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1. Introduction

We consider finite, simple, and undirected graphs; for notations and definitions not described here,
we refer to the book [1,2]. As usual, we by V(G), E(G), A(G), 6(G) respectively denote the vertex
set, the edge set, the maximum degree, the minimum degree of graph G and by [r] denote the set of
positive integers {1,2,...,n}. Use E(S1,S,) to denote the set of edges whose ends are respectively in
S, c V(G) and S, C V(G), which is simplified by E(S) when S| = §,.

For a graph G = (V, E) of order n and a vertex set S C V with at least two vertices, an S -Steiner tree
or a Steiner tree connecting S (or simply, an S -tree) 1s a subgraph 7' = (V’, E’) of G that is a tree with
S C V’. Two Steiner trees 7" and 7’ connecting S are said to be internally disjoint if V(T)NV(T") = S
and E(T)NE(T’) = 0 (or edge disjoint it E(T)NE(T") = 0). The generalized local connectivity (S) (or
the generalized local edge-connectivity A(S)) is the maximum number of internally (or edge) disjoint
S-trees connecting S in G. For an integer k with 2 < k < n, the generalized k-connectivity ki(G)
(or the generalized k-edge-connectivity 1,(G)) of G is defined as x,(G) = min{«(S)|S C V(G),|S| =
k} and k2 (G) = k(G) (or 4(G) = min{A(S)|S <€ V(G), |S| = k} and A1,(G) = A(G).) For exact
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values, further research can be found in [4, 12]; for generalized values, see [6, 7, 10, 11]. Clearly,
the generalized k-connectivity and generalized k-edge-connectivity measure the fault tolerance of an
interconnection network more accurately than the classical connectivity, evaluates the fault tolerance
in terms of the number of disjoint paths. Unfortunately, computing the exact values of generalized
k-(edge) connectivity for general k is NP-complete, even for special graphs.

In [8], S. Li determined the generalized 3-connectivity of graphs such as star graphs S, and bubble-
sort graphs B,.. J. Wang [15] considered the generalized 3-connectivity of burnt pancake graphs BP,
and godan graphs. S. Zhao [19] determined the generalized 3-connectivity of alternating group graphs
and (n, k)-star graphs. More recently, several authors have discussed the generalized 4-connectivity of
graphs such as burnt pancake graphs BP, [14], godan graphs [13], alternating Group Graphs AG, [5],
pancake graphs [18], and hierarchical cubic networks [20].

Conditional recursive networks (CRNs) form a new family of composite networks based on the
complete graph, which includes many common networks and shares the same structural properties as
alternating group networks. For further research on these networks, see [16,21].

Definition 1.1. [17] Let [(> 3) be an integer and K, be a complete graph. The l-order 1-dimensional
conditional recursive networks (simplified CRNs), denoted by G, is isomorphic to K;. For m > 2,
the l-order m-dimensional conditional recursive networks G, = K; for 1 < m < land form > [+ 1,
G can be divided into m disjoint subnetworks G{;m_l for j € {1,2,...,m}, where G{’m_l = Gp-1.
G usually denoted by Gim_l & G%m_l b...0 GZ’m_l and satisfies the following conditions. Gs,, for
1 < m < 5 illustrated in Figure 1.

(1) Forany 1 <i# j<m |EG, .G}, )l =952

(2) G has a perfect matching M = E(Gy,,) — E(U’ilG;,m—l)’

(3) For any vertex v € V(G;"m_l), v has only one external neighbor in G, — G

i
I,m-1°
(4) Gy, can be decomposed into ":—,' disjoint subnetworks G;, whenm > [ + 1.

A

O G,

Figure 1. The CRNs G3,, form € {1,2,3,4,5}.

In this paper, we determine the generalized 4-connectivity of CRNs and show that x4(G,,,) =
A(Gr) =m = 2.
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2. Preliminary

Lemma 2.1. [17] Let Gy, be l-order m-dimensional CRNs for m > 1 > 3. Then, (1) G;,, is a (m — 1)-

regular graph with (IT—I'), vertices. (2) kK(Gy) =m — 1.

