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1. Introduction

The present work studies the numerical treatment of a 2D singularly perturbed parabolic system of
weakly coupled equations. The governing model can be expressed in the form

Lε,µz ≡
∂z
∂t
− ε∆z + µ

2∑
i=1

Ai(x1, x2, t)
∂z
∂xi
+ B(x1, x2, t) z = f(x1, x2, t), (x1, x2, t) ∈ Q := Ω × (0,T ],

(1.1a)
with boundary and initial conditions given by

z(x1, x2, t) = q(x1, x2, t), (x1, x2, t) ∈ ∂Ω × [0,T ], z(x1, x2, 0) = ψ(x1, x2, 0), (x1, x2) ∈ Ω,
(1.1b)

where the spatial domain is Ω = Ωx1 × Ωx2 , being Ωx1 = Ωx2 = (0, 1). We denote spatial domain’s
boundary edges as Γ = Γl ∪ Γb ∪ Γr ∪ Γt, where

∂Ω =

Γl =
{
(0, x2) | x2 ∈ [0, 1]

}
, Γb =

{
(x1, 0) | x1 ∈ [0, 1]

}
,

Γr =
{
(1, x2) | x2 ∈ [0, 1]

}
, Γt =

{
(x1, 1) | x1 ∈ [0, 1]

}
.

Since z = q on ∂Ω by (1.1), let qk := q|Γk for k ∈ {l, b, r, t}, where Γl,Γb,Γr,Γt represent the boundary
portions on the left, bottom, right, and top sides of the domain, respectively.

The convection matrices are denoted by Ai = diag
(
ai

11, a
i
22
)
, i = 1, 2 and the reaction matrix by

B =
(
bkl

)
2×2, respectively. Furthermore, the differential operator, the diffusion and convection term, the

source term, and the boundary data are specified as

Lε,µ = (L1
ε1,µ
,L2

ε2,µ
)T , ε = (ε1, ε2)T ,µ = (µ, µ)T , z = (z1, z2)T ,

f = ( f1, f2)T ,qk = (qk1, qk2)T , k = 1, . . . , 4.

We consider the perturbation parameters ε1, ε2 to satisfy 0 < ε1 ≤ ε2 ≪ 1 and 0 < µ ≪ 1. Additionally,
the coefficients of reaction and the convection matrices satisfy the conditions

ai
kk ≥ ϑ > 0, bkk ≥ β > 0, k, i = 1, 2, bkk > |bkl|, bkl ≤ 0, k , l, l, k = 1, 2,

Λ = min
k,l

{bkk − bkl

2ai
11

,
bkk − bkl

2ai
22

}
, for k, l, i = 1, 2, k , l,

(1.2)

for some positive constants ϑ and β. Finally, the entries of Ai, B, and f are sufficiently smooth functions
on the domain Ω, and the boundary data satisfy qk ∈ C3,γ(Γk) for k ∈ {l, b, r, t}, with γ ∈ (0, 1].
Furthermore, these functions are assumed to satisfy the necessary compatibility constraints to ensure
the existence of a classical solution z to the continuous model, such that z ∈ C3,γ(Ω).

Coupled singularly perturbed systems are interesting problems in the applied mathematics area,
because they are good mathematical models of many physical phenomena in different areas such as
transport and dispersion of pollutants in a fluid or porous media, simulation of oil and gas reservoirs,
bio-fluids mechanics, magnetohydrodynamic flow, population dynamics, control theory, quantum
mechanics, or elasticity (see, by instance, the works of Epstein et al [12], Gill-Robertson [14] and
Kan-On-Miura [18], and the books of Pao [27] and Murray [23]). Recent advancements in meshfree

AIMS Mathematics Volume 11, Issue 1, 1820–1856.



1822

and hybrid numerical methods have shown strong potential for solving complex multi-dimensional
problems. Peng et al. [28] demonstrated the efficiency of a hybrid reproducing kernel particle method
for 3D elasticity, while Cheng et al. [4] proposed a hybrid interpolating element-free Galerkin method
that effectively handles convection-dominated diffusion problems. For diffusion-based applications,
Zheng and Cheng [36] introduced an improved element-free Galerkin method that enhances accuracy
in drug-release modeling. These works collectively highlight the effectiveness of meshfree hybrid
approaches as reliable alternatives to traditional numerical schemes.

In particular, magnetohydrodynamic (MHD) flow problems serve as a representative example where
such systems naturally appear. A simplified steady 2D linearized model, coupling a velocity-like scalar
u with a magnetic-like scalar b, can be formulated as−εu∆u + a · ∇u + α u + δ β b = fu(x, y),

−εb∆b + a · ∇b + γ b + δ θ u = fb(x, y),
(1.3)

subject to suitable boundary conditions.
Here, the model components can be interpreted as follows:

• u: velocity perturbation (streamwise component),
• b: magnetic field perturbation (or scalar potential),
• εu = ν: kinematic viscosity,
• εb = η: magnetic diffusivity (with both ν, η ≪ 1, sharp boundary layers such as Hartmann layers

may form),
• a: mean flow advection velocity, and
• δβ, δθ: weak Lorentz force and induction coupling terms (lower-order contributions).

The parameter δ characterizes the degree of coupling. When δ ≪ 1, the Lorentz-force/induction
feedback is relatively weak compared to the dominant advective and diffusive dynamics, thus fitting
into the framework of weakly coupled singular perturbations.

It is well known that the solution of singularly perturbed problems (SPPs) is characterized by the
presence of boundary layers and, in certain cases, internal layers, which can be of different types
(regular, parabolic, internal, ...). Then, the use of classical numerical techniques, defined on uniform
meshes, is not adequate because the numerical solution degrades when the parameters are small unless
the step size of the grid is very small (depending on parameter choice), which is not computationally
efficient. Therefore, to develop efficient methods that yield accurate solutions for all parameters (i.e.,
uniformly convergent methods), it becomes essential to design numerical methods tailored to the
specific class of problems under consideration.

A special type of SPPs appears when small parameters are present for both the diffusion and
the convection terms; this type of problem has had a lot of interest in the last years for linear and
nonlinear singularly perturbed problems (see, for instance, the works of Avijit-Natesan [2], Clavero-
Jorge [7], Govindarao et al [15,16], Jha-Kadalabajoo [17], O’Riordan et al [25,26] and Priyadarshana-
Mohapatra [29–31]). Inside this type of problem, singularly perturbed systems are a particular case;
their theoretical analysis is more difficult due the complex structure of the boundary layers (overlapping
boundary layers) that appear in the solution of the continuous problem. In the literature, there exits
many works where both elliptic and parabolic coupled systems are considered; nevertheless, the most
canalized problem is one where small parameters appear only in the diffusion term (see, for instance,
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the works of Cen [3], Clavero-Jorge [5,6], Kumar-Kumar [19], Liu et al [22], Priyadharshini et al [32]
and Singh-Natesan [33–35]). A different and more difficult case is one where in the equations of
the coupled system, small parameters are present in both the diffusion and the convection terms. For
instance, in [1], a 1D weakly coupled parabolic system of convection-diffusion type was introduced.
In the works by Clavero-Shiromani [10, 11] and Clavero et al [8, 9], a 2D weakly-coupled elliptic
system was studied for different cases. In [24], a 1D weakly coupled elliptic system was considered,
for which the diffusion parameters at each equation are different and the convection parameters are
identical in both equations. This work uses similar methodologies to those in [10], where a 2D elliptic
system with different parameters in the diffusion and equal convection parameters was studied. In
that work, it was proved that the structure of overlapping boundary layers at the inflow and outflow
boundaries of the domain is complex. The use of Shishkin meshes is the most standard in the literature;
the numerical method gives an almost first-order uniformly convergent method due the presence of a
logarithmic factor, which is associated to the definition of the Shishkin mesh. To improve this order
of uniform convergence and to eliminate the logarithmic factor, here we consider a different type of
nonuniform mesh, the BS mesh, which is also very popular in the context of the numerical resolution
of singularly perturbed problems. The construction of this is considerably more difficult than the
Shishkin mesh, and it is not a piecewise uniform mesh; nevertheless, its use gives better numerical
results without increasing the computational cost of the numerical method. Therefore, we aim to
highlight the numerical advantages of using this mesh in comparison with the standard Shishkin mesh.

The structure of the paper is as follows. In Section 2, we analyze the asymptotic behavior of the
exact solution and derive appropriate estimates for its partial derivatives, which depend on the value
and the ratio between the diffusion and convection parameters; these findings provide a foundation
for the later study of uniform convergence. Section 3 focuses on the development of the fully
discrete scheme, including the definition of meshes that reflect the asymptotic characteristics of the
continuous problem. In Section 4, we prove the uniform convergence of the fully discrete scheme,
establishing first-order accuracy with respect to both temporal and spatial discretization. Section 5
presents numerical experiments on representative test problems of type (1.1), validating the theoretical
results and confirming the method’s uniform convergence. Finally, Section 6 concludes the paper with
a summary of the main findings.

Henceforth, we denote by ∥ · ∥ the continuous maximum norm. For a vector-valued function ΨΨΨ =
(Ψ1,Ψ2)T , we define |ΨΨΨ| = (|Ψ1|, |Ψ2|)T . Throughout the subsequent analysis, C represents a generic
positive constant that is independent of the diffusion parameters ε1 and ε2, the convection parameter µ,
and the discretization parameters N and M.

2. Asymptotic analysis of the exact solution to the continuous problem

This section investigates the asymptotic properties of the exact solution, along with its
decomposition into regular and singular parts, and establishes estimates for its partial derivatives
with respect to the diffusion and convection parameters. The approach adopted here is based on the
framework and techniques introduced in [10].

Lemma 2.1 (Maximum principle). Consider the differential operator Lε,µ defined in (1.1), and
suppose that condition (1.2) is satisfied. If v(x1, x2, t) ≥ 000 on ∂Ω×[0,T ]∪Ω×{0} andLε,µv(x1, x2, t) ≥ 000
for all (x1, x2, t) ∈ Q, then it follows that v(x1, x2, t) ≥ 000 for all (x1, x2, t) ∈ Q.
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Lemma 2.2 (Stability result). Let v ∈ C4,2(Q); then, it holds that

|v(x1, x2, t)| ≤
1
ϑ
∥Lε,µv∥ +max{∥v∥∂Ω×[0,T ], ∥v∥Ω×{0}},

where ϑ is the constant defined in (1.2).

