

′
2, . . . ,T

′
m−4.

Let T ′m−3 be xyz(or xzy, or yxz), and Pm−2 = xz(or xy, or yz). Then choose m − 4 vertices wi ∈

V(G2m
l,m−1) such that their external neighbors w′i ∈ V(Gm) to construct a (m − 3)-fan in G2 from w

to W = {w1,w2, . . . ,wm−4} such as w1Q1w,w2Q2w, . . . ,wm−4Qm−4w. And construct a set of m − 3
pairwise vertex disjoint paths between X′ = {x′1, x

′
2, . . . , x

′
m−4} and W ′ = {w′1,w

′
2, . . . ,w

′
m−4} such as

x′1L1w′1, x
′
2L2w′2, . . . , x

′
m−4Lm−4w′m−4. Follow these, we use external neighbors of x, y and z to construct

a {x′, y′,w}-tree T and a new {z′,w}-path R in G2. Finally, let Ti = T ′i + xix′i + x′i Liw′i + w′iwi + wiWiw
for i ∈ [m − 4], Tm−3 = T ′m−3 + zz′ + R, and Tm−2 = Pm−2 + xx′ + yy′ + T . Then we get m − 2 internally
disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m.
Case 3 |S ∩ V(Gi)| = 2, |S ∩ V(G j)| = 2 for some i , j ∈ [m]

Without loss of generality, let x, y ∈ V(G1) and z,w ∈ V(G2). Recall G1 = G11
l,m−1 ⊕ G12

l,m−1 ⊕ . . . ⊕

G1(m−1)
l,m−1 , G2 = G21

l,m−1 ⊕ G22
l,m−1 ⊕ . . . ⊕ G2(m−1)

l,m−1 where G1i
l,m−1 = G2i

l,m−1 = Gl,m−2 for 1 ≤ i ≤ m − 1, we
suppose x ∈ V(G1r

l,m−1), y ∈ V(G1s
l,m−1), z ∈ V(G2t

l,m−1),w ∈ V(G2o
l,m−1) for r, s, t, o ∈ [m − 1].

Subcase 3.1 One of r, s is 2
Without loss of generality, suppose x ∈ V(G12

l,m−1), y ∈ V(G13
l,m−1). By Lemma 2.1(2), G1 contains

at least m − 2 internally disjoint (x, y)-paths xP1y, xP2y, . . . , xPm−2y. Now select m − 3 vertices xi ∈

V(Pi) ∩ NG12
l,m−1

(x) such that their external neighbors x′i ∈ V(G2) and construct a (m − 2)-fan from w
to X′ = {x′1, x

′
2, . . . , x

′
m−3, x

′} ⊆ V(G2) such as x′1W1w, x′2W2w, . . . , x′m−3Wm−3w, x′Wm−2w. Then select
m − 2 vertices wi ∈ V(Wi) and construct a (m − 2)-fan from z to W = {w1,w2, . . . ,wm−2} such as
w1Q1z,w2Q2z, . . . ,wm−2Qm−2z. Now let Ti = xPiy + xix′i + x′iWiw + wiQiz for i ∈ [m − 3], Tm−2 =

xPm−2y+ xx′ + x′Wm−2w+wm−2Qm−2z and thus we get m− 2 internally disjoint S -trees T1,T2, . . . ,Tm−2

in Gl,m. See Figure 6.

y

x1

x

P1

G2

x1’

G1

Pm-3

xm-3

xm-3’

...

Q1

Qm-2

W1

Wm-2

z

wWm-3

G \Gl ,m

1 2
∪G

.
.
.

x’

Pm-2

Qm-3

wm-3

w1

wm-2

.
.
.

Figure 6. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Subcase 3.1.

Subcase 3.2 r = s = 2
Clearly, suppose x, y ∈ V(G12

l,m−1), and thus G1 contains at least m − 2 internally disjoint (x, y)-
paths xP1y, xP2y, . . . , xPm−2y, where V(Pm−3) ∩ V(G12

l,m−1) = {x, y} and Pm−2 is an (x, y)-path of length
1. Now select m − 4 vertices xi ∈ V(Pi) ∩ NG12

l,m−1
(x) such that xi are the internal neighbors of x.

Let x′i ∈ V(G21
l,m−1) be the external neighbors of xi and construct a (m − 2)-fan in G2 from w to X′ =

{x′1, x
′
2, . . . , x

′
m−4, y

′, x′} denoted by x′1W1w, x′2W2w, . . . , x′m−4Wm−4w, y′Wm−3w, x′Wm−2w. Then select m−
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2 vertices wi ∈ V(Wi) and construct a (m − 2)-fan in Gl,m − G1 from z to W = {w1,w2, . . . ,wm−2}

such as w1Q1z,w2Q2z, . . . ,wm−2Qm−2z. Now let Ti = xPiy + xix′i + x′iWiw + wiQiz for i ∈ [m − 4],
Tm−3 = xPm−3y + yy′ + y′Wm−3w +wm−3Qm−3z, Tm−2 = xPm−2y + xx′ + x′Wm−2w +wm−2Qm−2z. Then we
get m − 2 internally disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m.