Lemma 2.2. [2] Let G be a k-connected graph, let x be a vertex of G and let Y C V(G)\{x} be a set
of at least k vertices of G. Then there exists a k-fan in G from x to Y, that is, there exists a family of k
internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

Lemma 2.3. [2] Let G be a k-connected graph, and let X, Y C V(G) with |X|, |Y| > k. Then there exists
a set of k pairwise vertex-disjoint (X, Y)-paths in G.

Lemma 2.4. [3] For every two integers n and k with 2 < k < n, ki (K,) = n — [%].

Lemma 2.5. [9] Let G be a connected graph of order n with minimum degree 6. If there are two
adjacent vertices of degree 0, then ki (G) < 4,(G) < 6 — 1 for 3 < k < n. Moreover, the upper bound is
sharp.

3. Main results

In this section, we determine the generalized 4-connectivity and the generalized 4-edge-connectivity
of conditional recursive networks G,,.

Theorem 3.1. Let G,,, be l-order m-dimensional CRNs for | > 3. Then

1_2, I]“lﬁmél;

Gi) =
“a(Gim) {m—Z, Ifm=1+1.

Proof. First, consider G;,,, = K; for 1 < m < [, by Lemma 2.4, we directly get k4(G,,) = ka(K)) =
[ - [%] = [ — 2. Here we mainly discuss the case form > [+ 1 > 4; since G,,, is (m — 1)-regular, by
Lemma 2.5, we have x4(G;,,) < 6 — 1 = m — 2. Now we need only show x4(G;,,) > m — 2, this suffice
to prove that there exist m — 2 internally disjoint S -trees in G, for any 4-element set S € V(G,,,). For
convenience to narrate, let G;,, = G'aG*®...®G", where G' = Gim-1 for i € [m], and suppose
S = {x,y,z,w} is any 4-element subset of V(G,,,). First, we consider m = 4; this means G;,, = G34
and G' = G35 = K;. By simple checking, there always exist 2 internally disjoint S -trees in G3 4, this
implies «4(Gy,,) = 2 = m — 2 holds. The following considers the case for m > 5.
Case 1|S N V(G| = 4 for some i € [m]

Without loss of generality, suppose x,y,z,w € V(G'). We proceed by induction on m. For the case
m =5, it is clear that Gy, is G35 with G' = G34 or G5 with G! = K,. Consider x,y,z,w € V(G'); by
similar checking, we find that whether it is G35 or Gy s, it always contains 3 internally disjoint S -trees.
This implies k4(G,,) > m—2 holds for m = 5. Now we assume that the conclusion holds for m = k(> 6)
and go on to verify the conclusion holds for m = k+1. Notice G;;1 = G'®G?*®. ..0G! with G' = G,
fori € [k+ 1] and x,y,z,w € V(G"), by induction hypothesis, we have k4(G') > k — 2 for k > [ + 1.
This implies that there are at least k — 2 internally disjoint S -trees in G',named Ty, T>, ..., Ti_s. By
Definition 1.1(3), we know x, y, z, w have only one external neighbor in G4, — G', named x’,y’, 7’ and
w’, respectively. Consider Gy, is k-regular and G' is (k — 1)-regular; we can construct a {x’,y’, 7/, w'}-
tree T in G- Now let Ty = xx" +yy' + 27/ + T. Thus, T,T5,...,T;— are kK — 1 internally
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disjoint §-trees in G- This follows k4(Gix11) = k=1 = (k + 1) — 2, and the conclusion holds for
m =k + 1(k > 6). By the above argument, we have k4(G;,,) > m —2 form > k + 1.
Case 2 |S N V(G)| =3,IS N V(G/)| = 1 for some i # j € [m]

Without loss of generality, suppose x,y,z € V(G') and w € V(G?). First, we consider the case
m = [+ 1. Notice that G;;;; = G' @ G* @ ... ® G'*!, where G' = K, fori € [[ + 1]. Now we show
that x4(Gys41) = [ — 1. Consider x,y,z € V(G') = V(K)) and w € V(G?) = V(K;). By Lemma 2.4, we
can get ki3(G') = k3(K)) = [ — [%] = [ — 2. This means there are / — 2 internally disjoint {x, y, z}-trees
T,(1 <i<1[-2)in G'. Further, we find that one edge of triangle xyz is always missed in the process
of forming {x, y, z}-trees T;, without loss of generality, suppose xy is the missing edge. Now we turn
our attention to the external neighbors of x, y,z,w, named x',y’,z’,w’. Consider x,y,z € V(G'), then
x',y', 7 are in distinct G’ for i # 1.