Theorem 2.3. Let z denote the exact solution of (1.1). Then, on the domain Q, the derivatives of z
admit the following estimates:∣∣∣∣∣ ∂(l1+l2+l3)z

∂x1
l1∂x2

l2∂tl3

∣∣∣∣∣ ≤ C(ε)(−l1−l2)/2
{
1 +

( µ
√
ε

)(l1+l2)}
, 1 ≤ l1 + l2 + 2l3 ≤ 2, (2.1a)∣∣∣∣∣ ∂(l1+l2+l3)z1

∂x1
l1∂x2

l2∂tl3

∣∣∣∣∣ ≤ C(ε1)(−l1−l2)/2
{
1 +

(
µ
√
ε1

)(l1+l2)}
+Cε2−l1−l2

1 , 3 ≤ l1 + l2 + 2l3 ≤ 4, (2.1b)∣∣∣∣∣ ∂(l1+l2+l3)z2

∂x1
l1∂x2

l2∂tl3

∣∣∣∣∣ ≤ C(ε2)(−l1−l2)/2
{
1 +

(
µ
√
ε2

)(l1+l2)}
+Cε1−(l1+l2)/2

1 ε−1
2 , 3 ≤ l1 + l2 + 2l3 ≤ 4. (2.1c)

Proof. This result follows directly from [20]. □

Following to [10], the exact solution z of problem (1.1) is decomposed into its smooth function r,
boundary layer w, and corner layer components s. Furthermore, the smooth component is characterized
as the solution of the following problem:

Lε,µr(x1, x2, t) = f, ∀(x1, x2, t) ∈ Q, (2.2a)

with boundary and initial conditions given by

r(x1, x2, t) = φ(x1, x2, t), ∀(x1, x2, t) ∈ ∂Ω × [0,T ], r(x1, x2, 0) = ψ(x1, x2), ∀(x1, x2) ∈ Ω,
(2.2b)

where r = φ are appropriate functions (see the posterior analysis) for the regular component, and we
denote by φi the restriction of φ onto Γi, i = l, b, r, t.

The boundary layer component is refined into wk for k ∈ {l, r, b, t}, each of which is determined as
the solution of

Lε,µwk(x1, x2, t) = 000, k = l, r, b, t, ∀(x1, x2, t) ∈ Q, (2.3a)

with boundary and initial conditions given by

wk(x1, x2, t) = (z − r)(x1, x2, t), ∀(x1, x2, t) ∈ Γk × [0,T ], wk(x1, x2, t) = 0, ∀(x1, x2, t) ∈ (Γ\Γk) × [0,T ].
(2.3b)

Finally, the corner layer component is decomposed into sk for k ∈ {lb, br, rt, lt}, each governed by:

Lε,µsk(x1, x2, t) = 000, k = k1k2, (k1, k2) ∈ {(l, b), (b, r), (r, t), (l, t)}, ∀(x1, x2, t) ∈ Q, (2.4a)

with boundary and initial conditions given by

sk(x1, x2, t) = −wk1(x1, x2, t), ∀(x1, x2, t) ∈ Γk1 × [0,T ], sk(x1, x2, t) = −wk2(x1, x2, t), ∀(x1, x2, t) ∈ Γk2 × [0,T ],
(2.4b)

sk(x1, x2, t) = 0, ∀(x1, x2, t) ∈ (Γ\{Γk1 ∪ Γk2}) × [0,T ]. (2.4c)

In [10], the following results were proved.
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Theorem 2.4. Let r, where r = (r1, r2)T , satisfy the problem (2.2). Then,
• If ϑµ2 ≤ Λε1 holds, we have∥∥∥∥∥ ∂l1+l2+l3r1

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ C, 0 ≤ l1 + l2 + 2l3 ≤ 2,
∥∥∥∥∥ ∂l1+l2+l3r1

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ Cε−1/2
1 , l1 + l2 + 2l3 = 3, (2.5a)∥∥∥∥∥ ∂l1+l2+l3r2

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ C, 0 ≤ l1 + l2 + 2l3 ≤ 3. (2.5b)

• If ϑµ2 ≥ Λε2 holds, we have∥∥∥∥∥ ∂l1+l2+l3r
∂x1

l1∂x2
l2∂tl3

∥∥∥∥∥ ≤ C, 0 ≤ l1 + l2 + 2l3 ≤ 2,
∥∥∥∥∥ ∂l1+l2+l3r1

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ Cε−1
1 , l1 + l2 + 2l3 = 3, (2.6a)∥∥∥∥∥ ∂l1+l2+l3r2

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ C, l1 + l2 + 2l3 = 3. (2.6b)

• Finally, if Λε1 < ϑµ
2 < Λε2 holds, we have∥∥∥∥∥ ∂l1+l2+l3r

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ C, 0 ≤ l1 + l2 + 2l3 ≤ 2,
∥∥∥∥∥ ∂l1+l2+l3r1

∂x1
l1∂x2

l2∂tl3

∥∥∥∥∥ ≤ Cε−1
1 , l1 + l2 + 2l3 = 3, (2.7a)∥∥∥∥∥ ∂l1+l2+l3r2

∂x1
l1∂x2

l2tl3

∥∥∥∥∥ ≤ Cε−1/2
2 , l1 + l2 + 2l3 = 3. (2.7b)

To establish the asymptotic behavior of the layer functions, we use the funtions Gl
i(x1), Gr

i (x2), i =
1, 2, defined by

Gl
1(x1) =


e−θ1 x1 , ϑµ2 ≤ Λε1,

e−κx1 , ϑµ2 ≥ Λε2,

e−κx1 , Λε1 < ϑµ
2 < Λε2,

Gr
1(x1) =


e−θ1(1−x1), ϑµ2 ≤ Λε1,

e−λ1(1−x1), ϑµ2 ≥ Λε2,

e−λ1(1−x1), Λε1 < ϑµ
2 < Λε2,

(2.8a)

Gl
2(x1) =


e−θ2 x1 , ϑµ2 ≤ Λε1,

e−κx1 , ϑµ2 ≥ Λε2,

e−θ2 x1 , Λε1 < ϑµ
2 < Λε2,

Gr
2(x1) =


e−θ2(1−x1), ϑµ2 ≤ Λε1,

e−λ2(1−x1), ϑµ2 ≥ Λε2,

e−λ2(1−x1), Λε1 < ϑµ
2 < Λε2,

(2.8b)

where θi =

√
Λϑ

εi
, λi =

ϑµ

εi
, and κ =

Λ

2µ
, for i = 1, 2.

Analogously, we can define Gl
i(x2), Gr

i (x2), Gb
i (x1), Gt

i(x1), Gb
i (x2), Gt

i(x2), i = 1, 2, for the left,
right, top, and bottom boundaries.

Theorem 2.5. Consider wk, k ∈ {l, r, b, t}, with wk = (wk1 ,wk2)
T , which are solutions to problem (2.3).

Then,
• If ϑµ2 ≤ Λε1 holds, we have

|wl1 | ≤ CGl
2(x1), |wl2 | ≤ CGl

2(x1), |wb1 | ≤ CGb
2(x2), |wb2 | ≤ CGb

2(x2),∣∣∣∣∣ ∂i+ j+kwl1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(ε−i/2
1 G

l
1(x1) + ε−i/2

2 G
l
2(x1)),
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∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(ε− j/2
1 Gb

1(x2) + ε− j/2
2 Gb

2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−i/2
2 G

l
2(x1), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (ε−1/2

1 Gl
1(x1) + ε−1/2

2 Gl
2(x1)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε− j/2
2 Gb

2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (ε−1/2

1 Gb
1(x2) + ε−1/2

2 Gb
2(x2)), i + j + 2k = 3,

|wr1 | ≤ CGr
2(x1), |wr2 | ≤ CGr

2(x1), |wt1 | ≤ CGt
2(x2), |wt2 | ≤ CGl

2(x2),∣∣∣∣∣ ∂i+ j+kwr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(ε−i/2
1 G

r
1(x1) + ε−i/2

2 G
r
2(x1)),∣∣∣∣∣ ∂i+ j+kwt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(ε− j/2
1 Gt

1(x2) + ε− j/2
2 Gt

2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−i/2
2 G

r
2(x1), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (ε−1/2

1 Gr
1(x1) + ε−1/2

2 Gr
2(x1)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε− j/2
2 Gt

2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (ε−1/2

1 Gt
1(x2) + ε−1/2

2 Gt
2(x2)) i + j + 2k = 3.

• If ϑµ2 ≥ Λε2 holds, we have

|wl1 | ≤ CGl
2(x1), |wl2 | ≤ CGl

2(x1), |wb1 | ≤ CGb
2(x2), |wb2 | ≤ CGb

2(x2),∣∣∣∣∣ ∂i+ j+kwl1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµi(ε−i
1 G

l
1(x1) + ε−i

2 G
l
2(x1)),

∣∣∣∣∣ ∂i+ j+kwb1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ j(ε− j
1 G

b
1(x2) + ε− j

2 G
b
2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµiε−i
2 G

l
2(x1), 1 ≤ i + j + 2k ≤ 2,

∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C
(
µ3

ε1ε
2
2

Gl
1(x1) +

µ3

ε3
2

Gl
2(x1)

)
, i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ jε
− j
2 G

b
2(x2), 1 ≤ i + j + 2k ≤ 2,

∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C
(
µ3

ε1ε
2
2

Gb
1(x2) +

µ3

ε3
2

Gb
2(x2)

)
, i + j + 2k = 3,

|wr1 | ≤ C, |wr2 | ≤ C, |wt1 | ≤ C, |wt2 | ≤ C,∣∣∣∣∣ ∂i+ j+kwr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i, 1 ≤ i + j + 2k ≤ 2,
∣∣∣∣∣ ∂i+ j+kwr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−3 +Cε−1
1 , i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i, 1 ≤ i + j + 2k ≤ 3,
∣∣∣∣∣ ∂i+ j+kwt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ− j, 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−3 +Cε−1
1 , i + j + 2k = 3,