Subcase 3.3 r, s , 2
Considering r, s , 2, we discuss t, o. If one of t, o is 1, then z or w is in G21

l,m−1. By similar
arguments as Subcase 3.1 and Subcase 3.2, we would get m − 2 internally disjoint S -trees in Gl,m,
the details omitted. Otherwise, if t, o , 1, then z,w < V(G21

l,m−1). Without loss of generality,
suppose x ∈ V(G11

l,m−1), y ∈ V(G13
l,m−1) and z ∈ V(G23

l,m−1). By Lemma 2.1(2), G1 contains at least
m − 2 internally disjoint (x, y)-paths such as xP1y, xP2y, . . . , xPm−2y, where V(Pm−2) ∩ V(G11

l,m−1) =
{x}. Now select m − 3 internal neighbors of x such as xi ∈ V(Pi) ∩ NG11

l,m−1
(x) with external

neighbors x′i ∈ V(Gm). Similarly, there are m − 2 internally disjoint (z,w)-paths in G2 such as
zQ1w, zQ2w, . . . , zQm−2w. Then select m − 3 vertices zi ∈ V(Qi) ∩ NG23

l,m−1
(z) such that zi are the

internal neighbors of z with external neighbors z′i ∈ V(G3). Now form a set of m − 2 pairwise vertex
disjoint (X′,Z′) paths x′1L1z′1, x

′
2L2z′2, . . . , x

′
m−3Lm−3z′m−3, x

′Lm−2z′ between X′ = {x′1, x
′
2, . . . , x

′
m−3, x

′}

and Z′ = {z′1, z
′
2, . . . , z

′
m−3, z

′}. Thus, let Ti = xPiy + xix′i + x′i Liz′i + z′izi + zQiw for i ∈ [m − 3],
Tm−2 = xPm−2y + xx′ + x′Lm−2z′ + z′z + zQm−2w and then we get m − 2 internally disjoint S -trees
T1,T2, . . . ,Tm−2 in Gl,m.
Case 4 |S ∩ V(Gi)| = 2, |S ∩ V(G j)| = |S ∩ V(Gk)| = 1 for some i , j , k ∈ [m]

Without loss of generality, suppose x, y ∈ V(G1), z ∈ V(G2) and w ∈ V(G3) and further let x ∈
V(G1r

l,m−1), y ∈ V(G1s
l,m−1) for some r, s ∈ [m − 1].

yx1x

P1

z

Pm-3

Pm-2

xm-3

xm-3’

R1 Rm-2
Rm-3L1

Lm-3
Lm-2

y1’ym-3’ y’

w

x’

y1

ym-3

.
.
.

...

...

G2

G1

G3

x1’

G \Gl ,m

1 2 3
∪ ∪G G

Figure 7. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Subcase 4.1.

Subcase 4.1 r , s ∈ [m − 1]
Without loss of generality, suppose x ∈ V(G11

l,m−1), y ∈ V(G14
l,m−1) and m − 2 internally disjoint (x, y)-

paths in G1 are xP1y, xP2y, . . . , xPm−2y. Then select m − 3 distinct vertices xi ∈ V(Pi) ∩ NG11
l,m−1

(x).
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Similarly, select m − 3 distinct vertices yi ∈ V(Pi) ∩ NG14
l,m−1

(y), Notice the external neighbors of xi and
yi are x′i ∈ V(Gm) and y′i ∈ V(G4), we construct a (m − 2)-fan from z to X′ = {x′1, x

′
2, . . . , x

′
m−3, x

′} such
as zL1x′1, zL2x′2, . . . , zLm−3x′m−3, zLm−2x′, and a (m − 2)-fan from w to Y ′ = {y′1, y

′
2, . . . , y

′
m−3, y

′} such as
wR1y′1,wR2y′2, . . . ,wRm−3y′m−3,wRm−2y′. Now let Ti = xPiy + xix′i + x′i Liz + yiy′i + y′iRiw for i ∈ [m − 3],
Tm−2 = xPm−2y + xx′ + x′Lm−2z + yy′ + y′Rm−2w, and then we get m − 2 internally disjoint S -trees
T1,T2, . . . ,Tm−2 in Gl,m. See Figure 7.

Subcase 4.2 r = s ∈ [m − 1]
Without loss of generality, suppose x, y ∈ V(G11

l,m−1) and m − 2 internally disjoint (x, y)-paths in
G1 are xP1y, xP2y, . . . , xPm−2y. Now select m − 4 distinct vertices xi ∈ V(Pi) ∩ NG11

l,m−1
(x) and yi ∈

NG11
l,m−1

(xi) \ V(Pi). Similarly, we construct a (m − 2)-fan from z to X′ = {x′1, x
′
2, . . . , x

′
m−3, x

′} such
as zL1x′1, zL2x′2, . . . , zLm−3x′m−3, zLm−2x′ and a (m − 2)-fan from w to Y ′ = {y′1, y