If {x',y,Z}NV(G?) = 0, without loss of generality, suppose x’ € V(G>),y’ € V(G*), and 7’ € V(G*).
Then we form [ — 1 internally disjoint S-trees in G, suchas T; + G/ + wfor 1 < i < [-3 and
j€[I+11\{1,3,4,5}, Timr+Y +G*+w and xy+x'+G’ +w+G*+7 +z. Otherwise, if {x’,y’, Z}NV(G?) # 0,
suppose ¥ € V(G?), then [ — 1 internally disjoint S-trees are T; + G/ + w for 1 < i < [ -3 and
je+11\{1,2,4,5}, T\ +y +wand xy + X + G’ + w + G* + 7 + z. By now, we show that
k4(Gp) = m—2form =1+ 1. An example of G5 illustrated in Figure 2.

GI Gz G1 Gz _

4 y 5 1 y 5
G G G G
G4,5 G4,5

Figure 2. Internally disjoint S -trees in G4 5 illustrated by distinct color.

Next, we consider the case form > [+1. Recall G, = G'oG*®...©G", x,y,z€ V(G"),w € V(G?
forG' = G? = Gyt let G' =Gl @G22 &..0G" "V, G*=GY_oG?_o..aG" )
G\, =Gl = Giuoforl <i<m-—1. Suppose x € V(G}) ),y € V(G5 ),z € V(G]},_)) for
r,s,t € [m — 1]. Further, we find that the external neighbor u’ € V(G™) of vertex u € V(G,) _,) and the
external neighbor u’ € V(G?) of u € V(Gll,fn Pforl1<b<m.

Subcase 2.1 r# s #t e [m— 1]

Clearly, x, y, and z are in distinct parts, this means the external neighbors x’,y’ 7" are also in distinct
parts. Consider k(G') = m — 2 and x,y,z € V(G'); G! contains at least m — 2 internally disjoint
(x, y)-paths, which are denoted by xP;y, xP,y, ..., xP,_y. Now we select m — 3 vertices x; € V(P;) N
NG}}n_l (x) \ {y} and their internal neighbors x; € Ngi(x;) \ {x, y} for 1 <i < m — 3. By Lemma 2.2, there

exists an (m — 3)-fan from z to Z = {x1,x3, . .., X,,_3}, which are internally disjoint (z, Z)-paths denoted
by X101z, %052, . . ., Xn_3Qm_3z. Further, we discuss as follows.
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Subcase2.1.1r#s#1t+2

Consider x € V(G )Y € V(G 2 € V(G _)forr # s # 1t +# 2, suppose x € V(sz |
y € V(G},_)andz € V(G}fn - Then the external nelghbors of x,y,zand x; are X’ € V(G™),y' € V(G“)
7 € V(G?) and x, € V(G™) fori € [m—3]. If w & V(G;_)), we choose m — 2 vertices w; € V(G_|
such that their external neighbors w! € V(G™). Consider K(Gz) = m—2, there exists an (m —2)-fan from
wto W = {wi,wa,...,Wnoo} € V(G*)\{w}, and denoted by wW w1, wWaws, ..., wW,,_ow,,_». Let X’ =
x|, x5, ....x 5, x'yand W = {w|,w},...,w ,}. By Lemma 2.3, G" contains a set of m — 2 pairwise
vertex disjoint (X', W’)-paths, which are denoted by x{Liw/, X;Low), ..., X, Ly, 3w, -, X Ly ow, .
Now choose x’ € V(L,,_,) such that its external neighbor (x’)’ € V(G,,,\(G' UG? U G’")), and then we
geta{y,z,(x')}-tree T in G,,,\(G' U G* U G™) by using these external neighbors y’, 2/, (x')’. Now let
T; = xPiy+x;%i+%;Qiz+x;x.+x.Liw,+w;Wyw fori € [m—-3]and T, = xx'+ X' Ly oW, +wWp_ oW, ow+
XX+ }7(}7)’ + T +y'y +7'z. Then we get m — 2 internally disjoint S -trees Ty, 15, ..., T2 in Gy,,. See
Figure 3. Otherwise, if w € V(Glzm )»wehave T, , = = XX +X Ly wW +W'w+x' X' +;c7(;c7)’+T+y’y+z’z
replace T, , for case w ¢ V(sz ) to get m — 2 1nternally disjoint S-trees Ty, T>,...,Ty-3, T, , in
G