∣∣∣∣∣ ∂i+ j+kwt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ− j, 1 ≤ i + j + 2k ≤ 3.
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• Finally, if Λε1 < ϑµ
2 < Λε2 holds, we have

|wl1 | ≤ CGl
1(x1), |wl2 | ≤ CGl

2(x1), |wb1 | ≤ CGb
1(x2), |wb2 | ≤ CGb

2(x2),∣∣∣∣∣ ∂i+ j+kwl1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µiε−i
1 G

l
1(x1) + ε−i/2

2 G
l
2(x1)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwb1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ jε
− j
1 G

b
1(x2) + ε− j/2

2 Gb
2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−i/2
2 G

l
2(x1), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwl2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (µε−1

1 G
l
1(x1) + ε−1/2

2 Gl
2(x1)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε− j/2
2 Gb

2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kwb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (µε−1

1 G
b
1(x2) + ε−1/2

2 Gb
2(x2)), i + j + 2k = 3,

|wr1 | ≤ CGr
1(x1), |wr2 | ≤ CGr

2(x1), |wt1 | ≤ CGt
1(x2), |wt2 | ≤ CGl

2(x2),∣∣∣∣∣ ∂i+ j+kwr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ−i + ε−i/2
2 G

r
2(x1)),

∣∣∣∣∣ ∂i+ j+kwt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ− j + ε
− j/2
2 Gt

2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kwr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−i/2
2 G

r
2(x1), 1 ≤ i + j + 2k ≤ 2,

∣∣∣∣∣ ∂i+ j+kwr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (µ−3 + ε−1/2

2 Gr
2(x1)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kwt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε− j/2
2 Gt

2(x2), 1 ≤ i + j + 2k ≤ 2,
∣∣∣∣∣ ∂i+ j+kwt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−1
2 (µ−3 + ε−1/2

2 Gt
2(x2)), i + j + 2k = 3.

Theorem 2.6. Let sn, n = lb, br, rt, lt, where sn = (sn1 , sn2)
T satisfies problem (2.4). Then,

• If ϑµ2 ≤ Λε1 holds, we have

|sk1k2 | ≤ CGk1
2 (x1)Gk2

2 (x2), k1 = l, r, k2 = b, t,∣∣∣∣∣ ∂i+ j+ksk1k21

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(ε(−i− j)/2
1 G

k1
1 (x1)Gk2

1 (x2) + ε(−i− j)/2
2 G

k1
2 (x1)Gk2

2 (x2)), 1 ≤ i + j + 2k ≤ 3, k1 = l, r, k2 = b, t,

∣∣∣∣∣ ∂i+ j+ksk1k22

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε(−i− j)/2
2 G

k1
2 (x1)Gk2

2 (x2), 1 ≤ i + j + 2k ≤ 2, k1 = l, r, k2 = b, t,∣∣∣∣∣ ∂i+ j+ksk1k22

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−2
2 (ε−1

1 G
k1
1 (x1)Gk2

1 (x2) + ε−1
2 G

k1
2 (x2)Gk2

2 (x2)), i + j + 2k = 3, k1 = l, r, k2 = b, t.

• If ϑµ2 ≥ Λε2 holds, we have

|sk1k2 | ≤ CGk1
2 (x1)Gk2

2 (x2), k1 = l, r, k2 = b, t,∣∣∣∣∣ ∂i+ j+kslb1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµi+ j(ε−i− j
1 Gl

1(x1)Gb
1(x2) + ε−i− j

2 Gl
2(x1)Gb

2(x2)), 1 ≤ i + j + 2k ≤ 3,

AIMS Mathematics Volume 11, Issue 1, 1820–1856.



1828∣∣∣∣∣ ∂i+ j+kslb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµi+ j+kε
−i− j
2 Gl

2(x1)Gb
2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kslb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ6ε−4
2 (ε−2

1 G
l
1(x1)Gb

1(x2) + ε−2
2 G

l
2(x1)Gb

2(x2)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+ksbr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i+ j(ε− j
1 G

b
1(x2) + ε− j

2 G
b
2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+ksbr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i+ jε
− j
2 G

b
2(x2), 1 ≤ i + j + 2k ≤ 3,

∣∣∣∣∣ ∂i+ j+ksrt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i− j, 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+ksrt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ−6 + ε−2
1 ), i + j + 2k = 3,

∣∣∣∣∣ ∂i+ j+ksrt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµ−i− j, 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kslt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µi− j(ε−i
1 G

l
1(x1) + ε−i

2 G
l
2(x1))), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kslt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cµi− jε−i
2 G

l
2(x1), 1 ≤ i + j + 2k ≤ 3.

• Finally, if Λε1 < ϑµ
2 < Λε2 holds, we have

|slb1 | ≤ CGl
1(x1)Gb

1(x2), |slb2 | ≤ CGl
2(x1)Gb

2(x2), |sbr1 | ≤ CGr
1(x1)Gb

1(x2),
|sbr2 | ≤ CGr

2(x1)Gb
2(x2), |srt1 | ≤ CGr

1(x1)Gt
1(x2), |srt2 | ≤ CGr

2(x1)Gt
2(x2),

|slt1 | ≤ CGl
1(x1)Gt

1(x2), |slt2 | ≤ CGl
2(x1)Gt

2(x2),∣∣∣∣∣ ∂i+ j+kslb1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µi+ jε
−i− j
1 Gl

1(x1)Gb
1(x2) + ε(−i− j)/2

2 Gl
2(x1)Gb

2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+kslb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε(−i− j)/2
2 Gl

2(x1)Gb
2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kslb2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−2
2 (µ2ε−2

1 G
l
1(x1)Gb

1(x2) + ε−1
2 G

l
2(x1)Gb

2(x2), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+ksbr1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ−i+ jε
− j
1 G

b
1(x2) + ε(−1− j)/2

2 Gr
2(x1)Gb

2(x2), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+ksbr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε(−i− j)/2
2 Gr

2(x1)Gb
2(x2), 0 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+ksbr2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−2
2 (µ−2ε−1

1 G
b
1(x2) + ε−1

2 G
r
2(x1)Gb

2(x2), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+ksrt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µ−i− j + ε
(−i− j)/2
2 Gr

2(x1)Gt
2(x2)), 1 ≤ i + j + 2k ≤ 3,∣∣∣∣∣ ∂i+ j+ksrt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε(−i− j)/2
2 Gr

2(x1)Gt
2(x2), 1 ≤ i + j + 2k ≤ 2,

∣∣∣∣∣ ∂i+ j+ksrt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−2
2 (µ−6 + ε−1

2 G
r
2(x1)Gt

2(x2)), i + j + 2k = 3,∣∣∣∣∣ ∂i+ j+kslt1

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ C(µi− jε−i
1 G

l
1(x1) + ε(−i− j)/2

2 Gl
2(x1)Gt

2(x2)), 1 ≤ i + j + 2k ≤ 3,
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1829∣∣∣∣∣ ∂i+ j+kslt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε(−i− j)/2
2 Gl

2(x1)Gt
2(x2), 1 ≤ i + j + 2k ≤ 2,∣∣∣∣∣ ∂i+ j+kslt2

∂x1
i∂x2

j∂tk

∣∣∣∣∣ ≤ Cε−2
2 (µ−2ε−1

1 G
l
1(x1) + ε−1

2 G
l
2(x1)Gt

2(x2)), i + j + 2k = 3.

3. Discretization of the continuous problem

3.1. The spatial discretization

In this section, we propose a numerical scheme to solve problem (1.1). The approach begins by
constructing a specially designed nonuniform mesh of the BS type tailored to the behavior of the exact
solution. Once the mesh is defined, we formulate a finite difference method (FDM) over the domain
Q

N,M
= {(x1i, x2 j, tn) : 0 ≤ i, j ≤ N, 0 ≤ n ≤ M}, where N and M denote the spatial and temporal

discretization parameters, respectively.

The BS mesh

Following [21], the first step is the construction of the spatial mesh Ω
N
= {x1i, x2 j) : 0 ≤ i, j ≤ N},

where, for simplicity, the same number of grid points is considered in both the x1 and x2 directions.
This mesh is formulated as the tensor product of appropriately designed 1D BS meshes, as depicted in
Figures 1.

(a) BS mesh for Case 1; (b) BS mesh for Case 2; (c) BS mesh for Case 3.

Figure 1. BS mesh structures for Cases 1, 2, and 3.

We define the mesh points for the x1-direction as {x1i}
N
i=0, and analogously, the mesh points for the

x2-direction as {x2 j}
N
j=0. To do that, we distinguish several cases that depend on the value and the ratio

between the diffusion and the convection parameters.
Case 1: If ϑµ2 ≤ Λε1, then we define the non uniform BS mesh by decomposing the unit interval
Ωx1 := [0, 1] into five subintervals of the form

Ωx1 := [0, 1] = [0, τ1] ∪ [τ1, τ2] ∪ [τ2, 1 − τ2] ∪ [1 − τ2, 1 − τ1] ∪ [1 − τ1, 1],

with the transition points τ1, τ2 defined by

τ1 = min
{
τ2

2
, 2

√
ε1

Λϑ
ln N

}
, τ2 = min

{1
4
, 2

√
ε2

Λϑ
ln N

}
. (3.1a)
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Each equal number of subintervals [0, τ1], [τ1, τ2], [1 − τ2, 1 − τ1], [1 − τ1, 1] are distributed by mesh-
generating functions that are continuous, strictly increasing, and piecewise continuously differentiable,
defined as follows:

Φ(s) =

Φl(s) =

− ln
(
1 − 8(1 − N−1)s

)
, s ∈

[
0, 1

8

]
,

− ln
(
1 − 8(1 − N−1)(s − 1

8 )
)
, s ∈

[
1
8 ,

1
4

]
,
Φr(s) =

 ln
(
1 − 8(1 − N−1)( 7

8 − s)
)
, s ∈

[
3
4 ,

7
8

]
,

ln
(
1 − 8(1 − N−1)(1 − s)

)
, s ∈

[
7
8 , 1

]
.

