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appear in both the diffusion and the convection terms. We assume that the diffusion parameters can be
distinct, but the convection parameter remains the same for both equations. Then, for sufficiently small
values of the parameters, overlapping boundary layers appear on the boundary of the spatial domain. To
solve the problem, a numerical method is employed that combines the implicit Euler scheme, defined
on a uniform mesh, with the upwind scheme for spatial discretization. Then, if the spatial discretization
is carried out on an adequate nonuniform Bakhvalov—Shishkin (BS) mesh, the fully discrete scheme
attains uniform convergence, with respect to all perturbation parameters; moreover, it has first-order
accuracy in both temporal and spatial variables. Note that the construction of the BS mesh depends
on the value and the ratio between the diffusion and the convection parameters, and special generating
functions are needed to construct them. Numerical experiments illustrating the performance of the
algorithm for some test problems are showed, which corroborate the uniform convergence of the
method in agreement with the theoretical results.
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1. Introduction

The present work studies the numerical treatment of a 2D singularly perturbed parabolic system of
weakly coupled equations. The governing model can be expressed in the form

0z

2
0
Loz=5—ehztp ), Al oo + Bl a0z =0, (v e Q= Qx0T
x‘
i=1 !

0

(1.1a)
with boundary and initial conditions given by

z(xbe’ t) = q(-xl’-XZ’ t)9 (XI,XZ, t) € aQ X [0’ T]a Z(xbe’ 0) = lp(-xl’-XZ’ 0)9 (xl’ x2) € Qa
(1.1b)

where the spatial domain is Q = Q, X Q,, being Q, = Q, = (0,1). We denote spatial domain’s
boundary edgesasI' =T, U, UT, UT,, where

89 — 1—‘l = {(0’ x2)|x2 € [09 1]}, Fb = {(.X1,0)|X1 € [09 1]}’
[ ={(1,x2)x€[0,1]}, T,;={Cx, DIx; €[0,1]}

Since z = q on 0Q by (1.1), let g, := qlr, for k € {[, b, r,t}, where I';,T',,I',, I', represent the boundary
portions on the left, bottom, right, and top sides of the domain, respectively.
The convection matrices are denoted by A; = diag(ail, agz), i = 1,2 and the reaction matrix by
B = (bu),.,, respectively. Furthermore, the differential operator, the diffusion and convection term, the
source term, and the boundary data are specified as
Loy=(L, . L) e=ELe)  u=ww 2= (,2),

E1,1° TE2U

f= (fl,fz)T,qk = ((]kl»QkZ)T’ k=1,...,4.

We consider the perturbation parameters €;, &; to satisfy 0 < &y < & <« 1and 0 < u < 1. Additionally,
the coefficients of reaction and the convection matrices satisfy the conditions

a2k2ﬁ>0, bi2B>0, k,i=1,2, by >|byl, by<0, k£1,Lk=1,2,

bix — by by — b
) {kk Kl Dk kl}’ for k,,i=1,2, k # 1,

A = min — -
ki U 2a), 2a;,

(1.2)

for some positive constants @ and 8. Finally, the entries of A;, B, and f are sufficiently smooth functions
on the domain Q, and the boundary data satisfy q; € C>Y(I';) for k € {L,b,r,t}, with y € (0, 1].
Furthermore, these functions are assumed to satisfy the necessary compatibility constraints to ensure
the existence of a classical solution z to the continuous model, such thatz € C 3’7(5).

Coupled singularly perturbed systems are interesting problems in the applied mathematics area,
because they are good mathematical models of many physical phenomena in different areas such as
transport and dispersion of pollutants in a fluid or porous media, simulation of oil and gas reservoirs,
bio-fluids mechanics, magnetohydrodynamic flow, population dynamics, control theory, quantum
mechanics, or elasticity (see, by instance, the works of Epstein et al [12], Gill-Robertson [14] and
Kan-On-Miura [18], and the books of Pao [27] and Murray [23]). Recent advancements in meshfree
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and hybrid numerical methods have shown strong potential for solving complex multi-dimensional
problems. Peng et al. [28] demonstrated the efficiency of a hybrid reproducing kernel particle method
for 3D elasticity, while Cheng et al. [4] proposed a hybrid interpolating element-free Galerkin method
that effectively handles convection-dominated diffusion problems. For diffusion-based applications,
Zheng and Cheng [36] introduced an improved element-free Galerkin method that enhances accuracy
in drug-release modeling. These works collectively highlight the effectiveness of meshfree hybrid
approaches as reliable alternatives to traditional numerical schemes.

In particular, magnetohydrodynamic (MHD) flow problems serve as a representative example where
such systems naturally appear. A simplified steady 2D linearized model, coupling a velocity-like scalar
u with a magnetic-like scalar b, can be formulated as

{—suAu+a-Vu+au+(5ﬁb:fu(x,y), (1.3)

—g,Ab+a-Vb+yb+d0u= f,(x,y),

subject to suitable boundary conditions.
Here, the model components can be interpreted as follows:

e u: velocity perturbation (streamwise component),

e b: magnetic field perturbation (or scalar potential),

e g, = v: kinematic viscosity,

e &, = n: magnetic diffusivity (with both v, < 1, sharp boundary layers such as Hartmann layers
may form),

a: mean flow advection velocity, and

0p, 06: weak Lorentz force and induction coupling terms (lower-order contributions).

The parameter ¢ characterizes the degree of coupling. When § < 1, the Lorentz-force/induction
feedback is relatively weak compared to the dominant advective and diffusive dynamics, thus fitting
into the framework of weakly coupled singular perturbations.

It is well known that the solution of singularly perturbed problems (SPPs) is characterized by the
presence of boundary layers and, in certain cases, internal layers, which can be of different types
(regular, parabolic, internal, ...). Then, the use of classical numerical techniques, defined on uniform
meshes, is not adequate because the numerical solution degrades when the parameters are small unless
the step size of the grid is very small (depending on parameter choice), which is not computationally
efficient. Therefore, to develop efficient methods that yield accurate solutions for all parameters (i.e.,
uniformly convergent methods), it becomes essential to design numerical methods tailored to the
specific class of problems under consideration.

A special type of SPPs appears when small parameters are present for both the diffusion and
the convection terms; this type of problem has had a lot of interest in the last years for linear and
nonlinear singularly perturbed problems (see, for instance, the works of Avijit-Natesan [2], Clavero-
Jorge [7], Govindarao et al [15,16], Jha-Kadalabajoo [17], O’Riordan et al [25,26] and Priyadarshana-
Mohapatra [29-31]). Inside this type of problem, singularly perturbed systems are a particular case;
their theoretical analysis is more difficult due the complex structure of the boundary layers (overlapping
boundary layers) that appear in the solution of the continuous problem. In the literature, there exits
many works where both elliptic and parabolic coupled systems are considered; nevertheless, the most
canalized problem is one where small parameters appear only in the diffusion term (see, for instance,
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the works of Cen [3], Clavero-Jorge [5, 6], Kumar-Kumar [19], Liu et al [22], Priyadharshini et al [32]
and Singh-Natesan [33-35]). A different and more difficult case is one where in the equations of
the coupled system, small parameters are present in both the diffusion and the convection terms. For
instance, in [1], a 1D weakly coupled parabolic system of convection-diffusion type was introduced.
In the works by Clavero-Shiromani [10, 11] and Clavero et al [8, 9], a 2D weakly-coupled elliptic
system was studied for different cases. In [24], a 1D weakly coupled elliptic system was considered,
for which the diffusion parameters at each equation are different and the convection parameters are
identical in both equations. This work uses similar methodologies to those in [10], where a 2D elliptic
system with different parameters in the diffusion and equal convection parameters was studied. In
that work, it was proved that the structure of overlapping boundary layers at the inflow and outflow
boundaries of the domain is complex. The use of Shishkin meshes is the most standard in the literature;
the numerical method gives an almost first-order uniformly convergent method due the presence of a
logarithmic factor, which is associated to the definition of the Shishkin mesh. To improve this order
of uniform convergence and to eliminate the logarithmic factor, here we consider a different type of
nonuniform mesh, the BS mesh, which is also very popular in the context of the numerical resolution
of singularly perturbed problems. The construction of this is considerably more difficult than the
Shishkin mesh, and it is not a piecewise uniform mesh; nevertheless, its use gives better numerical
results without increasing the computational cost of the numerical method. Therefore, we aim to
highlight the numerical advantages of using this mesh in comparison with the standard Shishkin mesh.

The structure of the paper is as follows. In Section 2, we analyze the asymptotic behavior of the
exact solution and derive appropriate estimates for its partial derivatives, which depend on the value
and the ratio between the diffusion and convection parameters; these findings provide a foundation
for the later study of uniform convergence. Section 3 focuses on the development of the fully
discrete scheme, including the definition of meshes that reflect the asymptotic characteristics of the
continuous problem. In Section 4, we prove the uniform convergence of the fully discrete scheme,
establishing first-order accuracy with respect to both temporal and spatial discretization. Section 5
presents numerical experiments on representative test problems of type (1.1), validating the theoretical
results and confirming the method’s uniform convergence. Finally, Section 6 concludes the paper with
a summary of the main findings.

Henceforth, we denote by || - || the continuous maximum norm. For a vector-valued function ¥ =
(P, ¥,)", we define [¥| = (|, |¥])?. Throughout the subsequent analysis, C represents a generic
positive constant that is independent of the diffusion parameters &, and &;, the convection parameter u,
and the discretization parameters N and M.

2. Asymptotic analysis of the exact solution to the continuous problem

This section investigates the asymptotic properties of the exact solution, along with its
decomposition into regular and singular parts, and establishes estimates for its partial derivatives
with respect to the diffusion and convection parameters. The approach adopted here is based on the
framework and techniques introduced in [10].

Lemma 2.1 (Maximum principle). Consider the differential operator L, defined in (1.1), and
suppose that condition (1.2) is satisfied. If v(xy, x5, t) > 0 on 0QX|0, T]UQ)i{O} and Lg,0(x1,x2,1) >0
for all (x1, x2,t) € Q, then it follows that v(xy, x5, 1) > 0 for all (xy, x,t) € Q.
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Lemma 2.2 (Stability result). Let v € C**(Q); then, it holds that

1
[0(x1, X2, )| < 1_9”-58,[11)” + max{||v|sax0,715 lIVllaxoy}»

where 1 is the constant defined in (1.2).

Theorem 2.3. Let 7 denote the exact solution of (1.1). Then, on the domain Q, the derivatives of z
admit the following estimates:

oli+hrly p\(+)
Il o0 | C(S)(_ll_wz{l * (ﬁ) } l<h+hb+2<2, (2.1a)
1110x;
a(ll+lz+l3)zl u (L +1)
- (-hi-h)/2 2-11-1p
li+hhz, g\l
L 2 lcc (—ll—lz)/2{1 +(_) }+C U2l 3 4 42l < 4 51
0x110x,2015 (&2) N & & 1+ 0 3 (2.1¢)

Proof. This result follows directly from [20]. O

Following to [10], the exact solution z of problem (1.1) is decomposed into its smooth function r,
boundary layer w, and corner layer components s. Furthermore, the smooth component is characterized
as the solution of the following problem:

Ls,yr(xl’ X2, t) = f’ v(-xl’ X2, t) € Qa (223)
with boundary and initial conditions given by

r(x;, X2, 1) = @(x1, x2,1), V(x1,x,1) € 0QX[0,T], r(x1,%,0) =¢(x1,x2), V(x1,%) € Q,
(2.2b)

where r = ¢ are appropriate functions (see the posterior analysis) for the regular component, and we
denote by ¢; the restriction of ¢ onto I';, i = [, b, 1, t.