’
- -
L=

Q4
-

~
Y

\G'UG’UG"

lm

Figure 3. Internally disjoint S -trees 74, 7>, ..., T,,— in Subcase 2.1.1.

In particular, if L,_, = P,, we choose a vertex w € NGIZmil(W) such that its external neighbor

w € V(G,,,\(G' UG? UG™)) and use these external neighbors y’, 7, W’ to construct a {y’, 7/, w'}-tree T
in G;,,\(G' U G* U G™). And then, we by xx’ + x'L,,_ W+ W Weow +ww+ww' + T +y'y + 22
replace T,,_, for case w ¢ V(G _pand by xx’" + x'L,oww’ + w'w +ww +ww’ + T +y'y + 2’z replace
T, ,forcasew € V(Glzm ) to get m — 2 internally disjoint S -trees in G,,.

Subcase 2.1.20ne of r, s,tis 2

Suppose x € V(G;»_ ), y € V(G};_ ) and z € V(G ). Then external neighbors of x,y,z
and x; are X' € V(GZ), Yy € V(GY, 7 € V(G and x; € V(G?) fori € [m — 3]. Consider
k(G?) = m — 2, there exists an (m — 2)-fan from w to X’ = B AR 3,x} which denoted by
wWix|, wWox),...,wW,_3x ,,wW,_»x". Similar discussion as before, 1f w’ ¢ V(G"), then external
neighbors of y,z, w are y', 7/, w’ € V(Gl,m\(G1 U G?)) and we use these external neighbors to construct
afy,z,witree T in G, \(G' UG?). Now we let T; = xP;y + x;8;: + %;0;z + x;x, + x,W,w for i € [m—3],
Ty = xX'+x'W,_ow+ww’'+T +y'y+7'z and thus obtain m—2 internally disjoint S -trees 7, 15, ..., T;y—
in Gy,,. See Figure 4.
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Figure 4. Internally disjoint S -trees 7'y, T, ..., T,—, in Subcase 2.1.2.

Otherwise, if w € V(G'), we choose an internal neighbor ¥ of x’ such that its external neighbor
(x’) is in G;,,\(G' U G?) and by tree T _, = xx’ + X' W,,_ow + XX’ + X'(X') + T +y'y + 7'z replace tree
T,._» for case w’ ¢ V(G'). Then we get m — 2 internally disjoint S -trees T, T, ..., T),_3, T ,in Gy,

Subcase 2.2 Two of r, s, t are equal

Without loss of generality, suppose s = 7 and let x € V(G}} ) and y,z € V(G}}_,) for some
r # s € [m—1]. By Lemma 2.1(2), G' contains at least m — 2 internally dlS]Olnt (v, 2)-paths,
named yP;z,yPz,...,YP,, 2z. Now we select m — 3 vertices y; € V(P;) N Ngi(y) \ {v,z} and let
Y = {y1,¥2,...,Ym3). By Lemma 2.2, there exists an (m — 3)-fan from x to Y in G', which denoted
by y101x, 02X, ..., Ym-30mn3x. Now we choose m — 3 distinct vertices x; € V(Q;) N NGh (x)
Further, we discuss according to r, s. Cases for r,s # 2 and r = 2, by similar argument as Subcase
2.1.1 and Subcase 2.1.2, respectively, we would get m — 2 internally disjoint S -trees in G;,,, details
omitted. As for case s = 2, let x € V(G),_,) and y,z € V(G,,_)) and their external neighbors
x',x; € V(G"), y,7 € V(G?). Similarly discuss as before, if w ¢ V(Glm 1)» choose m — 2 distinct
vertices w; € V(szrﬁ— ,) with the external neighbors w; € V(G™) and construct a such (m — 2)-fan from

wto W = {wi,wa,...,wna} € V(GH\{w} as wWywy, wWaws, ..., wW,_ow,_o. Then construct a set
of m — 2 pairwise vertex disjoint paths between X" = {x{, x}, ... xm 3, x'}and W = {w,w),....,w ,}
as x| Liw, x,Low), ..., x Ly 3w, 5, x'L, ow . Notice w,,_»,y’,7 € V(G?), suppose the path from