In the remaining central subinterval [τ2, 1−τ2], the mesh is uniformly spaced with N/2+1 grid points.
Then, the grid points along the x1-direction are defined as

x1i =



2
√

ϵ1
Λϑ
Φl(si), if i = 0, . . . ,N/8,

τ1 + 2(
√

ϵ2
Λϑ
−

√
ϵ1
Λϑ

)Φl(si), if i = N/8 + 1, . . . ,N/4,

τ2 +
2
N (1 − 2τ2)(i − N

4 ), if i = N/4 + 1, . . . , 3N/4,

1 − τ1 + 2
(√

ϵ2
Λϑ
−

√
ϵ1
Λϑ

)
Φr(si), if i = 3N/4 + 1, . . . , 7N/8,

1 + 2
√

ϵ1
Λϑ
Φr(si), if i = 7N/8 + 1, . . . ,N,

where si =
i
N .

Case 2: If ϑµ2 ≥ Λε2, then we construct the non uniform BS mesh by decomposing the unit intervals
Ωx1 into four subintervals of the form

Ωx1 := [0, 1] = [0, σ] ∪ [σ, 1 − τ2] ∪ [1 − τ2, 1 − τ1] ∪ [1 − τ1, 1],

with the transition points τ1, τ2, and σ defined as

τ1 = min
{
τ2

2
,

2ε1

µϑ
ln N

}
, τ2 = min

{1
4
,

2ε2

µϑ
ln N

}
, σ = min

{1
4
,

2µ
Λ

ln N
}
. (3.2a)

The subintervals [0, σ], [1−τ2, 1−τ1], and [1−τ1, 1] are each partitioned into an equal number of mesh
intervals using piecewise continuously differentiable, monotonic mesh-generating functions Φl(s) and
Φr(s), defined as follows:

Φ(s) =


Φl(s) = − ln

(
1 − 4(1 − N−1)s

)
, s ∈

[
0, 1

4

]
,

Φr(s) =

 ln
(
1 − 8(1 − N−1)

(
7
8 − s

))
, s ∈

[
3
4 ,

7
8

]
,

ln
(
1 − 8(1 − N−1)(1 − s)

)
, s ∈

[
7
8 , 1

]
.

In the remaining central subinterval [σ, 1 − τ2], the mesh is taken to be uniform, consisting of N/2 + 1
equally spatial grid points. Then, the grid points along the x1-direction are defined as

x1i =



2 µ

ϑ
Φl(si), if i = 0, . . . ,N/4,

σ + 2
N (1 − τ2 − σ)(i − N

4 ), if i = N/4 + 1, . . . , 3N/4,

1 − τ1 + (2ε2
µϑ
−

2ε1
µϑ

)Φr(si), if i = 3N/4 + 1, . . . , 7N/8,

1 + 2ε1
µϑ
Φr(si), if i = 7N/8 + 1, . . . ,N,
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where si =
i
N .

Case 3: If Λε1 < ϑµ2 < Λε2, then we construct the non uniform BS mesh by decomposing the unit
interval Ωx1 := [0, 1] into five subintervals of the form

Ωx1 := [0, 1] = [0, σ] ∪ [σ, τ2] ∪ [τ2, 1 − τ2] ∪ [1 − τ2, 1 − τ1] ∪ [1 − τ1, 1],

where the transition points τi, i = 1, 2 and σ now are defined as

τ1 = min
{
τ2

2
,

2ε1

µϑ
ln N

}
, τ2 = min

{1
4
, 2

√
ε2

Λϑ
ln N

}
, σ = min

{
τ2

2
,

2µ
Λ

ln N
}
. (3.3a)

The subintervals [0, σ], [σ, τ2], [1−τ2, 1−τ1], and [1−τ1, 1] are each partitioned into an equal number
of mesh intervals using the piecewise continuously differentiable functions Φl(s) and Φr(s), defined as
follows:

Φ(s) =


Φl(s) =

− ln
(
1 − 8(1 − N−1)s

)
, s ∈

[
0, 1

8

]
,

− ln
(
1 − 8(1 − N−1)(s − 1

8 )
)
, s ∈

[
1
8 ,

1
4

]
,

Φr(s) =

 ln
(
1 − 8(1 − N−1)

(
7
8 − s

))
, s ∈

[
3
4 ,

7
8

]
,

ln
(
1 − 8(1 − N−1)(1 − s)

)
, s ∈

[
7
8 , 1

]
.

In the remaining interior subinterval [τ2, 1 − τ2], a uniform mesh consisting of N/2 + 1 equally spaced
grid points is employed. Then, the grid points along the x1-axis are given by

x1i =



2 µ

ϑ
Φl(si), if i = 0, . . . ,N/8,

σ + 2(
√

ϵ2
Λϑ
−

µ

ϑ
)Φl(si), if i = N/8 + 1, . . . ,N/4,

τ2 +
2
N (1 − 2τ2)(i − N

4 ), if i = N/4 + 1, . . . , 3N/4,

1 − τ1 + 2(
√

ε2
Λϑ
−

ε1
µϑ

)Φr(si), if i = 3N/4 + 1, . . . , 7N/8,

1 + 2 ε1
µϑ
Φr(si), if i = 7N/8 + 1, . . . ,N,

where si =
i
N . For each one of the cases, the step sizes are defined as hi = x1i− x1i−1, i = 1, 2, ...,N, k j =

x2 j − x2 j−1, j = 1, 2, ...,N, h̄i = hi + hi+1, i = 1, 2, ...,N − 1, k̄ j = k j + k j+1, j = 1, 2, ...,N − 1.

The boundaries of the spatial domain Ω
N

are denoted by

ΓN
l =

{
(0, x2 j)

∣∣∣ 0 ≤ j ≤ N
}
,ΓN

b =

{
(x1i, 0)

∣∣∣ 0 ≤ i ≤ N
}
,

ΓN
r =

{
(1, x2 j)

∣∣∣ 0 ≤ j ≤ N
}
,ΓN

t =

{
(x1i, 1)

∣∣∣ 0 ≤ i ≤ N
}
,

and ΓN = ΓN
l ∪ Γ

N
b ∪ Γ

N
r ∪ Γ

N
t .

3.2. Time discretization and the FDM

The second step in constructing the fully discrete scheme is the time discretization. For this, the
time interval [0,T ] is divided into M equal parts, giving the equidistant mes TM

t = {tn = n∆t, n =
0, ...,M, t0 = 0, tM = T,∆t = T/M}, where M is the number of time steps used in the discretization.
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On an arbitrary mesh Q
N,M

, the discretization of (1.1) is carried out using the implicit Euler method
in time combined with the classical upwind finite difference scheme in space, which is formulated as
follows:

L
N,N
ε,µ Z ≡ D−t Z − ε(δ2

x1 x1
+ δ2

x2 x2
)Z + µ(A1(x1i, x2 j, tk)D−x1

+ A2(x1i, x2 j, tk)D−x2
)Z

+B(x1i, x2 j, tk)Z⃗ = f(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ QN,M,

Z(x1i, x2 j, tk) = q(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ ∂ΩN × TM
t ,

Z(x1i, x2 j, tk) = ψ(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ ΩN × {t0},

for k = 1, ...,M.
(3.4)

As it is usual, the discrete differential operators D−x1
, D−x2

, D−t , δ
2
x1 x1

, and δ2
x2 x2

are defined by

D+x1
Z(x1i, x2 j, tk) =

Z(x1i, x2 j, tk) − Z(x1i, x2 j, tk)
hi+1

, D−x1
Z(x1i, x2 j, tk) =

Z(x1i, x2 j, tk) − Z(x1i, x2 j, tk)
hi

,

D+x2
Z(x1i, x2 j, tk) =

Z(x1i, x2 j, tk) − Z(x1i, x2 j, tk)
k j+1

, D−x2
Z(x1i, x2 j, tk) =

Z(x1i, x2 j, tk) − Z(x1i, x2 j, tk)
k j

,

D−t Z(x1i, x2 j, tk) =
Z(x1i, x2 j, tk) − Z(x1i, x2 j, tk)

∆t
,

δ2
x1 x1

Z(x1i, x2 j, tk) =
2
h̄i

(D+x1
Z(x1i, x2 j, tk) − D−x2

Z(x1i, x2 j, tk)),

δ2
x2 x2

Z(x1i, x2 j, tk) =
2
k̄ j

(D+x2
Z(x1i, x2 j, tk) − D−x2

Z(x1i, x2 j, tk)),

for i, j = 1, 2, . . . ,N − 1.

Assumption 1. We assume that for the case ϑµ2 ≥ Λε2, it holds that ε2/µ < N−1 and µ < N−1. For
the case ϑµ2 ≤ Λε1, it holds that

√
ε2 < N−1, and for the case Λε1 < ϑµ2 < Λε2, it holds that

ε1/µ < N−1, µ < N−1, and
√
ε2 < N−1 as generally is the case in practice.

Assumption 2. The mesh-generating functions are assumed to be piecewise differentiable and to
satisfy

max
s∈[0,1/4]

Φl
′

(s) ≤ CN and max
s∈[3/4,1]

Φr
′

(s) ≤ CN,

or equivalently,

max
s∈[0,1/4]

|Φl
′

|

Φl
≤ CN and max

s∈[3/4,1]

|Φr
′

|

Φr
≤ CN.

Assumption 3. Finally, we also assume that it holds∫ 1/4

0
{Φ

′

l(s)}2ds ≤ CN and
∫ 1

3/4
{Φ

′

r(s)}2ds ≤ CN.

Using Assumption 2, it follows that hi ≤ CN−1, k j ≤ CN−1 for 1 ≤ i, j ≤ N.

Analogous to the continuous problem, a discrete maximum principle can be established for the
discrete operator LN,N

ε,µ .
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Lemma 3.1 (Discrete maximum principle). Let LN,N
ε,µ⃗

be the discrete operator given in (3.4). If
v(x1i, x2 j, tk) ≥ 000 on ΓN × TM

t ∪ Ω
N × {0} and LN,N

ε,µ v(x1i, x2 j, tk) ≥ 000, ∀(x1i, x2 j, tk) ∈ QN,M, then

v(x1i, x2 j, tk) ≥ 000, ∀(x1i, x2 j, tk) ∈ Q
N,M

.