The boundary layer component is refined into w; for k € {l, r, b, t}, each of which is determined as
the solution of

L&,,Wk(xl, x,)=0,k=1rb,t, Y(x1,x,1) €0, (2.3a)
with boundary and initial conditions given by

Wk(xlv X2, t) = (Z - r)(X], X2, t)’ V(X], X2, t) € Fk X [0’ T]’ Wk(X], X2, t) = O, V(X], X2, t) € (F\Fk) X [Oa T]
(2.3b)

Finally, the corner layer component is decomposed into s; for k € {lb, br, rt, It}, each governed by:
LS’#S]((XI,XQ, t) = 05 k = klkZa (kl’kZ) € {(la b)a (b’ r)’ (ra t)a (L t)}a v(-xl7-x2’ t) € Qa (243)
with boundary and initial conditions given by

Sk(x1, X2, 1) = =Wy, (x1, X2, 1), Y(x1, X2, 1) € I, X [0, T], Sp(x1, X2,2) = =W,y (X1, X2, 2), V(x1,x2,2) € I, X [0, T],
(2.4b)

Si(x1, x2,1) = 0, Y(x1,x,1) € (F\{Fkl U sz}) x [0, T]. (24C)

In [10], the following results were proved.
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Theorem 2.4. Let r, where r = (r1,1,)", satisfy the problem (2.2). Then,
o If 9u?* < Ag holds, we have
all +lz+13 ’,.]

(9)(1[' 0)(212(9#3
all+lz+l3 "

8)6111 6X2l28tl3

all +lz+l3 r]

<C, 0<h+bL+2K<2, |—
= PR Ax10x,"015

<Cel'’, L +L+2;=3, (2.5a)

<C, 0<L+hL+2<3. (2.5b)

o If 9u? > Ae, holds, we have

o Finally, if A&, < 9u® < Ae, holds, we have

To establish the asymptotic behavior of the layer functions, we use the funtions Qf(xl), Gi(x), i =
1,2, defined by

611+Zz+l3r

axl’l (9)@[2(9[13
611+12+l3 r

0x1110x,2015

all +12 +l3 rl

<C,0<lL+bL+2L <2, |————
Prames Ax,1 Ox, 211>

<Ce', I + 1 +2l; =3, (2.6a)

<C L+hL+2l;=3. (2.6b)

611+lz+l3r

0x1110x,2015
6[1 +12+13 ”2

811 +lh+13 r

<C,0<li+bL+2<2, ||[—— 1
Prames Ax, 1 Ox, 211>

<Ce', | + 1 +2l; =3, (2.7a)

<Ce&'? Li+L+2l=3. (2.7b)

Bxlll aXle 1

e v 9u® < Aegy, e 11— 9u? < Agy,

Gi(x1) = e, 9u® > As,, Gi(x) = eI 912 > Ae, (2.8a)
e Ag; < 9u® < Aes, e MU= Ag < 9u? < Ass,
e "% Y9u’ < Mgy, e~ ®1=x0 912 < Aegy,

Gh(x)) =3 e, 92 > Aes, Gh(x)) = 3 e 0= 942 > Ag,, (2.8b)
e " Ag; < 9u® < Ass, e U= Ag < 9u? < Ass,

Analogously, we can define G/(x2), G/(x2), G*(x1), Gi(x1), G'(x2), Gi(x2), i = 1,2, for the left,
right, top, and bottom boundaries.

[AD ) A
where 6, = [—, A; = —'u, andk = —, fori=1,2.
E; 2/,[

Theorem 2.5. Consider wy, k € {l,r,b,t}, with wy, = (wy,, wkz)T, which are solutions to problem (2.3).
Then,
o If 9u’ < Ag holds, we have

wi | < CGH(x1), Iwi,| < CGh(x1), i, | < CGH(x2), Wi| < CGH(x2),

T < 6,76 ) + 52 Ghn))
dxiidxpiork| = T T AR
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9" w, -il2 b —-Jl2 b l<it+i+2k<3
W < C(Sl gl(XZ) + & gz(XZ))a i+ g+ <5,

ai+j+kwl2 2
m SCEZI G,(x1), 1 <i+j+2k<2,

1 2

8i+j+kwlz <C _1( _l/zgl( )+ _l/zgl( )) + +2k_3
0x,10x,70t%| — f218 0 i) & St -7

6i+j+k .
A < Co Gl 1 < i+ 2k <2,

X1'0x;

9" wy, ~1,,~1/2 ~b ~1/2 b S
W < C82 (81 Ql(x2) + &, Q2(x2)), 1+ ]+ 2k = 3,

Wi | < CGH(x1), Wy, S CGH(x1), Wi| < CGh(x2), Iwyy| S CGH(x2),

I | oG () + 652G )
— | < C(e X P> x1)),
0x,10x, 10t LIRSS T2

o w, -jl2 ot —il2 oot -
m < C(Sl G (x) + &, G,(x2)), 1 <i+ j+2k<3,
1 2
ai+j+kwr2
0x110x,7 0tk
9w, —1,.=1/2 or ~1/2 r D,
m < C82 (81 Ql(xl) + &, Qz(xl)), 1+ J+ 2k = 3,
1 2
ai+j+kwt2
0x,10x,/0t*
6i+j+kwt2
(9)C1i(9)62j(9lk
o If 9u’ > Ae, holds, we have

wi,| < CGh(x1), wi,| < CGh(x1), Wy | < CGH(x2), Wi, | < CGH(x2),

< Ce;?Gh(x), 1 <i+ j+2k<2,

< Ce;*Gh(x), 1 < i+ j+2k <2,

< Ce5'(]'°G (x2) + &, PGh(x2)) i + j + 2k = 3.

61’+j+kwl1 D i i+j+k 1 i i ' '
6X1ia)€2_jatk < C,LL (51 g](xl) + &, gz(xl))a axliax—zjatk < C,Ll (81 g](XZ) t &, gz()CZ)), 1<i+ Jj+ 2k < 3,

5i+j+kW12 . ai+j+kwl 'ug ,U3
W | oG, 1 <+ 2k <2, |- sC( ) + g ),'+‘+2k:3,
9x,10x, 0% Hey'Gy(x1) 1+ ] FIRF IS glgggl(xl) 8392()61) i+ j

ai+j+kwb o i+j+kwb 'u3 /J3
W | i Gh ), 1 < it 2k <2, | sc(—b e ),'+‘+2k:3,
0%,/ 0xy) Ot* we, G, (x2) L+ FRE I 818§Q1(xz) 8; Gy(x2) ), i+ ]

|Wr1| S C’ |wr2| S C’ |Wt1| S Ca |Wt2| S Ca

ai+ j+kwr]
8x1"(9x2/(9t"
6i+j+kw
P

— 2 l<Cui,1<i+ j+2k<3,
oxi0x,00| = H P

O | i o Cerl w42k =3
e 8 9 l = 9
oxiox,i0| = ! J

ai+ j+ker
0x ia)Czj otk

6i+ j+szl
0x110x, 10tk
8i+ j+kW,2

axliaijalk

<Cu,1<i+j+2k<2, SCu>+Ceil, i+ j+2k=3,

<Cu/,1<i+j+2k<2,

<Cu,1<i+j+2k<3.
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e Finally, if Ae, < 9u* < A&, holds, we have

wi| < CGL(x1), Wi,| < CGh(x1), Wy | < CGL(x2), Wi, | < CGH(x2),

ai+f+lel <C i —inl —i/2 1 <i 1ok <3
Ox OO (Wel'Gi(x) + & °Gy(x), 1 <i+j+2k<3,
O | Ce’Gh(x) + 7G5 (x2), 1 <i+ j+2k <3
0x,'0x,/0t* &1 e ) L=iTJ -7
ai+j+kwl o
T Ce,*Gh(x1), 1 < i+ j+2k<2,
1'0x2
ai+j+kwl2 Ll 1 ) )
m < C82 (/.181 g (X]) + 8 Qz(xl)), 1+ Jj+ 2k = 3,
1
8i+j+k )
S < Co Gl 1 < i+ 2k <2,
X1'0x
9"y, P -1/2 b C
W < Csg; (ue; G(x2) + &, Gy(x2)), i+ j+2k =3,

wnl < CGH(x0), Wiyl < CG5(x1), Wyl < CGl(x2), Iwy,| < CGH(x2),

8i+j+kW " l+]+k /2
—rl<C + 3 ‘— C + S ’1S++2kg39
axllaleatk (,Ll & gz(xl)) Ox1:0x-7 Otk (,Ll & QZ(XZ)) L+ ]

ai+j+kWr2 <C —i/2 r 1<i Lok <2 ai+j+kWr2 <C 1, -3 12 »r . ok =3
axianiok| < 5 Gy(x), 1 <i+ j+2k<2, axoniar| < €8 W + &' PGy (x1)), i+ j + 2k =3,

Otitky, d+ithyy,

L < CeyPGh(x), 1 <+ j+2k <2,

- o —-1,,,-3 -1/2 ~t . . _
axli(?xzfatk < CSZ (/J + &, gz(xz)), 1+ J+ 2k = 3.

8x1i(9x21(9tk

Theorem 2.6. Let s,, n = Ib, br,rt, It, where s, = (s,,, s,,z)T satisfies problem (2.4). Then,
o If 9u’ < Ag holds, we have

IS0 < CGY (X)GY (x2), ki = L1, ky = b, 1,

i+j+k
0 Skika

(=i-)/2 (=i-j)/2 k o B B
W Ce PG (x)GR (%) + &5 PG ()G (x2)), 1 i+ j+2k <3, ki =1L, ko = b,t,

i+ j+k
d Skikas

6x1 iaXQjalk
az‘+j+k

< CeS PG ()G (), 1< i+ j+2k <2 ki =17, ko = b1,

Skikas
axl iaXQjalk

< C&(e]' G ()G (00) + &7 GY ()G (x2)), i+ j+2k =3, ki =L, ky = b, 1.

o If 9u? > Ae, holds, we have

ISkl < CGY (x1)GS (x2), ki = L7, ko = b, 1,

ai+j+k . L .
| < G G )G ) + 8 TG )GA), 1< i+ 2k <3,

8x1i6x216t’<
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9 sy, itk ~ij ol b L
W < C,u &, QZ()C])QZ(XQ), 1<i+ J+ 2k <2,

ai+j+kslbz 6 ~d; 2l b 2l b S
Ox OO < Cpey (617G (x1)G | (x0) + &,°G,(x1)G5(x2)), i+ j+2k=3,

ai+j+ksbrl I i ‘ .
m < C,Ll (81 g](XZ) + &, QZ(XQ)), 1<i+ J+ 2k < 3,

ai+j+ksb . o ai+j+kst .
—— < Cu ™M/ Gh(x), 1 <i+ j+2k<3, || <Cu™, 1 <i+ j+2k<2,
ook = G e G, LSt dx 008 | = H trJ

O s <Cu+e?), i+j+2k=3 O s, <Cu,1<i+j+2k<3
—| < E17), 1 =0, |/— /| = s <1 <5,
110,101 ! / dxi0x06| = H /

aiﬂurkslt. [ PN —i .
W SCW ("G (x1)+&'Gy(x1), 1 <i+j+2k <3,

ai+j+kslt2 i il ‘ ‘
m < Culey'Gy(xy), 1<i+j+2k<3.