Wy to 2/ (or y') is R. Now let T; = yPiz + y;Qix + x;x, + x;Liw. + wiw; + wW;w for i € [m - 3],
Tno = xxX' + X'Lyow), o + Wy oW, ow + w,, oRZ' + 7'z + yP,,_»z and thus we get m — 2 internally
disjoint S -trees 74, T», . .., T,—> in Gy,,,. See Figure 5.

Otherwise, if w € V(Glzm 1)» by the Definition 1.1(3), the external neighbors of y, z, w are y', 7', w’ €
V(G?). We use these external neighbors to construct a new {y’,z’,w’}-tree T in G? and by T, , =
xx' + X' Lyyow +w'w+T +yy' +z7' toreplace T,,_, for case w ¢ V(Gzﬁ_l). Then we get m —2 internally
disjoint S-trees Ty, T, ..., T)y-3, T, , in Gyp.
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G, \G'UG’

Figure S. Internally disjoint S -trees 7, T», ..., T,,—» in Subcase 2.2.

Subcase2.3r=s=te[m—-1]
Subcase 2.3.1 r 2

Suppose r = 1 and let x,y,z € V(G,,_,). Then the external neighbors of x,y and z are
x',y',7 € V(G™). Similarly, choose m — 3 distinct vertices x; € V(Gz],iH) such that their external
neighbors x! € V(G?). Consider x,y,z,x; C V(G'), by similar argument as Case 1, we would
get m — 3 internally disjoint {x,y,z, x;}-trees T{,T;,...,T, 5. Then choose w; € V(Giﬁ_l)\{w}
such that its external neighbor wi € V(G™). By Lemma 2.2, there exist and can be constructed
(m — 2)-fan from w to X" = {x],x},...,x 5, wi} such as x]Q\w, xX;0w,...,x Qu3w, Wi Qpow.
Consider the external neighbors of x,y,z and wy are x',y’,7’,w| € V(G™), we use these external
neighbors to construct a {wi,x’,y’,z'}-tree T in G". Let T; = T + x;x. + x;Q;w for i € [m — 3],
and T, = xx’ +yy +zZ + T + wiw; + w;Q,ow. Then we get m — 2 internally disjoint S -trees
T,,Ts,...,Ty—in Gy

Subcase 2.3.2 r =2

Consider x,y,z € V(G}jl_l) and x',y’,7 € V(G?); we discuss by w. If w ¢ V(Glz;n_ 1), then choose
m—73 distinct vertices x; € V(G}Jln_ ,) such that their external neighbors x; € V(G™). By similar argument
as Case 1, we get m — 3 internally disjoint {x, y, z, x;}-trees T, T;, ..., T, 5. Then choose m — 3 vertices
w; € V(Giﬁ_ D\{w} such that their external neighbors w} € V(G™) and construct a (m — 3)-fan from w to
W ={wi,wy,...,wy_3} such as wiQ\w,wy,Oow, ..., w,_30,_3w. Then, by Lemma 2.3, we construct a
set of m — 3 pairwise vertex disjoint paths between X’ = {x|, x},...,x/ ;}and W' = {w],w),...,w .}
such as x| Liw}, X, LW}, ..., X, sL, 3w, 5. Notice x',y", 7’ € V(G?), then use these external neighbors
to construct a {x’, y’, 7/, w}-tree T in G*. Finally, let T; = T!+xix;+x.Liw; +wiw;+w;Ww for i € [m—3],
T2 =xx +yy +2z7 + T, and thus get m — 2 internally disjoint S-trees T, 15, ..., T2 in Gy .
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1814