Proof. This lemma can be proved by following the ideas presented in [7, 10]. □

Lemma 3.2 (Discrete stability result). Let v(x1i, x2 j, tk) be the solution of (3.4). Then, it holds that

∥v(x1i, x2 j, tk)∥QN,M ≤
1
ϑ
∥L

N,N
ε,µ v∥QN,M +max

{
∥v∥∂ΩN×TM

t
, ∥v∥ΩN×{0}

}
.

Proof. This result follows directly from Lemma 3.1. □

4. Uniform convergence of the fully discrete scheme

This section gives a rigorous error analysis of the proposed numerical scheme and establishes its
uniform convergence. To do that, first we decompose the numerical solution into its regular, layer,
and corner components, following an approach analogous to that employed for the corresponding
continuous solution; then, we have Z(x1i, x2 j, tk) = R(x1i, x2 j, tk)+W(x1i, x2 j, tk)+ S(x1i, x2 j, tk), where

W(x1i, x2 j, tk) =Wl(x1i, x2 j, tk) +Wr(x1i, x2 j, tk) +Wb(x1i, x2 j, tk) +Wt(x1i, x2 j, tk),
S(x1i, x2 j, tk) = Slb(x1i, x2 j, tk) + Sbr(x1i, x2 j, tk) + Srt(x1i, x2 j, tk) + Slt(x1i, x2 j, tk).

Furthermore, the regular component R(x1i, x2 j, tk) is defined as the solution of the associated problemLN,N
ε,µ R(x1i, x2 j, tk) = f(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ QN,M,

R(x1i, x2 j, tk) = r(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ ∂QN,M.
(4.1)

Similarly, the layer component W(x1i, x2 j, tk) and the corner component S(x1i, x2 j, tk) are introduced as
the solutions of the following numerical problems:LN,N

ε,µ W(x1i, x2 j, tk) = 000, ∀(x1i, x2 j, tk) ∈ QN,M,

W(x1i, x2 j, tk) = w(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ ∂QN,M,
(4.2)

for the layer component, andLN,N
ε,µ S(x1i, x2 j, tk) = 000, ∀(x1i, x2 j, tk) ∈ QN,M,

S(x1i, x2 j, tk) = s(x1i, x2 j, tk), ∀(x1i, x2 j, tk) ∈ ∂QN,M,
(4.3)

for the corner component, respectively.
To bound the error estimates corresponding to the boundary and corner layer components, we utilize

an argument that relies on appropriately constructed barrier functions; these functions are defined by

B
l,N
1 (x1i) =

∏i
ι=1

(
1 +

ϑµhι
2ε1

)−1

, B
l,N
2 (x1i) =

∏i
ι=1

(
1 +

ϑµhι
2ε2

)−1

, ϑµ2 ≤ Λε1,

B
l,N
1 (x1i) =

∏i
ι=1

(
1 +

ϑµhι
2ε1

)−1

, B
l,N
2 (x1i) =

∏i
ι=1

(
1 +

ϑµhι
2ε2

)−1

, ϑµ2 ≥ Λε2,

B
l,N
1 (x1i) =

∏i
ι=1

(
1 +

(
ϑµ

2ε1

)
hι
)−1

, B
l,N
2 (x1i) =

∏i
ι=1

(
1 +

√(
Λϑ

ε2

)
hι
)−1

, Λε1 < ϑµ
2 < Λε2,

with Bl,N
1 (x10) = Bl,N

2 (x10) = 1.
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Lemma 4.1. Let r(x1, x2, t) denote the solution of (2.2) and R(x1i, x2 j, tk) represent the corresponding
discrete solution of (4.1). Then, for each of the following cases, ϑµ2 ≤ Λε1, ϑµ2 ≥ Λε2, and Λε1 <

ϑµ2 < Λε2, it holds that

|R(x1i, x2 j, tk) − r(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Proof. By applying Taylor series, it can be readily shown that the truncation error corresponding to the
smooth component (4.1) satisfies

|L
N,N
ε,µ (R − r)(x1i, x2 j, tk)| ≤ C

[
∆t

∥∥∥∥∥∂2r
∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥ ∂3r
∂x1

3

∥∥∥∥∥ + µ∥∥∥∥∥ ∂2r
∂x1

2

∥∥∥∥∥)
+ (k j + k j+1)

(
ε

∥∥∥∥∥ ∂3r
∂x2

3

∥∥∥∥∥ + µ∥∥∥∥∥ ∂2r
∂x2

2

∥∥∥∥∥)]. (4.4)

Now, using the Assumptions 1, 2, and 3 and the derivative bounds of r provided in Theorem (2.4), it
follows that

|L
N,N
ε,µ (R − r)(x1i, x2 j, tk)| ≤



CN−1(
√
ε1 + µ) +C∆t

CN−1(ε2 + µ) +C∆t

 , if ϑµ2 ≤ Λε1,

CN−1(1 + µ) +C∆t

CN−1(ε2 + µ) +C∆t

 , if ϑµ2 ≥ Λε2,

CN−1(1 + µ) +C∆t

CN−1(
√
ε2) +C∆t

 , if Λε1 < ϑµ
2 < Λε2.

By applying Lemma 3.1 to C(N−1 + ∆t) ± (R − r)(x1i, x2 j, tk) over the domain ΩN , it follows directly
that, for all considered cases, it holds that

|(R − r)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), (4.5)

which is the required result. □

Lemma 4.2. Let wn and Wn denote the exact and discrete solutions of (2.3) and (4.2), respectively.
For ϑµ2 ≤ Λε1, the error of the boundary layer functions satisfies

|Wn(x1i, x2 j, tk) − wn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), n = l, b, r, t.

Proof. From the Theorem (2.5), it follows that

|wl(x1i, x2 j, tk)| ≤ CGl
2(x1i).

So, for all (x1i, x2 j, tk) ∈ [τ2, 1) × (0, 1) × (0,T ], we have

|wl(x1i, x2 j, tk)| ≤ CGl
2(x1i) ≤ CGl

2(x1N/4) = Ce−2 log N = CN−2. (4.6)

Also, it is straightforward to see that

|Wl(x1i, x2 j, tk)| ≤ CBl,N
1 (x1i) ≤ CBl,N

1 (x1N/4), ∀i ≥ N/4, 1 ≤ j ≤ N, 1 ≤ k ≤ M.
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Using the methodology given in ( [17], Section 4.2), we can obtain

|Wl(x1i, x2 j, tk)| ≤ CN−1, ∀ i ≥ N/4, 1 ≤ j ≤ N, 1 ≤ k ≤ M.

Hence, for all (x1i, x2 j, tk) ∈ [τ2, 1) × (0, 1) × (0,T ], from (4.6) and the above equation, we have

|(Wl − wl)(x1i, x2 j, tk)| ≤ |Wl| + |wl| ≤ CN−1. (4.7)

To obtain suitable error bounds in the regions 0 < x1i < τ1, τ1 < x1i < τ2, by using (4.2), Theorem
2.5, (hi + hi+1) ≤ N−1, and (k j + k j+1) ≤ N−1, we have

∥L
N,N
ε,µ (Wl − wl)∥ ≤ C

[
∆t

∥∥∥∥∥∂2wl

∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥∂3wl

∂x1
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2wl

∂x1
2

∥∥∥∥∥) + (k j + k j+1)
(
ε

∥∥∥∥∥∂3wl

∂x2
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2w⃗l

∂x2
2

∥∥∥∥∥)]
≤ C

N−1(ε−1/2
1 Gl

1(x1i−1) + ε−1/2
2 Gl

2(x1i−1)) + ∆t

N−1(ε−1/2
1 Gl

1(x1i−1) + ε−1/2
2 Gl

2(x1i−1)) + ∆t

 .
Choosing now the barrier function for the wl as

Φ±(x1i, x2 j, tk) =

C
[ N−1
√
ε1 ln N (τ2 − x1i) + ∆t

]
± (Wl1 − wl1)(x1i, x2 j, tk)

C
[ N−1
√
ε2 ln N (τ2 − x1i) + ∆t

]
± (Wl2 − wl2)(x1i, x2 j, tk)

 ,
by Lemma 3.1, we obtain the bound

|(Wl − wl)(x1i, x2 j, tk)| ≤C


[ N−1
√
ε1 ln N (τ2 − x1i) + ∆t

]
[ N−1
√
ε2 ln N (τ2 − x1i) + ∆t

]


≤C


[ N−1τ2√

ε1 ln N + ∆t
]

[ N−1τ2√
ε2 ln N + ∆t

]
 ,

and therefore
|(Wl − wl)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Similarly, error bounds can also be shown for the other layer components wr, ,wb, and wt when
ϑµ2 ≤ Λε1. □

Lemma 4.3. Let wn and Wn be the exact and discrete solutions of (2.3) and (4.2), respectively. For
ϑµ2 ≥ Λε2, it holds that

|Wn(x1i, x2 j, tk) − wn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), n = l, b, r, t.

Proof. The proof is provided in A. □

In the same way, similar bounds can be established for the errors associated with the other layer
components wr, wb, and wt, corresponding to the case ϑµ2 > Λε2.
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Lemma 4.4. For Λε1 < ϑµ2 < Λε2, the exact solution wn of (2.3) and its discrete component Wn of
(4.2) satisfy the following estimate:

|Wn(x1i, x2 j, tk) − wn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), n = l, b, r, t.

Proof. The proof is given in B. □

The final step is devoted to the error analysis of the corner components. As before, we focus on
the corner component slb, while similar arguments can be applied to the remaining corner components.
Once again, it is necessary to consider the following three distinct cases ϑµ2 ≤ Λε1, ϑµ2 ≥ Λε2, and
Λε1 < ϑµ

2 < Λε2.