1 2

e Finally, if Ae; < 9u* < A&, holds, we have

Isip,| < CG(x1)G2(x2), Isi,| < CGH(x1)Go(x2), Ispr,] < CG(x1)G(x2),
Ispr| < CGH(x1)G5(x2), 18,1, < CGL(x)G(x2), Isrn,] < CGH(x1)G5(x2),
Isi,| < CG(x1)G)(x2), Isi,] < CG5(x1)G5(x2),

Qititkg o o . ‘
9x1i0x jgtk < Cu™e, ]gi(xl)glf(xz) + 8(2 ”/zg’z(xl)g’;(xz)), 1<i+j+2k<3,
110X
0 s, (=i=)/2 ol b o
X1 0x,) D¢ < Ceg, G, (x1)G5(x2), 1 <i+ j+2k<2,
1
6i+j+kS1b2 2. 2 o b A , ' '
X, 0%, Ok < Cey"(ue "G (x1)G|(x2) + &5 G (x1)G5(x2), i+ j+2k =3,
1
8i+j+ksbrl —iti —j b (—1=1)/2 r b . .
EIE <SCu e ’Gl(x) + &, Gy (x1)G5(x), 1 <i+j+2k<3,
1'0x2
sy (=i-D/2 for b o
Ox110x- IOt < Ceg, G (x1)G5(x2), 0<i+ j+2k<2,
110X
ai+1+ksbr2 2, Z2 —1b . . ' .
Ax,10x,1 0t <Ce (17 G(x) + & Gr(x1)Gy(x2), i+ j+2k =3,
8i+j+k s”l —i—j (—l—j)/2 - ; ) )
Ox,10xy OFF SCu ™ +e, GG (), 1<i+ j+2k<3,
ai+j+k Srtz (—l—j)/2 . ' . )
A1 10 Ot = C82 gz(xl)gz(xz), 1<i+j+2k<2,
1'0x2

6i+j+k Sriy
0x,'0xy) 0t
ai+ Jjt+k Sty

ﬁxliaxzjatk

< Ce* (Wl + &' Gh(x)Gy(xy)), i+ j+2k=3,

< CEe'Gi(n) + & PGy aGy (), 1< it j+2k <3,
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i+ j+k
(9 J Sltz
0x ia)Qj otk
6i+ Jjt+k Sty

0x,'0xy) 0t

< Cel PG ()G (), 1< i+ j+2k <2,

< Cer*(u%e]' G (x)) + &' Go(x1)Go(x2)), i+ j+ 2k = 3.

3. Discretization of the continuous problem

3.1. The spatial discretization

In this section, we propose a numerical scheme to solve problem (1.1). The approach begins by
constructing a specially designed nonuniform mesh of the BS type tailored to the behavior of the exact
solution. Once the mesh is defined, we formulate a finite difference method (FDM) over the domain
@N’M ={(x15x2),,) : 0 <i,j <N, 0 <n < M}, where N and M denote the spatial and temporal

discretization parameters, respectively.

The BS mesh

Following [21], the first step is the construction of the spatial mesh ﬁN = {x1X%2;) : 0 <4, j < N},
where, for simplicity, the same number of grid points is considered in both the x; and x, directions.
This mesh is formulated as the tensor product of appropriately designed 1D BS meshes, as depicted in

Figures 1.

Uniform grid points
Uniform grid points
Uniform grid points

Bakhvalov-Shishkin mesh Bakhvalov-Shishkin mesh

Bakhvalov-Shishkin mesh

(a) BS mesh for Case 1; (b) BS mesh for Case 2; (¢) BS mesh for Case 3.
Figure 1. BS mesh structures for Cases 1, 2, and 3.

We define the mesh points for the x;-direction as {x;;}" o» and analogously, the mesh points for the

x,-direction as {x, j}y: o- To do that, we distinguish several cases that depend on the value and the ratio
between the diffusion and the convection parameters.

Case 1: If Yu*> < Aegy, then we define the non uniform BS mesh by decomposing the unit interval
Q,, := [0, 1] into five subintervals of the form

Q, =[0,1]1=[0,7,]U [, 2] U[r0,  =1o] U[1 =75, 1 =, JU[1 = 7y, 1],

with the transition points 7y, 7, defined by

. (T2 | €1 _ (1 | &2
Tl—mln{2,2 AﬁlnN},rz—mln{4,2 A0lnN}. (3.1a)
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Each equal number of subintervals [0, 7], [Ty, T2], [1 — 72,1 = 71],[1 — 74, 1] are distributed by mesh-
generating functions that are continuous, strictly increasing, and piecewise continuously differentiable,
defined as follows:

SN PO _1n(1—8(1—N‘1)S), sE[O,
() = Puls) = ~In(1-801-N"NGs-D), selg

I
|-

b

], r(s):{1n(1—8(1—N“)(%—s)), se|
|- In(1-801-N"1-9), se

In the remaining central subinterval [7,, 1 — 7], the mesh is uniformly spaced with N/2 + 1 grid points.
Then, the grid points along the x;-direction are defined as

4>|.— ool—
0 KW
— 00l

9

2\/%@(&-), if i=0,...N/S,
1202 - [2)di(s)), if i=N/8+1,...,N/4,
x;; =4 a1 -2m)0 - %), if i=N/4+1,...,3N/4,
1—T1+2(\/%—\/%)(Dr(si), if i=3N/4+1,...,TNJS,
142 [20,s), if i=7N/8+1,...,N,

where s; = ]L\,
Case 2: If 9u* > As,, then we construct the non uniform BS mesh by decomposing the unit intervals
Q,, into four subintervals of the form

Q, =10,11=[0,01VU [0, 1 =12]U[1 =75, 1 =7, JU[1 =7y, 1],

with the transition points 7y, 75, and o defined as
2 1 2¢ 1 2u
T = min{% M—‘:’; lnN} 7, = min{zL M—ﬁzl N} o= m1n{4 Fin N} (3.2a)

The subintervals [0, o], [1 -7,,1—71], and [1 -7, 1] are each partitioned into an equal number of mesh
intervals using piecewise continuously differentiable, monotonic mesh-generating functions ®,(s) and

@, (s), defined as follows:
O,(s) = -In(1-4(1 - N7)s), sel0.].
D=1 5 05 = {ln(l ~8(1 - N:i)(% —5)). se [% g]
n(1-8(1-N"N1-9), se|il

In the remaining central subinterval [o, 1 — 7,], the mesh is taken to be uniform, consisting of N/2 + 1
equally spatial grid points. Then, the grid points along the x;-direction are defined as

25@(sy), if i=0,...,N/4,
c+i(l-n-0)i-5), if i=N/4+1,...,3N/4,

Y=L Tl_,_(@_@)q)(sl) if i=3N/4+1,...,7N/8,
1+ 250,05 TN L
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where s; = .

Case 3: If Ag; < Yu? < As,, then we construct the non uniform BS mesh by decomposing the unit
interval Q,, := [0, 1] into five subintervals of the form

Q, =[0,11=[0,0]1U [0, 2] U[12, 1 = 12] U [l =15, 1 =] U [l = 7, 1],

where the transition points 7;, i = 1,2 and o now are defined as

2 | 2
) = min{%, ﬁ lnN}, 7, = min{Z,21 /i—;lnN}, o= min{%, Xﬂ lnN}. (3.3)

The subintervals [0, o], [0, T2], [l =72, | = 7], and [1 — 7y, 1] are each partitioned into an equal number
of mesh intervals using the piecewise continuously differentiable functions ®,(s) and ®,(s), defined as

follows: ( ) [
C(-mm(1-8(1 = NDs), se
q)’(s)_{—ln(l—S(l—N—l)(s—g), sel

_m(1-80-N"(1-5)). se|d]
D,.(s) = {1n<1 ~8(1 - N‘l)(lg_ S))’ s € [%’ i] .

B

In the remaining interior subinterval [7;, 1 — 7,], a uniform mesh consisting of N/2 + 1 equally spaced
grid points is employed. Then, the grid points along the x;-axis are given by

280,(s), if i=0,...,N/8,
o +2(4Z - BYD(s)), if i=N/8+1,...,N/4,
xii={ T+ 21 =20 - ), if i=N/4A+1,...,3N/4,

L=7+2(\/& - 2)D,(s), if i=3N/4+1,...,IN/8,
1+ 250,(s)), if i=7N/8+1,...,N,

where s; = ﬁ For each one of the cases, the step sizes are defined as h; = x;,—x1;-1, i = 1,2,..,N, k; =
X2 = X2j-1, ] =1,2,...,N, il,' =h+h.,,i=1,2,..N—1, ]_Cj = kj +kj+1, j: 1,2,..,.N—1.

The boundaries of the spatial domain ﬁN are denoted by
) ={0xp|0<j< N1y = {00 <i< N,
= {(1,x2j)|0 <j< N},rﬁv = {(xli, Djo<i< N},
andTV =TV uryuryury,

3.2. Time discretization and the FDM

The second step in constructing the fully discrete scheme is the time discretization. For this, the
time interval [0, 7] is divided into M equal parts, giving the equidistant mes I = {1, = nAt,n =
0,...,M,ty=0,tyy = T,At = T/M}, where M is the number of time steps used in the discretization.
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. —N.M . .. . . . . ..
On an arbitrary mesh Q  , the discretization of (1.1) is carried out using the implicit Euler method
in time combined with the classical upwind finite difference scheme in space, which is formulated as
follows:

LYVL =D -85, + 0% )L+ p(A(x1;, %25, 1Dy, +A2(xll,xzj,tk)D )Z

+B(x15, X2, w)Z = (1, %05 1), Y(x15 %2, 1) € QWM
Z(x1;, %2 1) = Q(X15, X2, 1), V(x5 X2, 1) € OQY X TV,
Z(x1;, %2, 1) = WXy, X2, 1), Y(x1s, X2, 1) € QY X o},

fork=1,...,. M.
(3.4)
As it is usual, the discrete differential operators D} , D}, Dy, 63 ., and 6%, are defined by
L(x1;, %0, 1) — L(xy;, %0, 1 L(x1;, %05, t;) — L(x1;, %0551
D Z(xiis a0 10) = (X1, X2 k)h (X145 X2 k),D;IZ(xli,xzj,tk): (X145 X2 k)h (X1, X2 k)’
i+1 i
L(x1;, %0, 1) — L(xy;, %0, 1 L(x1;, %05, t) — L(x1;, X0, 1
D! Z(xyp 0 10) = (X17, X2, i) = Z(X15 X2, 1) - Z(ti o te) = (X17, X2, 1) = Z(x14, X2 k)’
2 kj+1 2 kj
_ Z(X]i, X2js tk) - Z(xli’ X2, lk)
Dt Z('xli’XZj’ tk) = J At J s

2 _
Z(-xlt’ x2/’ tk) ]:L (D;-IZ(XID -ij’ tk) - D)CZZ(xli’ x2j7 tk))9

i

2
Z(‘x]l’ XQ], tk) - (D Z(-xlt’x2]7tk) D;ZZ(xlh -x2j7 tk))’
k]

Xlxl

xz X2

fori,j=1,2,...,N—1.