Otherwise, if w € V(G},,_)), choose m — 4 distinct vertices x; € V(G),_,) such that their external
neighbors x; € V(G™) and similarly form m — 4 internally disjoint {x, y, z, x;}-trees T}, T,,...,T, _,.
Let T) , be xyz(or xzy, or yxz), and P,_, = xz(or xy, or yz). Then choose m — 4 vertices w; €

V(GZ’,Z_I) such that their external neighbors w; € V(G™) to construct a (m — 3)-fan in G? from w

to W = {wi,wy,...,Wp_4} such as w Qw,wrOow, ..., W;,_40,_sw. And construct a set of m — 3
pairwise vertex disjoint paths between X’ = {x|,x},...,x ,} and W' = {w|,w},...,w’ _,} such as
xiLiwy, x5 Low), ..., x) L, 4w/ _,. Follow these, we use external neighbors of x,y and z to construct

a {x’,y,w}-tree T and a new {7/, w}-path R in G*. Finally, let T; = T! + xix; + x;Liw. + wiw; + w;Wiw
foriem-4),T,3=T, ;+zZ +R,and T, = P,,o + xx’ +yy’ + T. Then we get m — 2 internally
disjoint S-trees T, 15, ..., Ty in Gy,

Case 3|S N V(G)| =2,IS N V(G/)| =2 forsome i # j € [m]

Without loss of generality, let x,y € V(G') and z,w € V(G?). Recall G' = G, ©G>  &...®
Gllj:l"__ll), G =G,  ®G ©..® Gif:’__ll) where G\ | = G\ | = G forl <i<m—1,we
suppose x € V(G ),y € V(G}} ),z € V(G}.,_),w € V(G,_)) for r,5,1,0 € [m — 1].

Subcase 3.1 One of 7, s is 2

Without loss of generality, suppose x € V(G,>_),y € V(G,)_)). By Lemma 2.1(2), G' contains

at least m — 2 internally disjoint (x, y)-paths xP,y, xP,y, ..., xP,_,y. Now select m — 3 vertices x; €
V(P) N NG}z_l(x) such that their external neighbors x; € V(G?) and construct a (m — 2)-fan from w

to X" = {x|,x5,...,x, 5, x'} C V(G?) such as Xy Wiw, xX,Wow, ..., x) W, 3w, x'W,,_ow. Then select
m — 2 vertices w; € V(W,) and construct a (m — 2)-fan from z to W = {w;,w,,...,w,_2} such as
w11z, w2022, . . ., Wn20moz. Now let T; = xP;y + xix; + xxWyw + w;Qiz fori € [m - 3], T,» =
XP, 2y + xx' + X' Wyow + w2 0,,-»7 and thus we get m — 2 internally disjoint S -trees T, 75, ..., T,y—

in Gy,,. See Figure 6.

G’ G’ G,,\G'UG’
Figure 6. Internally disjoint S -trees 7y, T», ..., T,,—» in Subcase 3.1.

Subcase 3.2r=s5=2

Clearly, suppose x,y € V(G,>_,), and thus G' contains at least m — 2 internally disjoint (x, y)-
paths xPyy, xPsy, ..., xP,_5y, where V(P,_3) N V(G,%_,) = {x,y} and P, is an (x,y)-path of length
1. Now select m — 4 vertices x; € V(P;) N NG},%,,,I(,X) such that x; are the internal neighbors of x.
Let x; € V(Gj,_,) be the external neighbors of x; and construct a (m — 2)-fan in G* from w to X’ =
(x|, x},...,x _,,y',x'} denoted by X, Wyw, X, Wow, ..., x| W,_aw,y' W, _3w, X’ W,,_ow. Then select m—

AIMS Mathematics Volume 11, Issue 1, 1807-1819.
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2 vertices w; € V(W;) and construct a (m — 2)-fan in G, — G' fromzto W = {w,wa, ..., Wy}
such as w1 Q1z2, w02z, ..., Wpu—2Qpu-2z. Now let T; = xP;y + x;x, + x. Wiw + w;Q;z for i € [m — 4],
T3 =xPusy+yY + YW, sw+w, 30,32 T2 = xXPp_y+xx' + xXW,_ow+w, 10,z Then we
get m — 2 internally disjoint S-trees T4, 15, ..., T\y—o in Gy