Lemma 4.5. For n = lb, br, rt, lt, let sn and Sn denote the exact and numerical solutions of (2.4) and
(4.3), respectively. Then, for ϑµ2 ≥ Λε2, the following estimate holds:

|Sn(x1i, x2 j, tk) − sn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Proof. According to the results established in Theorem 2.6, the truncation error associated with the
corner component slb satisfies

∥L
N,N
ε,µ (Slb − slb)∥ ≤ C

[
∆t

∥∥∥∥∥∂2slb

∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥∂3⃗slb

∂x1
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2⃗slb

∂x1
2

∥∥∥∥∥)
+ (k j + k j+1)

(
ε

∥∥∥∥∥∂3slb

∂x2
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2slb

∂x2
2

∥∥∥∥∥)]. (4.8)

If τ1 = 1/8, τ2 = 1/4, and σ1 = 1/4, the proof can be obtained directly by applying standard techniques
on uniform meshes, using that µ−1ε1 ≤ CN−1, µ−1ε2 ≤ CN−1, and µ ≤ CN−1. Then, by applying
Theorem 2.6 to (4.8), we obtain

|L
N,N
ε,µ (Slb − slb)| ≤ C

 µ3ε−2
1 (Bl

1(x1i−1)Bb
1(x2 j−1)) + µ3ε−2

2 (Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

µ3ε−1
1 ε
−1
2 (Bl

1(x1i−1)Bb
1(x2 j−1)) + µ3ε−2

2 (Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

 . (4.9)

Now, considering the barrier function from Lemma 4.3 (see (A.3)) in Ω
N

and applying Lemma 3.1, we
deduce that

|(Slb − slb)(x1i, x2 j, tk)| ≤ C
(
µ + ∆t
µ + ∆t

)
≤ C(N−1 + ∆t).

Next, from (4.3), for the case τ2 =
ε2

µϑ
ln N, considering the mesh points (x1i, x2 j, tk) with (0 < i, j <

N) \ (0 < i, j < N/4), 0 ≤ k ≤ M, we obtain

|(S lb1 − slb1)(x1i, x2 j, tk)| ≤ |S lb1(x1i, x2 j, tk)| + |slb1(x1i, x2 j, tk)| ≤ C min(Bl,N
2 (x1i),B

b,N
2 (x2 j))

≤ C min(Bl,N
2 (τ2),Bb,N

2 (τ2)) ≤ CN−1. (4.10)

Similarly, we can deduce that it holds

|(S lb2 − slb2)(x1i, x2 j, tk)| ≤ CN−1. (4.11)
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When τ2 =
ε2

µϑ
ln N, there are two different cases: 2ε1 ≥ ε2 and 2ε1 < ε2, respectively. In the case

ε2

2
≤ ε1 ≤ ε2, for N/8 ≤ i ≤ N/4, 0 ≤ j ≤ N/4, 0 ≤ k ≤ M, τ2 ≤

2ε1

µϑ
ln N. Hence, we obtain

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) + ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

 .
In the case ε2 > 2ε1, for N/8 ≤ i ≤ N/4, 0 ≤ j ≤ N/4, 0 ≤ k ≤ M, we have

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

Cε−1
2 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

 .
For 0 ≤ i ≤ N/8, 0 ≤ j ≤ N/4, 0 ≤ k ≤ M, τ1 ≤

ε1

ϑ
ln N, it follows that the local error satisfies

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) + ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

 .
For 0 ≤ i ≤ N

4 , 0 ≤ j ≤ N
4 , and 0 ≤ k ≤ M, by employing the barrier functionsψψψ(x1i) andψψψ(x2 j) defined

in Lemma 4.3 (see (A.7)), we obtain

|(Slb − slb)(x1i, x2 j, tk)| ≤ CN−1 +C∆t, 0 ≤ i ≤ N/4, 0 ≤ j ≤ N/4, 0 ≤ k ≤ M. (4.12)

From (4.10), (4.11), and (4.12), for τ2 =
ε2

µϑ
ln N, it follows that

|(Slb − slb)(x1i, x2 j, tk)| ≤ CN−1 +C∆t.

Next, we consider the case where τ2 = 1/4, σ1 = 1/4, and τ1 =
ε1

µϑ
ln N. Under these assumptions, it

holds that µε−1
2 ≤ CN−1. For (x1i, x2 j, tk) ∈ (0, τ1] × (0, τ2] × (0,T ], the mesh sizes satisfy hi, k j ≤

ε1

µ
.

Therefore, using the truncation error bound from (4.8), we deduce

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) + ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

ε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) + ∆t

 .
For (x1i, x2 j, tk) ∈ [τ1, τ2] × (0, τ2] × (0,T ], applying (4.8) with Lemma 2.6, it follows that

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

 .
Similarly, for (x1i, x2 j, tk) ∈ [τ2, 1) × (0, τ2] × (0,T ], from (4.8) and Lemma 2.6, we can deduce

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2(Bl
1(x1i−1)Bb

1(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +Cε−1
2 µ

2(Bl
2(x1i−1)Bb

2(x2 j−1)) +C∆t

 .
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By employing an appropriate barrier function for the corner layer component over the domain 0 ≤ i ≤
N, 0 ≤ j ≤ N, 0 ≤ k ≤ M, we deduce that, for each component,

|(Slb − slb)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t),

which is the required result. □

In a similar manner, analogous bounds can be established for the errors associated with the
remaining corner layer components sbr, srt, and slt in the case where ϑµ2 > Λε2. Next, we proceed
with the analysis of the second case, namely when ϑµ2 ≤ Λε1.

Lemma 4.6. Let sn and Sn be the exact and numerical solutions of (2.4) and (4.3), respectively, for
n = lb, br, rt, lt. For ϑµ2 ≤ Λε1, we have

|Sn(x1i, x2 j, tk) − sn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Proof. If τ1 = 1/8 and τ2 = 1/4, the proof can be carried out by applying standard techniques on
uniform meshes, taking into account that

√
ε1 ≤ CN−1 and

√
ε2 ≤ CN−1. Therefore, by employing

(4.3) along with Theorem 2.6, we obtain

∥L
N,N
ε,µ (Slb − slb)∥ ≤ C

[
∆t

∥∥∥∥∥∂2slb

∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥∂3slb

∂x1
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2slb

∂x1
2

∥∥∥∥∥) + (k j + k j+1)
(
ε

∥∥∥∥∥∂3slb

∂x2
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2slb

∂x2
2

∥∥∥∥∥)]
≤ CN−1.

Further, if τ1 =

√
ε1

Λϑ
ln N, τ2 = 1/4, and we assume that (x1i, x2 j, tk) ∈ (τ2, 1 − τ2) × (0, 1) × (0,T ] ∪

(τ1, τ2) × (0, 1) × (0,T ] ∪ (0, τ1) × (τ2, 1) × (0,T ] ∪ (1 − τ2, 1 − τ1) × (0, 1) × (0,T ], then we have

|L
N,N
ε,µ (S⃗lb − slb)(x1i, x2 j, tk)| ≤ C

ε−1/2
2 (Bl

2(x1i−1)Bb
2(x2 j−1)) + ∆t

ε−1/2
2 (Bl

2(x1i−1)Bb
2(x2 j−1)) + ∆t

 .
When (x1i, x2 j, tk) ∈ (0, τ1] × (0, τ2] × (0,T ] or [1 − τ1, 1) × (0, τ2] × (0,T ], it holds that

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C

ε−1/2
1 + ε−1/2

2 + ∆t

ε−1/2
2 + ε−1/2

2 + ∆t

 .
If τ2 =

√
ε2

Λϑ
ln N and τ1 =

τ2

2
,

√
ε2

2
≤
√
ε1 <

√
ε2, hence τ2 ≤ C

√
ε1 ln N.

By employing the barrier function from Lemma 4.2, the error estimate for the regions (x1i, x2 j, tk) ∈
[τ2, 1 − τ2] × (0, 1) × (0,T ], (0, τ1] × [τ2, 1) × (0,T ] and [1 − τ2, 1) × [τ2, 1) × (0,T ] can be established
as follows:

|(Slb − slb)(x1i, x2 j, tk)| ≤ |Slb(x1i, x2 j, tk)| + |slb(x1i, x2 j, tk)|

≤ C min{Bl,N
2 (τ2),Bb,N

2 (τ2)} ≤ CN−1.
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In order to obtain suitable bounds for the error in the region (x1i, x2 j, tk) ∈ (τ1, τ2) × (0, τ2) × (0,T ] or
(1 − τ2, 1 − τ1) × (0, τ2) × (0,T ], along with the conditions (hi + hi+1) ≤

√
ε1 and (k j + k j+1) ≤

√
ε1, the

following holds:

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C

√
ε1

ε−1/2
1 + ε−1/2

2 + ∆t

ε−1/2
2 + ε−1/2

2 + ∆t

 ≤ CN−1 +C∆t.

In the cases where (x1i, x2 j, tk) belongs to either (0, τ1)× (0, τ2)× (0,T ] or (1−τ1, 1)× (0, τ2)× (0,T ], we
have hi + hi+1 ≤ C

√
ε1, k j + k j+1 ≤ C

√
ε1. Using a similar analytical approach as previously described,

the corresponding bounds are derived.

Assuming that τ1 =

√
ε1

Λϑϑ
ln N and τ2 =

√
ε2

Λϑ
ln N, and in cases where (x1i, x2 j, tk) ∈ [τ2, 1 −

τ2] × (0, 1) × (0,T ], (0, τ1] × (0, τ2) × (0,T ], or (1 − τ1, 1) × (0, τ2) × (0,T ], the required bounds can be
obtained using a similar approach as applied to the corresponding intervals in the previous cases. When
(x1i, x2 j, tk) is within either (τ1, τ2)×(0, 1)×(0,T ] or (1−τ2, 1−τ1)×(0, 1)×(0,T ] or (0, τ1)×(τ2, 1)×(0,T ]
or (1 − τ1, 1) × (τ2, 1) × (0,T ], we have hi + hi+1 ≤ CN−1τ2 ≤ C

√
ε2. Consequently, we obtain

|L
N,N
ε,µ (Slb − slb)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

□

Analogously, similar error bounds are obtained for the remaining corner layers sbr, srt, and slt in the
case ϑµ2 ≤ Λε1. Finally, we analyze the third case when Λε1 < ϑµ

2 < Λε2.

Lemma 4.7. Let sn and Sn be the true and numerical solutions of (2.4) and (4.3), respectively, for
n = lb, br, rt, lt. For Λε1 < ϑµ

2 < Λε2, we have

|Sn(x1i, x2 j, tk) − sn(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Proof. Using similar arguments as presented in Lemmas 4.4, 4.5, and 4.6, the error estimates for the
intermediate case Λε1 < ϑµ

2 < Λε2 can also be established. □

By combining all the previous results, we arrive at the main result of this work.