Assumption 1. We assume that for the case 9u* > A&, it holds that &,/ < N™' and u < N~'. For
the case 9u* < Mgy, it holds that \Je; < N™', and for the case Ae, < Iu* < A&y, it holds that
el/fu< N, u< N7, and \Je; < N™' as generally is the case in practice.

Assumption 2. The mesh-generating functions are assumed to be piecewise differentiable and to

satisfy

max @, (s) < CN and max ®, (s) <CN,
s€[0,1/4] se[3/4

or equivalently,
|D; | -1 _

sel0,1/41 @; sei3/411 @,

Assumption 3. Finally, we also assume that it holds
4 o
f {®(s)}*ds < CN and f {®(s)}*ds < CN.
0 3/4

Using Assumption 2, it follows that h; < CN™',k; < CN~' for 1 <i,j < N.

Analogous to the continuous problem, a discrete maximum principle can be established for the
discrete operator Lﬁ ;,V
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Lemma 3.1 (Discrete maximum principle). Let Liv,?] be the discrete operator given in (3.4). If

v(xi, X2t = 0 on TV X T U QY X {0} and LINv(x1;, x25.10) > 0, V(xy;, x5, 1) € Q™M then
—N.M

V(X145 X2j, ) 20, Y(xy,x2,0) €Q .

Proof. This lemma can be proved by following the ideas presented in [7, 10]. O

Lemma 3.2 (Discrete stability result). Let v(xy;, X2, ) be the solution of (3.4). Then, it holds that

L v
v Ceris X2 t)llgv < 5||£8,’,, V||gvm + max {”V”(?QNXE{”’ ”V”QNX{O}}-

Proof. This result follows directly from Lemma 3.1. O

4. Uniform convergence of the fully discrete scheme

This section gives a rigorous error analysis of the proposed numerical scheme and establishes its
uniform convergence. To do that, first we decompose the numerical solution into its regular, layer,
and corner components, following an approach analogous to that employed for the corresponding
continuous solution; then, we have Z(xy;, x2, ) = R(x1;, X2, ) + W(x1;, X2, 1) + S(x1;, X2, 1), where

W(xij, X2, 1) = Wix1;, X2, 1) + WXy, X2 1) + Wi (g, X2, i) + Wi, X2, 1),
SCxiis X2 i) = S (X1is X25 ) + Spr(X1i5 X2 1) + Sp(x15 X2, i) + Spe(X145 X2 1)

Furthermore, the regular component R(xy;, X, #) 1s defined as the solution of the associated problem

N,N
{ Lg’” R(.XU, -x2j9 tk) = f(xli’ -x2j9 tk)’ V(XU, x2j9 tk) € QN’Ma

4.1
ROxis, 2, 1) = ¥(x1 X2 1), V(X1 %250 1) € OQMY. @1

Similarly, the layer component W(xy;, X, #;) and the corner component S(x1;, x ;, #) are introduced as
the solutions of the following numerical problems:

LYYWy, x05,1) =0, V(xi;, x5, 1) € QWM “2)
W(.Xh', -x2ja tk) = W(Xlia x2ja tk)a v(-xlia x2j7 tk) € aQN’Ma .
for the layer component, and
Lz;ivS(Xlia XZj, tk) = 0, V(Xll-, ij, tk) (S QN’M, (4 3)
S(xli’ -x2j5 tk) = S(.X']l', -x2j7 tk)’ V(.X']l‘, x2j7 tk) € aQN’M’ ‘

for the corner component, respectively.
To bound the error estimates corresponding to the boundary and corner layer components, we utilize
an argument that relies on appropriately constructed barrier functions; these functions are defined by

| Spth,\~! l. Spth,\ !
BN =T (1+ ) L 8V =TIL (14 2) . 9w <A,
1 2
. Suh,\! l. Ipth,\!
B%Nm,-):ni:l(u o ) , BQN(xll-):nL:l(H o ) . %P> Ae
1 2
. 9 -1 : A9 -1
B&Nuu):nz:l(u(z—“)ht) , B§N<xu>:nz=1(1+ (—)h[) . Ay < O < Aes,
&1 &

with 85" (x10) = 85" (x10) = 1.
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Lemma 4.1. Let r(xi, x2, 1) denote the solution of (2.2) and R(xy;, x5, t) represent the corresponding
discrete solution of (4.1). Then, for each of the following cases, 9u* < Aey, du*> > Aey, and Ae; <
Ju? < Aes, it holds that

IR(x1, X2, tr) — F(X1;5 X2, )| < C(N' + Ar).

Proof. By applying Taylor series, it can be readily shown that the truncation error corresponding to the
smooth component (4.1) satisfies

»r o’r or
LY R = 1)1, %0 1)) < C[At = +(hi+h,-+1)(8 el [T P )
Or or
+(kj+kj+l)(8 M +IJH£22 )] (44)

Now, using the Assumptions 1, 2, and 3 and the derivative bounds of r provided in Theorem (2.4), it
follows that

CN™'(\Jer + ) + CAt

O , if 9u? < Ay,
CN™ (& +u) + CAt

CN-Y(1 + p) + CAt

Lf;"NR—r X1 X2 )| <
1L ( (X1 X255 1) CN“(65 4 10) + CAl

], if 92 > As,

CN-I(1 + ) + CAt
CN-\(&2) + CAt

), if Ag; < 9u? < As,.
By applying Lemma 3.1 to C(N~! + Af) £ (R — r)(xy;, X2 j» ) over the domain QN it follows directly
that, for all considered cases, it holds that

(R = 1)(x1, X2, 2)] < C(N™" + Aw), (4.5)
which is the required result. m|

Lemma 4.2. Let w, and W,, denote the exact and discrete solutions of (2.3) and (4.2), respectively.
For 9u® < A&y, the error of the boundary layer functions satisfies

IWo(x1 X2, 1) — Wy(X14, X2, )| < CIN'+An, n=1b,r,t.
Proof. From the Theorem (2.5), it follows that
IWi(x1;, X2, 1] < CGh(x1)).
So, for all (xy;, X2, &) € [12,1) X (0,1) X (0, T], we have
Wi(x1, %25, 10l < CGy(x1;) < CGh(xips) = Ce 218V = CN72, (4.6)
Also, it is straightforward to see that

Wi (x15, X2 1)l < CBY (1) < CBN (xywjy), Vi2N/41<j<N1<k<M.
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Using the methodology given in ( [17], Section 4.2), we can obtain
Wi(xi, %25, t)l SCN™', Vi>N/41<j<N1<k<M.
Hence, for all (xy;, x2;, i) € [12,1) X (0,1) X (0, T], from (4.6) and the above equation, we have
|(W, = w)(x1, x5, 0] < [Wil + wi| < CN™". 4.7

To obtain suitable error bounds in the regions 0 < xy; < 71, 71 < Xy; < T, by using (4.2), Theorem
2.5, (hi + hiv)) < N7', and (k; + kji1) < N7', we have
+ ,,‘

W

)

sz, (93W1 (92
+ (h; + h; (
el IR G e (R e

. [N—%e;”zgﬁ(xu_l) +&, G (x1,.0)) + Ar]

N[ *G (i) + &, PG (x1is))) + At

(93 W[

a)C2

LYY (W, = wl < c[m

)+ *; + kﬁ])(

a)CQ

Choosing now the barrier function for the w; as

C[\/g—lim(Tz = x1;) + At] £ Wy, — wy ) (X1, X2 lk)]

C[-L

D (X1, X2, 1) = {
ﬁlnN(

Ty = x1;) + At] £ (Wi, — wp,)(x1; X2, 1)

by Lemma 3.1, we obtain the bound

|(Wi = wi)(x15 %2 1] <C

[\/;—_ILN(Tz — x1;) + At]
.Xh') + At]

[ rlnN(TZ

EECEY
<c|

[Los + A

and therefore
(Wi —w)(x1i, X2, )] < C(N' + Ap).

Similarly, error bounds can also be shown for the other layer components w,,, w;,, and w, when
Iu? < Aegy. |

Lemma 4.3. Let w, and W,, be the exact and discrete solutions of (2.3) and (4.2), respectively. For
Yu? > A&y, it holds that

|Wl’l(x1i’ sz', lk) - wl’l(xli’ -x2j? tk)l < C(N—l + Al)a n= l’ bv r, L.

Proof. The proof is provided in A. O

In the same way, similar bounds can be established for the errors associated with the other layer
components w,, Wy, and w,, corresponding to the case Ju* > Ase,.
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Lemma 4.4. For Ag; < Yu*> < As,, the exact solution w,, of (2.3) and its discrete component W,, of
(4.2) satisfy the following estimate:

|Wn(xli’ -x2j9 tk) - wn(xlia x2j7 tk)l < C(N_l + At)9 n= la b’ Tt
Proof. The proof is given in B. O

The final step is devoted to the error analysis of the corner components. As before, we focus on
the corner component s;,, while similar arguments can be applied to the remaining corner components.
Once again, it is necessary to consider the following three distinct cases Ju? < Ag;, Ju’® > As,, and
Ag; < 9u? < Ae,.

Lemma 4.5. For n = Ib, br, rt,lt, let s, and S, denote the exact and numerical solutions of (2.4) and
(4.3), respectively. Then, for 9u*> > A&, the following estimate holds:

1S, (X1is X2, 1) = 8u(X14 X2, 1)) < C(NT' + AD).

Proof. According to the results established in Theorem 2.6, the truncation error associated with the
corner component sy, satisfies

62 83 82
LYY (Si = sl < C[At Sl (h; + hm)( a’sy [ 8 )
at xl (9x1
3 2
+ (k; +kj+1)( s ‘5 Sib )] 4.8)
0xy* 0x,2

If ) =1/8, 7, = 1/4, and 0y = 1/4, the proof can be obtained directly by applying standard techniques
on uniform meshes, using that u'e; < CN~!, u'e; < CN7', and u < CN~'. Then, by applying
Theorem 2.6 to (4.8), we obtain

e (B (x1,-1) B (x2)-1) + 108 (By(x1;-1)B5(x2j-1)) + At

|£N S — sl < C[,U ] (4.9)

Yerle) (B (1B (x2j1) + e (B (x1; 1) By (xa1)) + At

Now, considering the barrier function from Lemma 4.3 (see (A.3)) in ﬁN and applying Lemma 3.1, we
deduce that

o+ At

(S = s1)(x14, X2, 1| < C(ﬂ LA ) < C(N"'+Ap).