Subcase 3.37,5s #2

Considering r, s # 2, we discuss t,0. If one of t,0 is 1, then z or w is in Glz,rln—l' By similar
arguments as Subcase 3.1 and Subcase 3.2, we would get m — 2 internally disjoint S-trees in Gy,
the details omitted. Otherwise, if t,0 # 1, then z,w ¢ V(Glz,}?1 _).  Without loss of generality,
suppose x € V(G,,_ ),y € V(G ) and z € V(G}}_,). By Lemma 2.1(2), G' contains at least
m — 2 internally disjoint (x,y)-paths such as xPyy, xP1y,..., xP,_5y, where V(P,,) N V(G,,_|) =
{x}. Now select m — 3 internal neighbors of x such as x; € V(P;) N NG}Jln 71(x) with external
neighbors x/ € V(G™). Similarly, there are m — 2 internally disjoint (z,w)-paths in G* such as
7201w, z0ow, ..., z20,,ow. Then select m — 3 vertices z; € V(Q)) N NGﬁfn,l(Z) such that z; are the

internal neighbors of z with external neighbors z; € V(G?). Now form a set of m — 2 pairwise vertex
disjoint (X', Z’) paths x\L2}, x,L22), ..., X Ly 37, 5, X' L, 27 between X' = {x|,x,...,x, 5, x'}
and Z' = {2},25,...,2, 5,7}, Thus, let T; = xP;y + x;x] + x/L;iz. + z)z; + zQjw for i € [m - 3],
Tno = xPpoy+ xx" + XL, 27 + 77+ z0,,ow and then we get m — 2 internally disjoint S -trees
T] , Tz, ey Tm_2 in Gl,m-
Case 4 |S N V(GH =2,IS N V(G| =1|S N V(GX)| = 1 for some i # j # k € [m]