Theorem 4.8. Let z and Z denote the exact and continuous solutions of (1.1) and (3.4), respectively,
on the constructed BS mesh. Then, the error satisfies the following estimate:

|Z(x1i, x2 j, tk) − z(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), (4.13)

and therefore, the proposed numerical scheme achieves first-order uniform convergence.

5. Numerical experiments

Section 3 describes the implementation of our algorithm on the BS mesh. To show the effectiveness
of the numerical approach, two test problems of the form (1.1) are considered. All numerical
experiments are performed in MATLAB R2024a on a system with 32 GB RAM and an Intel i5
processor (1.8 GHz). Due to the complexity of the considered problems, the computation time
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required to obtain accurate results is relatively high. However, to enhance computational efficiency
and minimize memory usage, the algorithm utilizes sparse matrix techniques to solve the resulting
linear systems.

To address the test problems, the numerical solutions are arranged in the following form:

(initialize)Z1(x1i, x2 j, t0) = [ψ1]ΩN , (5.1)
Z2(x1i, x2 j, t0) = [ψ2]ΩN , (5.2)

Z =



For m = 1, 2, . . . ,M,
Z1(x10, x20, tm),Z1(x11, x20, tm), . . . ,Z1(x1N , x20, tm),
Z1(x10, x21, tm),Z1(x11, x21, tm), . . . ,Z1(x1N , x21, tm),
Z1(x10, x22, tm),Z1(x11, x22, tm), . . . ,Z1(x1N , x22, tm),
........................................................................................

Z1(x10, x2N , tm),Z1(x11, x2N , tm), . . . ,Z1(x1N , x2N , tm),
Z2(x10, x20, tm),Z2(x11, x20, tm), . . . ,Z2(x1N , x20, tm),
Z2(x10, x21, tm),Z2(x11, x21, tm), . . . ,Z2(x1N , x21, tm),
.........................................................................................

Z2(x10, x2N , tm),Z2(x11, x2N , tm), . . . ,Z2(x1N , x2N , tm),

(5.3)

where the values Zn(x10 , x2 j , tm), Zn(x1i , x20 , tm), Zn(x1N , x2 j , tm), and Zn(x1i , x2N , tm), for n =
1, 2, i, j = 0, . . . ,N, m = 1, . . . ,M, are determined from the prescribed boundary conditions.

Then, the resulting linear system can be written as [A]m
(2(N+1)2,2(N+1)2)[Z]m

(2(N+1)2,1) =

[F]m
(2(N+1)2,1), for m = 1, . . .M, and we solve this system by using MATLAB, taking into account

that the matrix A is sparse.
In this section, we solve with our method (3.4) two test examples of problems of type (1.1). The

data of the first example are given by

Example 5.1.

∂z
∂t
− ε

(
∂2z
∂x1

2 +
∂2z
∂x2

2

)
+ µ

(
A1(x1, x2, t)

∂z
∂x1
+ A2(x1, x2, t)

∂z
∂x2

)
+ B(x1, x2, t)z = f(x1, x2, t), ∀(x1, x2, t) ∈ Ω × (0,T ],

where the boundary conditions as well as convection, reaction coefficients, and source terms are given
by

z(x1, 0, t) = z(x1, 1, t) = z(0, x2, t) = z(1, x2, t) = z(x1, x2, 0) = 0,

A1(x1, x2, t)
(
1 + x1x2 0

0 2 − x1x2

)
, A2(x1, x2, t) =

(
2 + sin(x1 + x2) 0

0 2 − cos(x1 + x2)

)
,

B(x1, x2, t) =
(
(3 + x1x2) exp(−t) −1 − x1

2x2
2

−1 − exp(x1x2) (3 + exp(x1x2))(1 − 2 exp(−t))

)
,

f(x1, x2, t) =
(

exp(−x1 − x2) sin(πt), exp(−x1 − x2) cos(πt/2)
)T

,

with T = 1. The data of the second example are
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Example 5.2.

∂z
∂t
− ε

(
∂2z
∂x1

2 +
∂2z
∂x2

2

)
+ µ

(
A1(x1, x2, t)

∂z
∂x1
+ A2(x1, x2, t)

∂z
∂x2

)
+ B(x1, x2, t)z = f(x1, x2, t), ∀(x1, x2, t) ∈ Ω × (0,T ],

where now the boundary conditions as well as convection, reaction coefficients, and source terms are
given by

z(x1, x2, t) =
(
x1(1 − x1)x2(1 − x2)(1 − exp(−5t)), x1(1 − x1)x2(1 − x2)(1 − exp(−t))

)T

, (x1, x2, t) ∈ ∂Ω × [0,T ],

z(x1, x2, 0) = 000,

A1(x1, x2, t) =
(
1 + x1x2(1 − exp(−t)) 0

0 1 − x1x2(1 − exp(−2t))

)
, A2(x1, x2, t) =

(
2 + exp(x1x2) 0

0 2 − exp(x1x2)

)
,

B(x1, x2, t) =
(
(3 + x1

2x2
2)(1 − exp(−t)) −1 − x1x2

−1 − exp(x1x2) (3 + exp(x1x2))(1 − 2 exp(−t))

)
,

f(x1, x2, t) =
(

sin(πx1x2) sin(πt), cos(πx1x2/2) cos(πt/2)
)T

,

also with T = 1. Note that in this second example, the coefficients of the convection matrix A1 depend
also on the time variable; then, from a numerical point of view, we see that our numerical algorithm
can be used efficiently for more general problems that this one in (1.1).

Figures 2–4 and 5–7 illustrate the two components of the numerical solution for Examples 5.1 and
5.2, respectively, obtained for different values of the diffusion and convection parameters ε1, ε2, and
µ while keeping the discretization parameters N and M fixed at the final time T = 1. These figures
clearly reveal the presence of boundary layers in the numerical solution.

(a) Surface graph of the numerical solution z1; (b) surface graph of the numerical solution z2.

Figure 2. When ε1 = 5−610−2, ε2 = 5−410−2, µ2 = 5−810−2,N = 32, and M = 16 for
Example 5.1.
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(a) Surface graph of the numerical solution z1. (b) surface graph of the numerical solution z2.

Figure 3. When ε1 = 5−810−2, ε2 = 5−610−2, µ2 = 5−410−2,N = 32, and M = 16 for
Example 5.1.

(a) Surface graph of the numerical solution z1; (b) surface graph of the numerical solution z2.

Figure 4. When ε1 = 5−810−2, ε2 = 5−410−2, µ2 = 5−610−2,N = 32, and M = 16 for
Example 5.1.

(a) Surface graph of the numerical solution z1; (b) surface graph of the numerical solution z2.

Figure 5. When ε1 = 5−610−2, ε2 = 5−410−2, µ2 = 5−810−2,N = 32, and M = 16 for
Example 5.2.
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(a) Surface graph of the numerical solution z1; (b) surface graph of the numerical solution z2.

Figure 6. When ε1 = 5−810−2, ε2 = 5−610−2, µ2 = 5−410−2,N = 32, and M = 16 for
Example 5.2.

(a) Surface graph of the numerical solution z1; (b) surface graph of the numerical solution z2.

Figure 7. When ε1 = 5−810−2, ε2 = 5−410−2, µ2 = 5−610−2,N = 32, and M = 16 for
Example 5.2.

As the exact solution of this problem is unknown, to approximate the maximum point-wise errors,
we use, in a usual way, the double mesh technique (see [13]). Then, we calculate

EN,M
ε,µ = max

(xi,y j,tn)∈Q
N,M
|Ẑ2N,2M(x12i, x22 j, t2n) − ZN,N(x1i, x2 j, tn)|,

where Ẑ2N,2M is the numerical solution obtained on a mesh with 2N subintervals in space and 2M
subintervals in time, taking the mesh points of the coarse mesh and also their midpoints on each
spatial and temporal direction. Then, the parameter uniform maximum point-wise errors are calculated
applying the formula

EN,M = max
ε,µ

EN,N
ε,µ .

From the previous values, the uniform numerical orders of convergence are given by

QN,M = log2

( EN,M

E2N,2M

)
.
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Tables 1, 3, and 5 show the maximum errors for the first component under various choices of
the convection and diffusion parameter, together with selected discretization parameters N and M.
These tables also report the maximum uniform errors along with the associated uniform orders of
convergence. Similarly, Tables 2, 4, and 6 show the results for the second component for the same
set of parameters. In an analogous manner, Tables 7, 8, 9, 10, 11, and 12 summarize the maximum
errors and the numerical orders of convergence for the first and second components, corresponding to
example 5.2.

The collection of results in Tables 1–12 clearly show the effectiveness of the proposed method,
implemented on a BS mesh, in delivering accurate and efficient solutions for the test problems 5.1 and
5.2 across the three distinct ratios of diffusion to convection parameters.

Finally, Tables 13–15 present a comparison of the maximum point-wise errors EN,M and orders
of convergence QN,M for Example 5.1 under each of the cases, using the BS mesh and the standard
Shishkin (S) mesh. As the mesh is refined, the errors decrease for both meshes, indicating the uniform
convergence of the numerical scheme. However, for all grid levels and for both solution components
z1 and z2, the BS mesh yields significantly smaller errors than the S mesh and achieves near first-
order convergence. This clearly permits us to conclude the superior accuracy and parameter-uniform
convergence of the BS mesh compared to the standard S mesh.