Next, from (4.3), for the case 7, = 8—; In N, considering the mesh points (xi;, x2;, ) with (0 < i, j <

N)\(0<1i,j<N/4),0 <k < M, we obtain

.l N b.N
(S 15, = Sip)(X1is X2 L S 1S 1y (X145 X2 B + |S15, (X145 X255 )] < Cmin(B;7 (xy;), By (x2))

< Cmin(85"(1,), B2V (12)) < CN7'. (4.10)
Similarly, we can deduce that it holds

(S 15, = S162) (X175 X2 )] < CN7'. 4.11)
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£ ) .
When 7, = —129 In N, there are two different cases: 2e; > &, and 2g; < &;, respectively. In the case
u

2
% <e <enforN/8<i<N/4, 0<j<N/4 0<k<M, 1< % In N. Hence, we obtain
u

-1, 2@l b -1, 2@l b
&) 1 (B (x1:-1)B(x2j-1)) + & 1 (B5(x1;1)B5(x2 1)) + At
|LYY (St = si) (X155 X2, 11)] < C[ Lo i :
&, 1 (By(x1:-1)B;5(x2j-1)) + At
In the case &, > 2¢;, for N/8 <i < N/4,0< j< N/4,0 < k < M, we have
CSII#Z(BI] (x1 i—l)B?(XZj—l)) + ngl/lz(Blz(xli—1)~83(x2j—1)) + CAl]

LY (Sip = s1)(x1 7, X2 1)l < ( e , 1 2l b
Cey u (B (x1,-1)B](x2j-1)) + Ce5 u™(B5(x1,-1)B5(x2;-1)) + CAt

ForO<i<N/8,0<j<N/4,0<k<M, 1 < %ln N, it follows that the local error satisfies

L35 (S = si) (X155 X2, 1) < C [81_1#2(5911(xli—l)Blf(XZJ—l)) BN AIJ
&, 19 J° — .
“ 851#2(312()61l._l)Blz’(XZj_l)) + At

For0<i<%,0< ;<% and0 <k < M, by employing the barrier functions ¢(x;,) and ¥(x, ) defined
in Lemma 4.3 (see (A.7)), we obtain

(Sip = sip)(x14s X2, )l SCN ™'+ CAt, 0 <i < N/4,0< j<N/4, 0<k <M. 4.12)

From (4.10), (4.11), and (4.12), for 7, = 8—; In NV, it follows that
u

(S — si)(x155 X2, 1)) < CN™' + CA.

Next, we consider the case where 7 = 1/4, oy = 1/4, and 71 = % In N. Under these assumptions, it
u
holds that pue,' < CN~'. For (x1;,x2;, %) € (0,71] X (0, 72] X (0, T], the mesh sizes satisfy h;, k; < e
u
Therefore, using the truncation error bound from (4.8), we deduce
-1,2(ql b -1,2(ql b
e (B (x1:-1)B](x2j-1) + & p (By(x1;-1)B5(x2j-1)) + At
|L3Y (S — si) (X155 X2, )] < C[ o . :
&5 1 (B5(x1i-1)B3(x2-1)) + At
For (x1;, x25, 1) € [71,72] X (0,72] X (0, T], applying (4.8) with Lemma 2.6, it follows that
N Ce "1 (B (x1121)B] (x2-1)) + C&5' 12 (B (x1:1)B5(x2j-1)) + CAt
Loy S =sw)xrp xoptol < i . , :
Ce; u (B5(x1i-)B5(x2j-1)) + C&; ™ (B5(x1,-1)B;(x2j-1)) + CAt
Similarly, for (xy;, X2, ix) € [12,1) X (0, 72] X (0, T], from (4.8) and Lemma 2.6, we can deduce
Cei' 17 (B (x1) B (x2j21)) + Cey 12 (Bo(x1,-1)B5(x2-1)) + CAt]

|LEY (S — si) (X155 X2, )] < ( e , 2l b
CEE M (Bz(xl,-_l)B2(x2j_1)) + Cg; M (Bz(xli—l)Bz(ij—l)) + CAt
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By employing an appropriate barrier function for the corner layer component over the domain 0 < i <
N,0 < j<N,0<k< M, we deduce that, for each component,

ISt — S)(x145 X2, 1)l < C(N™' + Av),
which is the required result. O

In a similar manner, analogous bounds can be established for the errors associated with the
remaining corner layer components sy, S,;, and s; in the case where Ju?> > As,. Next, we proceed
with the analysis of the second case, namely when Ju? < Ag;.

Lemma 4.6. Let s, and S, be the exact and numerical solutions of (2.4) and (4.3), respectively, for
n = Ib, br, rt, It. For 9u* < A&, we have

1S, (X17, X2, ) = $u(X15, X2, 1) < C(NT' + Ab).

Proof. If T1 = 1/8 and 1, = 1/4, the proof can be carried out by applying standard techniques on
uniform meshes, taking into account that \&; < CN™' and /g, < CN~'. Therefore, by employing
(4.3) along with Theorem 2.6, we obtain

0’s &s s 0’s 0’s
N,N b b b b b
£35S = sull < C| A Z3 4 i+ )2 g R ) s+ k(e et R e )
<CN.
i

Further, if 7 = InN, 75 = 1/4, and we assume that (x;, x2;, %) € (12, 1 —72) X (0,1) X (0, T U

A
(t1,72) X (0,1) X (0, TTU (0, 71) X (12, 1) X (0, TJU (1 = 72,1 = 71) X (0, 1) X (0, T], then we have

NN (R
|Le Sip = sip)(x15, X2, ) < C

&5 (B (x1,-) B (x2,1)) + Ar]
&5 (BL(x1:-1)Bh(x2,1)) + At

When (x1;, x2j, %) € (0, 7] X (0,72] X (0, T] or [1 —71,1) X (0,72] X (0, T}, it holds that

. 81_1/2+8;1/2+Al
|Le Sip = Sip) (X155 X2, 1)l < C ] .
g S22

g '"+e T+ At

[ e
Ifr, = z—;lnNandTl = %, % < 4/€1 < 4/&3, hence 1, < C /e InN.
By employing the barrier function from Lemma 4.2, the error estimate for the regions (xy;, x2;, %) €
[T2,1 —=75] x(0,1)x (0, T], (0,71] X [12,1) X (0, T] and [1 — 15, 1) X [15, 1) X (0, T'] can be established

as follows:

ISty — sip) (15 X2, 6l < IS (x5 Xa 5 )l + 181p( X1, X2, 1)
< Cmin{B," (1), B2V (12)} < CN7.
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In order to obtain suitable bounds for the error in the region (xy;, x2;, %) € (71,72) X (0,72) X (0, T] or
(1 =72,1 =711) % (0,72) X (0, T'], along with the conditions (h; + h;1) < /&) and (k; + kj,1) < /€1, the
following holds:

8;1/2 +8£1/2 + At

|-£fgv,}iv(51b = Sp)(X15 X2, 1)l < C \/8_1( ] <CN '+ CAw

&' +e' P+ At
In the cases where (xy;, X, fx) belongs to either (0, ;)X (0, 72) X (0, T'] or (1 -7y, 1) X(0,72) X (0, T], we
have h; + hi.1 < C+/e1, kj+kj. < C+fe. Using a similar analytical approach as previously described,
the corresponding bounds are derived.

Agﬂlﬂ InN and 7, = i—;lnN, and in cases where (xi;, x2;,%) € [12,1 —

7,] % (0,1) x(0,T], (0,71] X (0,72) X (0,T], or (1 —7,1) %X (0, 73) X (0, T], the required bounds can be
obtained using a similar approach as applied to the corresponding intervals in the previous cases. When
(X15, X2, 1) 18 within either (7, 72)X(0, 1)X(0, T] or (172, 1-71)x(0, 1)X(0, T'] or (0, 71)X(72, 1)X(0, T]
or (1 —71,1) % (12,1) % (0, T], we have h; + hj,; <CN't, < C \/€,. Consequently, we obtain

Assuming that 7, =

ILZ;iV(Szb = Spp) (X175 X2, Bp)| < C(N7' + Ar).
o

Analogously, similar error bounds are obtained for the remaining corner layers s,, S,;, and s;, in the
case Y’ < Ae;. Finally, we analyze the third case when Ag; < H? < Aes.

Lemma 4.7. Let s, and S, be the true and numerical solutions of (2.4) and (4.3), respectively, for
n=1b,br rt,lt. For Ae; < 19/12 < A&y, we have

1S, (X1is X2, 1) = S (X145 X2, 1)) < C(NT' + AD).

Proof. Using similar arguments as presented in Lemmas 4.4, 4.5, and 4.6, the error estimates for the
intermediate case Ag; < Ju® < A&, can also be established. O

By combining all the previous results, we arrive at the main result of this work.

Theorem 4.8. Let z and Z denote the exact and continuous solutions of (1.1) and (3.4), respectively,
on the constructed BS mesh. Then, the error satisfies the following estimate:

\Z(x13, X2, 1) = 2(x135 Xo o 1)l < C(N™' + AD), (4.13)

and therefore, the proposed numerical scheme achieves first-order uniform convergence.
5. Numerical experiments

Section 3 describes the implementation of our algorithm on the BS mesh. To show the effectiveness
of the numerical approach, two test problems of the form (1.1) are considered. All numerical
experiments are performed in MATLAB R2024a on a system with 32 GB RAM and an Intel i5

processor (1.8 GHz). Due to the complexity of the considered problems, the computation time
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required to obtain accurate results is relatively high. However, to enhance computational efficiency
and minimize memory usage, the algorithm utilizes sparse matrix techniques to solve the resulting
linear systems.

To address the test problems, the numerical solutions are arranged in the following form:

(initialize)Z (xy;, X2, o) = [¥1]av, 5.1
Zy(x1, X2, 10) = [Yalav, (5.2)

Form=1,2,...,M,

Zy(x10, X205 tm)> Z1 (X115 X205 tm)s - - - 5 Z1 (X1, X205 T )

Zi(x105 X215 tm)s Z1 (X115 X215 )y« -+ Z1(X1 s X215 T),s

Z1(X10> X225 tn)s Z1 (X115 X225 B« -+ s Z1 (X1 s X225 Bn)s

e 5.3

Zi(x105 X235 tm)s Z1 (X115 Xons By - -« s Z1(X1 s X2ns T,

Z5(x10, X205 tm)s Zo(X115 X205 tm)s + - - 5 Z2(X1 5 X205 T )

Zy(x10, X215 tm)> Zo(X115 X215 bn)s - - - 5 Zo(X1 s X215 i)

Zo5(X10s X2ns Im)s Zo (X115 Xons By« - 5 Zo(X1 Ny X2 s Em)s

where the values Z,(x1y, X2, ), Zn(X1;5 X295 Im)s  Zn(X1y» X2;5 1), and  Z,(xy;, Xoy, 1), for n
1,2,i,j=0,...,N, m=1,..., M, are determined from the prescribed boundary conditions.

Then, the resulting linear system can })e written asl [A]Z’§<N+1>2,2<N+ 1)2).[2]’(72(1\”1)2,1) =
[F]" form = 1,... M, and we solve this system by using MATLAB, taking into account

QN+D21)
that the matrix A is sparse.

In this section, we solve with our method (3.4) two test examples of problems of type (1.1). The
data of the first example are given by

Example 5.1.

0 0? 0* o0 0.
_z - 8(_z + _z) +IJ(A1(X1,X2, t)_z +A2(xl9-x25t)_z) +B(x1’-x2a f)Z :f(xl9-x2’t)’ V(xl,xz, t) € Q X (Oa T];
ot 0x12  0xy? 0x) 0x,

where the boundary conditions as well as convection, reaction coefficients, and source terms are given
by

Z(xl, Oa t) = Z(Xl, 1, t) = Z(O’ X2, t) = Z(la X2, t) = Z(Xl,xz, O) = 0’

_ (2 +sin(x; + x) 0
), Ar(x1, X0, 1) = ( 0 2 —cos(x; + xz))’

1+ X1X2 0

Al(xl’xz’t)( 0 2_x1x2

(3 + x1x2) exp(—1) —1 — x1%x? )

B(xy, x2,1) = ( Sl—explrxn) (3 +explrian))(l — 2 exp(~1)

T
Jx, x0,8) = (exp(—xl — Xp) sin(rrt), exp(—x; — Xz)COS(T(t/Z)) ,
with T = 1. The data of the second example are
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Example 5.2.