′
2, . . . , y

′
m−3, y

′} such as
wR1y′1,wR2y′2, . . . ,wRm−3y′m−3,wRm−2y′. Now let Ti = xPiy + xix′i + x′i Liz + xiyi + yiy′i + y′iRiw for
i ∈ [m − 4], Tm−3 = xPm−3y + xxm−3 + xm−3x′m−3 + x′m−3Lm−3z + yym−3 + ym−3y′m−3 + y′m−3Rm−3w, and
Tm−2 = xPm−2y + xx′ + x′Lm−2z + yy′ + y′Rm−2w and thus we get m − 2 internally disjoint S -trees
T1,T2, . . . ,Tm−2 in Gl,m.
Case 5 |S ∩ V(Gi)| = |S ∩ V(G j)| = |S ∩ V(Gk)| = |S ∩ V(Gl)| = 1 for some i , j , k , l ∈ [m]

Without loss of generality, suppose x ∈ V(G1), y ∈ V(G2), z ∈ V(G3), w ∈ V(G4), and their external
neighbors are x′, y′, z′, w′, respectively. If |{x′, y′, z′,w′} ∩ (Gl,m\(G1 ∪ G2 ∪ G3 ∪ G4))| ≥ 2, suppose
x′, y′ ∈ V(Gl,m\(G1 ∪ G2 ∪ G3 ∪ G4)). Then by Lemma 2.1(2), there exist m − 2 internally disjoint
(x, z)-paths in G1 ∪G3, denoted by xP1z, xP2z, . . . , xPm−2z, and m − 2 internally disjoint (y,w)-paths in
G2 ∪G4 , denoted by yQ1w, yQ2w, . . . , yQm−2w. By a similar argument as Case 3, we can obtain m − 2
internally disjoint S -trees in Gl,m, the details omitted.

zx1x
P1

x1’

y

Pm-3

Pm-2

xm-3

xm-3’

R1 Rm-2L1 Lm-3
Lm-2

z1’zm-3’ z’

w

x’

z1

zm-3

.
.
.

...
...

G2

G1
G3

G4

Rm-3

Gl ,m

Figure 8. Internally disjoint S -trees T1,T2, . . . ,Tm−2 in Case 5.

If |{x′, y′, z′,w′} ∩ (Gl,m\(G1 ∪ G2 ∪ G3 ∪ G4))| ≤ 1, then |{x′, y′, z′,w′} ∩ (G1 ∪ G2 ∪ G3 ∪

G4)| ≥ 3. Suppose x′, y′, z′ ∈ V(G1 ∪ G2 ∪ G3 ∪ G4) and Gi = Gi1
l,m−1 ⊕ Gi2

l,m−1 ⊕ . . . ⊕ Gi(m−1)
l,m−1

for i ∈ [m]. Clearly, x ∈ V(G12
l,m−1),V(G13

l,m−1),V(G14
l,m−1), y ∈ V(G21

l,m−1),V(G23
l,m−1),V(G24

l,m−1) and
z ∈ V(G31

l,m−1),V(G32
l,m−1),V(G34

l,m−1). Without loss of generality, suppose x ∈ V(G12
l,m−1), y ∈ V(G21

l,m−1), z ∈
V(G34

l,m−1). Then z′ ∈ V(G4) and G1 ∪ G3 contains at least m − 2 internally disjoint (x, z)-paths
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xP1z, xP2z, . . . , xPm−2z. Now select m− 3 distinct vertices xi ∈ V(Pi)∩NG12
l,m−1

(x), zi ∈ V(Pi)∩NG34
l,m−1

(z)
and suppose x′i and z′i are the external neighbor of xi and zi, respectively. Now we construct a (m − 2)-
fan from y to X′ = {x′1, x

′
2, . . . , x

′
m−3, x

′} such as yL1x′1, yL2x′2, . . . , yLm−3x′m−3, yLm−2x′ and (m − 2)-
fan from w to Z′ = {z′1, z

′
2, . . . , z

′
m−3, z

′} such as wR1z′1,wR2z′2, . . . ,wRm−3z′m−3,wRm−2z′, and then let
Ti = xPiz+ xix′i + x′i Liy+ ziz′i + z′iRiw for i ∈ [m− 3], Tm−2 = xPm−2z+ xx′ + x′Lm−2y+ zz′ + z′Rm−2w and
get m − 2 internally disjoint S -trees T1,T2, . . . ,Tm−2 in Gl,m. See Figure 8. For other cases for distinct
distribution of x, y, z, we can similarly construct m − 2 internally disjoint S -trees in Gl,m, here omitting
details.

By now, we show that Gl,m always contains m − 2 internally disjoint S -trees and thus we get
κ4(Gl,m) ≥ m − 2 for m ≥ l ≥ 3. This completes the proof. □

By Lemma 2.5 and Theorem 3.1, we directly get the generalized 4-edge-connectivity of CRNs.

Corollary 3.1. Let m be an integer and Gl,m be l-order m-dimensional CRNs for l ≥ 3. Then

λ4(Gl,m) =

l − 2, If 1 ≤ m ≤ l;

m − 2, If m ≥ l + 1.
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