Without loss of generality, suppose x,y € V(G'), z € V(G?) and w € V(G®) and further let x €
V(G ).y € V(G ) for some r, s € [m —1].

~~~~~~
Pis Ss
. ~

Gl..
[ ] 1L ) o
7 4 M 7 . 7 1 vy’
x., -7?1 ',xm 3 Yous /% :y
AN 2 " l' ' H
v \ s \ H
7 T T T
L[ ' ' K 1
. QY '
L,., sL Nt L, R, R1: iR,
~ 7 T Y T H
Ny AN H ]
o0 'l > H 'l
k% I
4 w
G’ G’

Figure 7. Internally disjoint S -trees 7'y, T, ..., T,—, in Subcase 4.1.

Subcase 4.1 r # s € [m— 1]
Without loss of generality, suppose x € V(G,),_)),y € V(G,; _,) and m — 2 internally disjoint (x, y)-
paths in G! are xP,y, xP»y,...,xP,_»y. Then select m — 3 distinct vertices x; € V(P;) N N1 _1(x).
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Similarly, select m — 3 distinct vertices y; € V(P;) N NG[m_1 (v), Notice the external neighbors of x; and

/

y; are x; € V(G™) and y; € V(G*), we construct a (m — 2)-fan from z to X’ = {x|, x,,...,x/ ;,x'} such
as zLy x|, zLoX), ..., z2Ly3X, _5,2Lyu X', and a (m — 2)-fan from w to Y’ = {y},y5,...,y, 5.’} such as
WRy |, WRoY), ... ,WR,, 3y s, WR,, 5y Now let T; = xPiy + x;x; + x;Liz + y;y; + y;R;w for i € [m — 3],
Ty = xP,oy + xx' + XL, 2z +yy +YR,_»w, and then we get m — 2 internally disjoint S -trees
1,,T,,...,T,— in G;,. See Figure 7.

Subcase4.2r=s€ [m— 1]

Without loss of generality, suppose x,y € V(Gzl,}nq) and m — 2 internally disjoint (x, y)-paths in
G' are xP,y, xP,y,...,xP,_»y. Now select m — 4 distinct vertices x; € V(P;) N NG},‘n _I(x) and y; €
NG}}”_I(xi) \ V(P;). Similarly, we construct a (m — 2)-fan from z to X’ = {x},x},...,x, 5, x’} such
as zLix\,zlox), ..., 2Lly3X, 5,21, »x" and a (m — 2)-fan from w to Y’ = {y},),...,y, 5,Y’} such as
WRy|,WRyY,, ... ,WRy 3y, 5, WR, 2y, Now let T; = xPiy + x;x; + x.Liz + x;y; + y;y; + y;Ryw for
i € [m—4], Ty3 = xPp3y + XXp3 + Xy 3X, 3+ X Ly 32+ Y3 + Y3y, 5 + ¥, R, 3w, and
T, = xPpoy+ xx’ + XL, 2z +yy + YR, »w and thus we get m — 2 internally disjoint S -trees
T,,Ts,...,Ty—in Gy,

Case5S NV(G) =S NV(G)| =|S N V(GY| =S N V(G| =1forsomei# j+k#Ie[m]

Without loss of generality, suppose x € V(G'), y € V(G?), z € V(G?), w € V(G*), and their external
neighbors are x’, y', 7/, w’, respectively. If |{x’,y",7,w’} N (G,,\(G' U G* U G* U G*))| > 2, suppose
X',y € V(G,,\(G' UG?* U G® U G*). Then by Lemma 2.1(2), there exist m — 2 internally disjoint
(x,z)-paths in G' U G?, denoted by xP,z, xP,z, . .., xP,_»z, and m — 2 internally disjoint (y, w)-paths in
G? UG*, denoted by yO,w, yQow, ..., yQ,_ow. By a similar argument as Case 3, we can obtain m — 2
internally disjoint S -trees in G, the details omitted.

G1 Ga
P}
""""" P Theel
® ° A ) q
x X . Z, z
. P:m} .
X3 | Z,.3

o o o e o o,
x x1 X 3 zm3 z1, z
L 2 L1 Lm—3 R 3 R R
\
A
\
) o.”
y w
G’ G*

G,

Figure 8. Internally disjoint S-trees 7, 15, ..., T, in Case 5.

If [{x,y.2,w} 0 (G\(G' UG> U G>UGY)| < 1, then |{(x,y,2Z,w} N (G' UG*UG*U
GY > 3. Suppose x,y,Z € V(G'UG*UG'UGH and G' = GI! | ©G2 _ &...0 G )

for i € [m). Clearly, x € V(G2 ), V(G ), V(Glljn_l), y € V(Gi}n_]), V(Glz’fn_l),V(Glzjn_]) and

m lm—

z€ V(G}),_ ), V(G2 ), V(G;h_)). Without loss of generality, suppose x € V(G,>,_ ),y € V(G}),_)),z €

I,m—1 m

V(G5 ). Then 7 € V(G*) and G' U G* contains at least m — 2 internally disjoint (x, z)-paths
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xPiz,xP>z, ..., xP,,_»z. Now select m — 3 distinct vertices x; € V(P;) N NG12 (x) z € V(P)N NG34 (z)
and suppose x, and z; are the external neighbor of x; and z;, respectively. Now we construct a (m 2)
fan from y to X’ = {x|,x},...,x/ 5, x'} such as yL,x|,yl,x},...,yLy,3x) 5,yL, »x and (m — 2)-

m-3° m-3°
fan from w to Z' = {2},2},...,2), 5,7’} such as wRZ|,wRyZ},...,wR,, .3z, 5, wR,»7/, and then let

T; = xPiz+ xix; + xLiy + ziz, + ZZRyw fori € [m—3], T, = me_zz +xx' +x'L,_y+z7 +7R,,ow and
get m — 2 internally disjoint S-trees Ty, 15, ..., T2 in G,,. See Figure 8. For other cases for distinct
distribution of x, y, z, we can similarly construct m — 2 internally disjoint S -trees in G,,,, here omitting
details.

By now, we show that G,, always contains m — 2 internally disjoint S-trees and thus we get
k4(Gpm) = m—2 form > [ > 3. This completes the proof. O

By Lemma 2.5 and Theorem 3.1, we directly get the generalized 4-edge-connectivity of CRNs.

Corollary 3.1. Let m be an integer and G,, be l-order m-dimensional CRNs for | > 3. Then

[-2, Ifl<m<lI;
m-2, Ifm>1+1

A(Grm) = {
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