19) 62 2 0 0.
= 8(—z + —Z) +u(A1(x1,x2, f)—z + Az (x1, X2, l)—z) + B(x1, X2, )z = f(x1, X2, 1), Y(x1, x2,1) € Q% (0, T],
ot 0x12  0xy2 0x; 0x;

where now the boundary conditions as well as convection, reaction coefficients, and source terms are
given by

T
2(xy, X2, 1) = (xl(l — x)x2(1 = x)(1 = exp(=50)), x1 (1 = x)x2(1 — x2)(1 = exzﬂ(—t))) , (X1, x2,1) € 9Q < [0, TT,

Z(Xl, X7, 0) = 0,
1+ x1x2(1 — exp(-1)) 0 _ (2 + exp(x1x2) 0
A, 2, 1) = ( 0 1 - xpx(1 — exp(—2t)))’ Az (3, 2, 1) = ( 0 2 exp(xlxz))’
B+ x*xH)(1 — exp(—1)) -1 -xx
B, 12,4 = ( Sl-expnix) G+ expix)(l -2 exp(—t))) ’

T
Flxrs X0 f) = ( Sin(mx; X,) Sin(rt), cos(mx1x/2) cos(m/2)) ,

also with 7 = 1. Note that in this second example, the coefficients of the convection matrix A; depend
also on the time variable; then, from a numerical point of view, we see that our numerical algorithm
can be used efficiently for more general problems that this one in (1.1).

Figures 2—4 and 5-7 illustrate the two components of the numerical solution for Examples 5.1 and
5.2, respectively, obtained for different values of the diffusion and convection parameters &;, &, and
u while keeping the discretization parameters N and M fixed at the final time 7 = 1. These figures
clearly reveal the presence of boundary layers in the numerical solution.

Computed Solution z,

0.1

y-axis 0 o T xaxs y-axis 0 o x-axis

(a) Surface graph of the numerical solution z;; (b) surface graph of the numerical solution z5.
Figure 2. When g, = 5°%1072%,& = 541072, 4> = 5%102,N = 32, and M = 16 for
Example 5.1.
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o
[’d

Compute

olution Z Computed Solution Z2

y-axis 0 o T xaxs y-axis U T xaxis

(a) Surface graph of the numerical solution z;. (b) surface graph of the numerical solution z5.

Figure 3. When &, = 581072, &, = 561072, > = 5*102,N = 32, and M = 16 for
Example 5.1.

Computed Solution Z, Computed Solution Z,

0.15

0.5

y-axis 0 o T xaxs y-axis 0 o T xaxis

(a) Surface graph of the numerical solution z;; (b) surface graph of the numerical solution z5.

Figure 4. When g, = 581072, &, = 541072, 4> = 5°102,N = 32, and M = 16 for
Example 5.1.

Computed Solution Z, Computed Solution z,

1

y-axis 0 o T xaxis y-axis 0 o T xaxis

(a) Surface graph of the numerical solution z;; (b) surface graph of the numerical solution z5.

Figure 5. When g, = 5°1072, &, = 541072, 4> = 5%102,N = 32, and M = 16 for
Example 5.2.

AIMS Mathematics Volume 11, Issue 1, 1820-1856.



1843

Computed Solution Z1 Computed Solution Z2

0.12

0.1 =
0.08
0.06
0.04
0.02
0
1
1
05 06 0.8
04
N .. . 0.2
y-axis 0 o x-axis y-axis 0 o x-axis
(a) Surface graph of the numerical solution z;; (b) surface graph of the numerical solution z;.
Figure 6. When g, = 581072, &, = 5°1072, 4> = 5*10°2,N = 32, and M = 16 for
Example 5.2.
Computed Solution Z1 Computed Solution Z2

y-axis 0 o " xaxis y-axis 0 o © xaxis

(a) Surface graph of the numerical solution z;; (b) surface graph of the numerical solution z5.

Figure 7. When g, = 581072, &, = 5*107%, 4> = 5°102,N = 32, and M = 16 for
Example 5.2.

As the exact solution of this problem is unknown, to approximate the maximum point-wise errors,
we use, in a usual way, the double mesh technique (see [13]). Then, we calculate

NM _ ZAN2M NN
Eg = max |Z7 " (Xgp, X00)s ton) = 277 (X1 X25 1)l
(xi,yjut)€Q
where Z*N2M is the numerical solution obtained on a mesh with 2N subintervals in space and 2M

subintervals in time, taking the mesh points of the coarse mesh and also their midpoints on each
spatial and temporal direction. Then, the parameter uniform maximum point-wise errors are calculated
applying the formula

E"M = max EN-V,
&4 H

From the previous values, the uniform numerical orders of convergence are given by

M EN,M
Y - 10g2 ( E2N2M )
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Tables 1, 3, and 5 show the maximum errors for the first component under various choices of
the convection and diffusion parameter, together with selected discretization parameters N and M.
These tables also report the maximum uniform errors along with the associated uniform orders of
convergence. Similarly, Tables 2, 4, and 6 show the results for the second component for the same
set of parameters. In an analogous manner, Tables 7, 8, 9, 10, 11, and 12 summarize the maximum
errors and the numerical orders of convergence for the first and second components, corresponding to
example 5.2.

The collection of results in Tables 1-12 clearly show the effectiveness of the proposed method,
implemented on a BS mesh, in delivering accurate and efficient solutions for the test problems 5.1 and
5.2 across the three distinct ratios of diffusion to convection parameters.

Finally, Tables 13—15 present a comparison of the maximum point-wise errors ENY and orders
of convergence QMM for Example 5.1 under each of the cases, using the BS mesh and the standard
Shishkin (S) mesh. As the mesh is refined, the errors decrease for both meshes, indicating the uniform
convergence of the numerical scheme. However, for all grid levels and for both solution components
71 and z,, the BS mesh yields significantly smaller errors than the S mesh and achieves near first-
order convergence. This clearly permits us to conclude the superior accuracy and parameter-uniform
convergence of the BS mesh compared to the standard S mesh.

Table 1. When 9u® < Ag| < Ass. Table 2. When 9u® < Ag; < As,.
First component z, Second component z,
e1=5% &=5% =5 g=5" &=5" u=5"%

M 16 32 64 128 256 M 16 32 64 128 256
n/N 32 64 128 256 512 n/N 32 64 128 256 512
107! 4.963e-3 3.06le-3 1.678e-3 8.764e-4 4.473e-4 107! 4.988e-3  3.076e-3 1.685e-3 8.802e-4 4.492¢-4
1072 4.994e-3  3.087e-3 1.696e-3 8.875e-4 4.539¢-4 1072 5.019¢-3  3.101e-3 1.703e-3 8.913e-4 4.559%-4
1073 5.004e-3  3.095e-3 1.701e-3 8.910e-4 4.56le-4 1073 5.029¢-3  3.110e-3 1.709e-3 8.949e¢-4 4.580e-4
1074 5.007e-3  3.098e-3 1.703e-3 8.92le-4 4.567e-4 107 5.033e-3  3.112e-3 1.711e-3 8.960e-4 4.587e-4
1073 5.008¢-3  3.099e-3 1.704e-3 8.925e-4 4.569¢-4 1073 5.034e-3  3.113e-3 1.711e-3 8.964e-4 4.589%¢-4
1076 5.008¢-3  3.099e-3 1.704e-3 8.926e-4 4.570e-4 107° 5.034e-3  3.113e-3 1.711e-3 8.965e-4 4.590e-4
1077 5.008¢-3  3.099e-3 1.704e-3 8.926e-4 4.570e-4 1077 5.034e-3  3.113e-3 1.711e-3 8.965e-4 4.590e-4
1078 5.008¢-3  3.099¢-3 1.704e-3 8.927e-4 4.570e-4 1078 5.034e-3  3.113e-3 1.711e-3 8.965¢-4 4.590e-4
ENM 5.008¢-3  3.099¢-3 1.704e-3 8.927e-4 4.570e-4 ENM 5.034e-3  3.113e-3 1.711e-3 8.965e-4 4.590e-4
oNM 0.6924 0.8629 0.9327  0.9660 - onm 0.6934 0.8635 0.9325  0.9658 -

Tables 1 and 2 present the maximum point-wise errors ENY and the corresponding numerical orders
of convergence QMM for Example 5.1 when 9u* < Ae; < As,.
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Table 3.

When du? > As, > Ae;.

First component z;

Table 4. When 9u? > As, > As;.

Second component z,

e1=5% e=5% =57

g1=5"% &=5% pP=5"

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 1.042¢e-2  6.715e-3  4.150e-3 2.396e-3 1.316e-3
1072 1.043e-2  6.720e-3 4.152e-3 2.396e-3 1.316e-3
1073 1.044e-2  6.721e-3  4.152e-3 2.396e-3 1.316e-3
1074 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
10°° 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
10°° 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
1077 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
10°8 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
EN-M 1.044e-2  6.722e-3  4.152e-3 2.396e-3 1.316e-3
oM 0.6352 0.6951 0.7932 0.8645 -

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 1.031e-2  6.641e-3 4.102e-3 2.367e-3 1.298e-3
1072 1.033e-2  6.646e-3  4.104e-3 2.367e-3 1.298e-3
1073 1.033e-2  6.648e-3  4.104e-3 2.367e-3 1.298e-3
10 1.033e-2  6.648e-3  4.105e-3 2.368e-3 1.298e-3
1073 1.033e-2  6.648e-3  4.105e-3 2.368e-3 1.298e-3
1076 1.033e-2  6.648e-3 4.105e-3 2.368e-3 1.298e-3
1077 1.033e-2  6.648e-3 4.105e-3 2.368e-3 1.298e-3
1078 1.033e-2  6.648e-3 4.105e-3 2.368e-3 1.298e-3
ENM 1.033e-2  6.648e-3  4.105e-3 2.368e-3 1.298e-3
oM 0.6358 0.6955 0.7937  0.8674 -

Tables 3 and 4 present the maximum point-wise errors ENY and the corresponding numerical orders
of convergence QMM for Example 5.1 when 9u* > A&, > As;.

Table 5. When Ag; < 9u® < Ass.

First component z;

Table 6. When Ag; < 9u® < As,

e1=5% &=5% =5

Second component 2,

g1=5% &=5" u=5%

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 2.991e-3  1.778e-3  9.969e-4 5.36le-4 2.834e-4
1072 3.020e-3  1.794e-3 1.008e-3 5.433e-4 2.879%e-4
1073 3.029¢-3  1.799e-3  1.012e-3 5.457e-4 2.893e-4
107 3.032e-3  1.800e-3 1.013e-3 5.464e-4 2.898e-4
1073 3.033e-3 1.80le-3 1.013e-3 5.466e-4 2.899e-4
1076 3.033e-3 1.80le-3 1.013e-3 5.467e-4 2.900e-4
1077 3.033e-3  1.80le-3 1.013e-3 5.467e-4 2.900e-4
1078 3.033e-3  1.80le-3 1.013e-3 5.467e-4 2.900e-4
ENM 3.033e-3 1.801le-3 1.013e-3 5.467e-4 2.900e-4
oNM 0.7519 0.8302 0.8898  0.9147 -

Tables 5 and 6 present the maximum point-wise errors

AIMS Mathematics

M 16 32 64 128 256

nIN 32 64 128 256 512

1077 2975¢-3  1.812e-3  1.015e-3 5.455¢-4 2.884e-4
102 3.00d4e-3  1.827e-3  1.026e-3 5.528e-4 2.928e-4
107 3.013e-3  1.832e-3 1.029e-3 5.55le-4 2.943e-4
10*  3.016e-3 1.834e-3 1.031e-3 5.55%-4 2.948e-4
10°  3.017e-3  1.834e-3  1.031e-3 5.56le-4 2.949e-4
10 3.017e-3  1.835¢-3 1.031e-3 5.562¢-4 2.949e-4
107 3.017e-3  1.835e-3 1.03le-3 5.562e-4 2.950¢-4
108 3.017e-3  1.835¢-3 1.03le-3 5.562e-4 2.950e-4
ENM  3017e-3  1835e-3 1.031e-3 5.562e-4 2.950c-4
oYM 07173 0.8317  0.8904 09149 -

ENM and the corresponding numerical orders

of convergence Q"M for Example 5.1 when Ae; < 9u* < Aes.
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Table 7. When 9u? < Ag; < As,.

First component z;

Table 8. When 9u? < Ag; < As,.

e1=5% &=5" =57

Second component z,

e1=5% e=5" F=5"

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 3.462e-3  1.802e-3 8.450e-4 3.84le-4 1.709e-4
1072 3.466e-3  1.806e-3 8.45le-4 3.84le-4 1.709e-4
1073 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
1074 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
107 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
1076 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
1077 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
1078 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
ENM 3.468e-3  1.808e-3 8.45le-4 3.84le-4 1.709e-4
oM 0.9397 1.0972 1.1376 1.1683 -

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 3.518e-3  1.830e-3 8.592e-4 3.905e-4 1.737e-4
1072 3.523e-3  1.835e-3  8.592e-4 3.905e-4 1.737e-4
1073 3.524e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
10 3.524e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
1073 3.525e-3  1.837e-3 8.592e-4 3.905e-4 1.737e-4
1076 3.525e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
1077 3.525e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
1078 3.525e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
ENM 3.525e-3  1.837e-3  8.592e-4 3.905e-4 1.737e-4
oM 0.9403 1.0963 1.1377 1.1687 -

Tables 7 and 8 present the maximum point-wise errors ENY and the corresponding numerical orders
of convergence QMM for Example 5.2 when 9u*> < Ae; < Ae,.

Table 9.

When du? > As, > Ae.

First component z;

Table 10. When du? > As, > As;.

e1=5% &=5% =57

Second component 2,

g=5% &=5% u=5"

M 16 32 64 128 256
n/N 32 64 128 256 512
107! 7.740e-3  5.216e-3 3.212e-3 1.873e-3 1.024e-3
1072 7.741e-3  5.217e-3  3.215e-3 1.874e-3 1.026e-3
1073 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
107 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
1073 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
1076 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
1077 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
1078 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
ENM 7.742e-3  5.218e-3 3.218e-3 1.875e-3 1.028e-3
ovM 0.5692 0.6973 0.7793 0.8671 -

Tables 9 and 10 present the maximum point-wise errors

AIMS Mathematics

M 16 32 64 128 256
nIN 32 64 128 256 512
107" 7.708¢-3  5.186e-3 3.20le-3 1.857e-3 1.016¢-3
102 7.710e-3  5.188¢-3  3.203e-3 1.85%-3 1.018e-3
103 7.710e-3  5.188¢-3  3.203e-3 1.85%-3 1.018e-3
104 7.710e-3  5.188¢-3  3.203e-3 1.85%-3 1.018e-3
10°  7.710e-3  5.188¢-3  3.203e-3 1.85%-3 1.018e-3
10 7.710e-3  5.188¢-3  3.203e-3 1.85%-3 1.018e-3
107 7.710e-3  5.188e-3  3.203e-3 1.85%-3 1.018e-3
108 7.710e-3  5.188e-3  3.203¢-3 1.85%-3 1.018e-3
EMM  7710e-3  5.188e-3 3.203¢-3 1.85%-3 1.018¢-3
oMM 05716 0.6958  0.7849  0.8688 -
ENM and the corresponding numerical orders

of convergence Q"M for Example 5.2 when 9> > Ae, > Ae).
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Table 11. When Ag; < 9u? < As,. Table 12. When Ag; < 9u? < As,.
First component z; Second component z,
g =5% &=5% u=5% e1=5% &=5% =5

M 16 32 64 128 256 M 16 32 64 128 256
n/N 32 64 128 256 512 n/N 32 64 128 256 512
107! 1.921e-3  9.864e-4 4.878e-4 2.38le-4 1.209e-4 107! 7.708e-3  5.186e-3 3.201e-3 1.857e-3 1.016e-3
1072 1.921e-3  9.864e-4 4.879¢e-4 2.397e-4 1.217e-4 1072 7.710e-3  5.188e-3  3.203e-3 1.859e-3 1.018e-3
1073 1.921e-3  9.864e-4 4.879e-4 2.402e-4 1.220e-4 1073 7.710e-3  5.188e-3  3.203e-3 1.859e-3 1.018e-3
107 1.921e-3  9.864e-4 4.879e-4 2.403e-4 1.221le-4 1074 7.710e-3  5.188e-3  3.203e-3 1.859e-3 1.018e-3
1073 1.921e-3  9.864e-4 4.879e-4 2.404e-4 1.221le-4 1073 7.710e-3  5.188e-3  3.203e-3 1.859%e-3 1.018e-3
107° 1.921e-3  9.864e-4 4.879e-4 2.404e-4 1.221le-4 1076 7.710e-3  5.188e-3  3.203e-3 1.859%e-3 1.018e-3
1077 1.921e-3  9.864e-4 4.879e-4 2.404e-4 1.221le-4 1077 7.710e-3  5.188e-3  3.203e-3 1.859%e-3 1.018e-3
1078 1.921e-3  9.864e-4 4.879e-4 2.404e-4 1.221le-4 1078 7.710e-3  5.188e-3  3.203e-3 1.859%e-3 1.018e-3
ENM 1.921e-3  9.864e-4 4.879e-4 2.404e-4 1.221e-4 ENM 7.710e-3  5.188e-3  3.203e-3 1.859e-3 1.018e-3
oNM 0.9616 1.0156 1.0211 0.9774 - oNM 0.5716 0.6958 0.7849 0.8688 -

Tables 11 and 12 present the maximum point-wise errors ENM and the corresponding numerical

orders of convergence Q"M for Example 5.2 when Ae, < 9u® < Aé».

Table 13. For Example 5.1, maximum point-wise errors ENM

OMM when 9u® < Ag| < Aess.

and orders of convergence

First Component z; Second Component z;
(N, M) BS mesh S mesh BS mesh S mesh
ENM oNM ENM QNM ENM oN-M ENM oNM

32,16 5.008 x 107 0.6924 1.232x 1072 0.4402 5.034x 103 0.6934 1.446x 107> 0.6639
64,32 3.099x 1073 0.8629 9.080x 10~° 0.6753 3.113x 1073 0.8635 9.127x107° 0.7844
128,64 1.704 x 103 0.9327 5.686x 107 0.8489 1.711x 103 0.9325 5.299x 107 0.7735
256,128 8.927x 107™* 0.9960 3.157x 107 0.8853 8.965x 10™* 0.9658 3.100x 10> 0.8950
512,256 4.570 x 1074 - 1.745 x 1073 - 4,590 x 107* - 1.667 x 1073 -

Table 14. For Example 5.1, maximum point-wise errors ENM

OMM when 9u® > Ae; > Aeg.

and orders of convergence

First Component z; Second Component z;
(N, M) BS mesh S mesh BS mesh S mesh
ENM oNM ENM oN-M ENM QN-M ENM oNM

32,16 1.044x 1072 0.6352 1.822x 1072 0.3801 1.033x 1072 0.6358 1.805x 107> 0.3790
64,32  6.722x 107 0.6951 1.400x 1072 0.3624 6.648 x 107> 0.6955 1.388 x 1072 0.3647
128,64 4.152x 1073 0.7932 1.089x 1072 0.4839 4.105x 103 0.7937 1.078 x 107> 0.4843
256,128 2.396 x 1073 0.8645 7.787 x 107 0.5494 2368 x 107> 0.8674 7.706 x 107> 0.5506
512,256 1.316 x 1073 - 5.321 x 1073 - 1.298 x 1073 - 5.261 x 1073 -
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Table 15. For Example 5.1, maximum point-wise errors EN-Y

OMM when Ag; < 9u® < Aes.

and orders of convergence

First Component z; Second Component z;
(N, M) BS mesh S mesh BS mesh S mesh
ENM oN-M ENM oN-M ENM oN-M ENM oN-M

32,16 3.033x 107 0.7519 4.538x 1072 0.5785 3.017x 103 0.7173 3.673x 107> 0.5579
64,32  1.801 x 107 0.8302 3.039x 1072 0.6617 1.835x 107 0.8317 2.495x 107> 0.6564
128,64 1.013x107% 0.8898 1.621x 1072 0.7411 1.031x 107 0.8904 1.583x 1072 0.7391
256,128 5.467x107™* 0.9147 9.698 x 107° 0.8211 5.562x 10™* 0.9149 9.484 x 107> 0.8322

512,256 2.900 x 107* - 5.489 x 1073 - 2.950 x 107 - 5.327 x 1073 -

6. Conclusions

In this work, we have considered the efficient numerical resolution of a type of 2D parabolic
singularly perturbed systems with two equations of convection-diffusion type. In the continuous
problem, the parabolic partial differential equation contains small positive parameters on both the
diffusion and the convection terms; moreover, we have assumed that the diffusion parameters can
be distinct, having a very different order of magnitude between them, but the convection parameters
are equal for both equations in the coupled system. Then, it is well known that, in general, different
types of overlapping boundary layers appear on the outflow and the inflow boundary, which depend on
the value and the ratio between the three small parameters. To solve the continuous problem, we have
constructed a method that combines the classical implicit Euler method, to discretize in time on the
most simple mesh (a uniform mesh), together with the well-known upwind finite difference scheme.
It is defined on a special nonuniform mesh of BS type, which is considerably different to the standard
piecewise uniform Shishkin mesh, in order to increase the order of uniform convergence. Therefore,
we have proved that the fully discrete scheme is a uniformly convergent method; moreover, in the
maximum norm, it has first order in both time and spatial variables, which is a better result than those
in the literature, where the order of uniform convergence in space was usually almost first order due the
logarithmic factor, which usually appears in the order of uniform convergence when standard Shishkin
meshes are used. So, the numerical results obtained with our algorithm for some test problems are
better than those in previous works in the literature, without any increase in the computational cost of
the numerical algorithm; from them, we clearly can observe the overlapping layers in the numerical
solution and also the important fact related with the order of uniform convergence. The numerical
results showed are in agreement with the theoretical results proved in the work.

A. Proof of Lemma 4.3

A detailed analysis is presented for the layer function w;, while a similar methodology can be
extended to the remaining components. From the results established in Theorem 2.5, it follows that the
truncation error corresponding to the singular component W, satisfies
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’w, *w o*w
N.N ! !
’ - < C[At‘ + (hi + h; ( + )
1Lg, (Wi =wll i ( i+1) P J7i o2
(93w, 0w,
Tk +k ( ‘ )] Al

( ]+1) x23 H aX% ( )

Ifry =g, 7= 4, and oy = i, the proof can be readily obtained by applying standard techniques on

uniform meshes taking into account that it follows u~'e; < CN7!, u™'e; < CN7!, and u < CN7".
Then, using Theorem 2.5, we have

. T EPB (1) + 857 B0 ) + At
L,y (Wi—w)|<C 1 , : (A.2)
N7 (e e Bl (i) + £ B5(x1m0) + At
Now, define the mesh functions n/7(x1,-) and ¥(x,;) on EN’M by
2hip\&y 1R 2hiu\&; WP
)= C( (—) i (—) )+ CAL, A3
Y1) xp g /NInN X NInN (A.3a)
2hip\ &7 1 P
)= C( (—)—)+CAt, A3b
Yo (x1;) exp 5 JNInN ( )
where . " N "
vt =1 u AN =1 u
R, = ,withv=1+"—, P, = ——, withd=1+"—.
vV -1 Wit v 3 ¥ AV —1 &
Similarly, the mesh function ¥(x; ;) is defined along the x,-direction.
Now, it follows directly that 0 < *R;, and *}; < 1, and in addition,
(=162, + DR = 0, (=&18% , +uD;)B; =0,
DI % < ﬁ eXp (# 1i+1) D%, < ﬁ exp (ﬂ 11+1)
&1 &
Therefore, it is clear that we have
caln“ Bl (x1,) + O Bl(x“, )+ CAt
LNyl <[ v , (A.4a)
CLLZ B (xy, ) + CAL
and similarly, we can prove
. CEE B (xy,1) + CZE Bl (xy; ) + CAL
|Le, Y(xa)l < . (A.4b)
CLLZ B (xy, ) + CAl

Then, defining the mesh function

W= (x1s, X2, 1) = W(x1) +W(x2)) £ (W= wp) (X1, X2, 1),
it is straightforward to see that it holds

\I’i(-xli’ -x2j9 tk) > 09 (-xli’ -x2j9 tk) € FN X (09 T]9
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and
NN =+ N.M
‘Eg,'u T+(xli’ x2ja tk) > 09 (xli» x2j9 tk) € Q )

where the above results follow from (A.2) and (A.4). Hence, by applying Lemma 3.1, we obtain

|(W, = W) (x15 X2, 8l < C(NT' + Ab).

Next, from (4.2), when 7, = %lnN, for the mesh points (xy;, x;,%), N/4 < i < N,0 < j <
u

N, and 0 < k < M, we have

[(Wi, = wi )Gy X2y 8] < Wi, (s X2 s 0]+ Iwg, Gty X5 1] < CBEY (x1) + CBLY (1))
< CBN (1) + CB5N (1) < CN7. (A.5)

Analogously, it follows that

(Wi, = wi)(x15, %25 8)] < CN™. (A.6)

& .. ) )
When 1, = Z InN , there are two distinct cases to consider: 2e; > &; and 2g; < &, respectively. In
M

the case where % <& L&, for NJ8§ <i <N/40< j<N, and 0 < k < M, we observe that

2
Ty < iﬁl In N holds. Hence, we can obtain
u

8I1,u2811(xli_1)+851,u2812(xli—1)+At] ( , 81)
asn; < —|.
& 1B (x1;-1) + At

|LZ}7(W1 = W) (X1, X2, )| < C{ -

In the case &, > 21, for N/8§ <i < N/4,0< j< N, and 0 < k < M, we have
CeT' 12 B (x1,-)) + Ce5' 12 Bl (x1;-y) + CAL
NN ey 1\ALi-1 2 55X
|'£§p (Wi = w)(x, X2, 1)l < '
: Ce;' 1B (x121) + Ce5' 1P Bh(x1-1) + CAt

ForO0<i< % 0<j<N,0<k<M,and 1| < %lnN, the local error satisfies

g B (x1,20) + &' 1P B (x1my) + At
|LYY (W) = wi)(x1, x5, 1)l < C .

&' B (x1;-1) + At

N
For0<i< 3 0<j<N,and 0 < k < M, we define the mesh functions ¥(x;;) and ¥(x,;) by

ps”!

NInN

20, 20,
i) = C(exp (L )81 () + exp (i ) + €
1 2

Ya(x1;) = C( exp (%)BQN()Q;')) +C

(2 — x1;) + CAt, (A.7a)

pe!

NInN

(12 — x1;) + CAt. (A.7b)
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Similarly, the mesh function ¥(x,;) can be defined along the x,-direction. Now, for 3 <i< rE
0<j<N,and 0 < k < M, we consider the functions
20h;u ue!
1N i 1N
(e = (85 + exp (ZE B ) + O - O (AT0)
20hiu\ N ue™!
i :C( (—)B’ ,.)+c — X)) + CAL A7d
Wa(x1;) exp o S (x17) NlnN(T2 X1;) ( )
Analogously, the mesh function ¥(x; ;) can be defined along the x,-direction.
Now, we construct the barrier function
W (x5 X0, 1) = Y1) +W(xa;) = (W = W) (x5, X2, 1)
ForO0<i< %, 0<j<N,and 0 < k < M, it follows from Lemma 3.1 that
+ 2 . _N .
Y (X1, %25, ) 20, forall 0<i< T 0<j<N 0<k<M.
Hence, it follows that
(W, = W) (X1, X2, 1) < CIN'"+Af), 0<i<N/4,0<j<N,0<k<M. (A.8)

From (A.5), (A.6), and (A.8), for the case 7, = % In N, it follows that

T
|(Wz — W) (X1, X2, tk)| < C(N'+ Ap).

Next, the case 7, = 1/4, oy = 1/4, and 7y = 8—719 In N is considered; then, u'e, < CN~! holds for
u

(xX15, %25, 1) € (0,711 X (0,1) X (0,T], h; < Ceu~'. Hence, from the truncation error estimate (4.4), we
obtain

NN 8f1/12811(x15—1) + SEIMZBZZ(XU—O + At
1Lgy (W= wi)(x1;, x5, 6) < C et :
&3 1B (x10) + At
For (x1;, x2, 1) € [71,72] X (0, 1) X (0, T'], from (4.4) and Lemma 2.5, we have

. Ce'1? Bl (x121) + Ce) ' 12 Bh(x1,-1) + CAt
|Lg, (Wi = wp)(xy, xa, 1| < -

Ce, 12 B (x1:-1) + C&y ' 12 B (x1;-y) + CAt
Similarly, for (xy;, X2, &) € [72,1) X (0, 1) X (0, T], from (4.4) and Lemma 2.5, we can obtain
. Ce' 12 B (x1:21) + C&y ' 12 Bl (x1;-y) + CAt
1Lz (Wi = W) (X1, %2, )] < o . :

CSE M Bz(xli—l) + CSE M Bz('xli—l) + CAt
To analyze the layer component, an appropriate barrier function is introduced and defined by

W (g, 20 ) = () + Y(x2)) £ (W, = W) (s oo t) for 0<i<N/8,0<j<N,0<k<M,
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where
29h; 29h,; -1
wmhdka%WMHM #WWMngﬁrmﬂm
& NInN
290h; _1
wxxu>=61ex ( “)BMKIJ)+C' —(ry = x1) + CA,
& Nln
for N/J§ <i<N/4,0< j< N, and0 <k < M, and as
20h; -1
(1) = CB" () + Cexp (= ‘ﬂBm<h> L - x)+ CA,
20h; 8_1
mum=6w4 “ﬁ”<m+cN1N( ) + CA,

and finally, for N/4 <i<N,0< j< N, and0 <k < M, as

20h
() = CBV(xy)) + CN™! exp( )B’N(xl,) +CAL

Yo (x1;) = CBN(x);) + CN™! exp(2 hut )B”V(xh)+CAt
&)

Similarly, the mesh function az(xz ;) can be defined along the x,-direction.
Hence, for all the considered cases, the following estimate is obtained:

|(Wi = wp) (x1, 2, 1) < CINT! + A,

which is the required result.

B. Proof of Lemma 4.4

Ifr, = 3 and 1, = %, the proof follows by applying standard techniques for uniform meshes, while
taking into account that it holds u'e; < CN7!', +fe; < CN™!', and u < CN~'. Therefore, by
utilizing (4.2) and Theorem 2.5, we obtain

83
axz ”‘

82
6x 1

63
(9)6 1

Bzwl
or?

82W,

)

1LY (W, - w»nsc{Az

+ i+ ho)o

)+ e+ k(e

(9)62
<CN7.

1
Further, if 7, = ~~1nN, 7, = -,
ui 4

0,1) X (0, T]U (11,72) X (0, 1) X (0, T1U (1 = 75,1 — ) X (0, 1) x (0, T], then we have

T
and o = > and we assume that (x;;, x2;,%) € (12,1 — 72) X

N~'e)' Bl (x1; ) + At
|£NN(W1 W) (X1 X2 1)l < C 12 '
N~'e, "Bl (x1my) + At
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When (xy;, X2, ) € (0,71] X (0,1) X (0, T] or (xy;, %25, %) € [1 — o1, 1] x (0, 1) x (0, T}, it follows
that

€]
as h; < —).

267! + 87 + At (
u

N,N W < C H
|Le, (Wi—wi)(x1;, X2, 1)l < i
eil+ e, 7+ At

& T2 . \/8_2 .
Ifr, = D InNand 7 = > with - < W& < /&2, then 7, < C+/e; In N. To establish the error

estimate in the region (xy;, X2, &) € [12, 1 —72] X (0, 1) X (0, T'], we construct suitable barrier functions
i ﬂ/J -1 J A -1
BNV (x,,) = (1 +(—)ht) . BV = (1 ; (—)hl) , B.1
) ]_1[ e ) ]_1[ - (B.1)
with BZI’N (x19) = BQN (x19) = 1. After applying Theorem 2.5, we can conclude that it holds
(W, = W) (X155 X2 1] < IWi(x1, X 8] + Wi, %2, 1)) < CB5Y (1) + CB5Y (1) < CN7.

To derive suitable error bounds in the regions (xi;, x2;, %) € (71,72) X (0,1) X (0,T] or (1—-15,1~
o1) X (0,1) x (0, T], using that (h; + h;11) < CN7', (k; + kjs1) < CN7, it follows that
N Ve (P + &)%) + At

SH _ .
N7! \/EZ(MSII + 821/2) + At

|LY (Wi = W) (x5 1)l < C [

Using the suitable barrier functions, then we have

LYY (W) = W)y, X2, 1)) < C(NT' + A,

For (x1;, x2j, ) € (0,71) X (0,1) x (0,T] or (1 — o1, 1) x (0, 1) x (0, T], the relation h; + h;,; < CN~!
holds. Consequently, by applying the same arguments as before, the corresponding bounds follow.

Assuming 7; = %lnN and T, = ‘/% In N, in the regions (xy;, X2;, %) € [12,1 — 2] X (0, 1) X

0,T], (0,71]x(0,1)x(0,T], or (1-o,1)x(0,1)x(0,T], the desired bounds can be derived using
similar arguments as those applied in the corresponding intervals of the previous cases. For the regions
(X135, %2, 1) € (11, 72) X (0, 1) X (0,T] or (1 -1, 1—07)%(0,1)x(0,T], we have h; + h;;y < CN™".
Consequently, we obtain

1LY (W) = w)(x15, X2, 10l < C(N™' + Ap),
which is the required result.
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