Table 1. When ϑµ2 ≤ Λε1 ≤ Λε2.
First component z1

ε1 = 5−6η ε2 = 5−4η µ2 = 5−8η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 4.963e-3 3.061e-3 1.678e-3 8.764e-4 4.473e-4
10−2 4.994e-3 3.087e-3 1.696e-3 8.875e-4 4.539e-4
10−3 5.004e-3 3.095e-3 1.701e-3 8.910e-4 4.561e-4
10−4 5.007e-3 3.098e-3 1.703e-3 8.921e-4 4.567e-4
10−5 5.008e-3 3.099e-3 1.704e-3 8.925e-4 4.569e-4
10−6 5.008e-3 3.099e-3 1.704e-3 8.926e-4 4.570e-4
10−7 5.008e-3 3.099e-3 1.704e-3 8.926e-4 4.570e-4
10−8 5.008e-3 3.099e-3 1.704e-3 8.927e-4 4.570e-4

EN,M 5.008e-3 3.099e-3 1.704e-3 8.927e-4 4.570e-4
QN,M 0.6924 0.8629 0.9327 0.9660 –

Table 2. When ϑµ2 ≤ Λε1 ≤ Λε2.
Second component z2

ε1 = 5−6η ε2 = 5−4η µ2 = 5−8η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 4.988e-3 3.076e-3 1.685e-3 8.802e-4 4.492e-4
10−2 5.019e-3 3.101e-3 1.703e-3 8.913e-4 4.559e-4
10−3 5.029e-3 3.110e-3 1.709e-3 8.949e-4 4.580e-4
10−4 5.033e-3 3.112e-3 1.711e-3 8.960e-4 4.587e-4
10−5 5.034e-3 3.113e-3 1.711e-3 8.964e-4 4.589e-4
10−6 5.034e-3 3.113e-3 1.711e-3 8.965e-4 4.590e-4
10−7 5.034e-3 3.113e-3 1.711e-3 8.965e-4 4.590e-4
10−8 5.034e-3 3.113e-3 1.711e-3 8.965e-4 4.590e-4

EN,M 5.034e-3 3.113e-3 1.711e-3 8.965e-4 4.590e-4
QN,M 0.6934 0.8635 0.9325 0.9658 –

Tables 1 and 2 present the maximum point-wise errors EN,M and the corresponding numerical orders
of convergence QN,M for Example 5.1 when ϑµ2 ≤ Λε1 ≤ Λε2.
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Table 3. When ϑµ2 > Λε2 ≥ Λε1.
First component z1

ε1 = 5−8η ε2 = 5−6η µ2 = 5−4η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 1.042e-2 6.715e-3 4.150e-3 2.396e-3 1.316e-3
10−2 1.043e-2 6.720e-3 4.152e-3 2.396e-3 1.316e-3
10−3 1.044e-2 6.721e-3 4.152e-3 2.396e-3 1.316e-3
10−4 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3
10−5 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3
10−6 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3
10−7 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3
10−8 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3

EN,M 1.044e-2 6.722e-3 4.152e-3 2.396e-3 1.316e-3
QN,M 0.6352 0.6951 0.7932 0.8645 –

Table 4. When ϑµ2 > Λε2 ≥ Λε1.
Second component z2

ε1 = 5−8η ε2 = 5−6η µ2 = 5−4η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 1.031e-2 6.641e-3 4.102e-3 2.367e-3 1.298e-3
10−2 1.033e-2 6.646e-3 4.104e-3 2.367e-3 1.298e-3
10−3 1.033e-2 6.648e-3 4.104e-3 2.367e-3 1.298e-3
10−4 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3
10−5 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3
10−6 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3
10−7 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3
10−8 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3

EN,M 1.033e-2 6.648e-3 4.105e-3 2.368e-3 1.298e-3
QN,M 0.6358 0.6955 0.7937 0.8674 –

Tables 3 and 4 present the maximum point-wise errors EN,M and the corresponding numerical orders
of convergence QN,M for Example 5.1 when ϑµ2 > Λε2 ≥ Λε1.

Table 5. When Λε1 < ϑµ
2 < Λε2.

First component z1

ε1 = 5−8η ε2 = 5−4η µ2 = 5−6η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 2.991e-3 1.778e-3 9.969e-4 5.361e-4 2.834e-4
10−2 3.020e-3 1.794e-3 1.008e-3 5.433e-4 2.879e-4
10−3 3.029e-3 1.799e-3 1.012e-3 5.457e-4 2.893e-4
10−4 3.032e-3 1.800e-3 1.013e-3 5.464e-4 2.898e-4
10−5 3.033e-3 1.801e-3 1.013e-3 5.466e-4 2.899e-4
10−6 3.033e-3 1.801e-3 1.013e-3 5.467e-4 2.900e-4
10−7 3.033e-3 1.801e-3 1.013e-3 5.467e-4 2.900e-4
10−8 3.033e-3 1.801e-3 1.013e-3 5.467e-4 2.900e-4

EN,M 3.033e-3 1.801e-3 1.013e-3 5.467e-4 2.900e-4
QN,M 0.7519 0.8302 0.8898 0.9147 –

Table 6. When Λε1 < ϑµ
2 < Λε2

Second component z2

ε1 = 5−8η ε2 = 5−4η µ2 = 5−6η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 2.975e-3 1.812e-3 1.015e-3 5.455e-4 2.884e-4
10−2 3.004e-3 1.827e-3 1.026e-3 5.528e-4 2.928e-4
10−3 3.013e-3 1.832e-3 1.029e-3 5.551e-4 2.943e-4
10−4 3.016e-3 1.834e-3 1.031e-3 5.559e-4 2.948e-4
10−5 3.017e-3 1.834e-3 1.031e-3 5.561e-4 2.949e-4
10−6 3.017e-3 1.835e-3 1.031e-3 5.562e-4 2.949e-4
10−7 3.017e-3 1.835e-3 1.031e-3 5.562e-4 2.950e-4
10−8 3.017e-3 1.835e-3 1.031e-3 5.562e-4 2.950e-4

EN,M 3.017e-3 1.835e-3 1.031e-3 5.562e-4 2.950e-4
QN,M 0.7173 0.8317 0.8904 0.9149 –

Tables 5 and 6 present the maximum point-wise errors EN,M and the corresponding numerical orders
of convergence QN,M for Example 5.1 when Λε1 < ϑµ

2 < Λε2.
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Table 7. When ϑµ2 ≤ Λε1 ≤ Λε2.
First component z1

ε1 = 5−6η ε2 = 5−4η µ2 = 5−8η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 3.462e-3 1.802e-3 8.450e-4 3.841e-4 1.709e-4
10−2 3.466e-3 1.806e-3 8.451e-4 3.841e-4 1.709e-4
10−3 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
10−4 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
10−5 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
10−6 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
10−7 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
10−8 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4

EN,M 3.468e-3 1.808e-3 8.451e-4 3.841e-4 1.709e-4
QN,M 0.9397 1.0972 1.1376 1.1683 –

Table 8. When ϑµ2 ≤ Λε1 ≤ Λε2.
Second component z2

ε1 = 5−6η ε2 = 5−4η µ2 = 5−8η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 3.518e-3 1.830e-3 8.592e-4 3.905e-4 1.737e-4
10−2 3.523e-3 1.835e-3 8.592e-4 3.905e-4 1.737e-4
10−3 3.524e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
10−4 3.524e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
10−5 3.525e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
10−6 3.525e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
10−7 3.525e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
10−8 3.525e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4

EN,M 3.525e-3 1.837e-3 8.592e-4 3.905e-4 1.737e-4
QN,M 0.9403 1.0963 1.1377 1.1687 –

Tables 7 and 8 present the maximum point-wise errors EN,M and the corresponding numerical orders
of convergence QN,M for Example 5.2 when ϑµ2 ≤ Λε1 ≤ Λε2.

Table 9. When ϑµ2 > Λε2 ≥ Λε1.
First component z1

ε1 = 5−8η ε2 = 5−6η µ2 = 5−4η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 7.740e-3 5.216e-3 3.212e-3 1.873e-3 1.024e-3
10−2 7.741e-3 5.217e-3 3.215e-3 1.874e-3 1.026e-3
10−3 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
10−4 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
10−5 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
10−6 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
10−7 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
10−8 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3

EN,M 7.742e-3 5.218e-3 3.218e-3 1.875e-3 1.028e-3
QN,M 0.5692 0.6973 0.7793 0.8671 –

Table 10. When ϑµ2 > Λε2 ≥ Λε1.
Second component z2

ε1 = 5−8η ε2 = 5−6η µ2 = 5−4η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 7.708e-3 5.186e-3 3.201e-3 1.857e-3 1.016e-3
10−2 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−3 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−4 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−5 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−6 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−7 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−8 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3

EN,M 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
QN,M 0.5716 0.6958 0.7849 0.8688 –

Tables 9 and 10 present the maximum point-wise errors EN,M and the corresponding numerical orders
of convergence QN,M for Example 5.2 when ϑµ2 > Λε2 ≥ Λε1.
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Table 11. When Λε1 < ϑµ
2 < Λε2.

First component z1

ε1 = 5−8η ε2 = 5−4η µ2 = 5−6η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 1.921e-3 9.864e-4 4.878e-4 2.381e-4 1.209e-4
10−2 1.921e-3 9.864e-4 4.879e-4 2.397e-4 1.217e-4
10−3 1.921e-3 9.864e-4 4.879e-4 2.402e-4 1.220e-4
10−4 1.921e-3 9.864e-4 4.879e-4 2.403e-4 1.221e-4
10−5 1.921e-3 9.864e-4 4.879e-4 2.404e-4 1.221e-4
10−6 1.921e-3 9.864e-4 4.879e-4 2.404e-4 1.221e-4
10−7 1.921e-3 9.864e-4 4.879e-4 2.404e-4 1.221e-4
10−8 1.921e-3 9.864e-4 4.879e-4 2.404e-4 1.221e-4

EN,M 1.921e-3 9.864e-4 4.879e-4 2.404e-4 1.221e-4
QN,M 0.9616 1.0156 1.0211 0.9774 –

Table 12. When Λε1 < ϑµ
2 < Λε2.

Second component z2

ε1 = 5−8η ε2 = 5−6η µ2 = 5−4η

M 16 32 64 128 256
η/N 32 64 128 256 512

10−1 7.708e-3 5.186e-3 3.201e-3 1.857e-3 1.016e-3
10−2 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−3 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−4 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−5 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−6 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−7 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
10−8 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3

EN,M 7.710e-3 5.188e-3 3.203e-3 1.859e-3 1.018e-3
QN,M 0.5716 0.6958 0.7849 0.8688 –

Tables 11 and 12 present the maximum point-wise errors EN,M and the corresponding numerical
orders of convergence QN,M for Example 5.2 when Λε1 < ϑµ

2 < Λε2.

Table 13. For Example 5.1, maximum point-wise errors EN,M and orders of convergence
QN,M when ϑµ2 ≤ Λε1 ≤ Λε2.

(N,M)
First Component z1 Second Component z2

BS mesh S mesh BS mesh S mesh

EN,M QN,M EN,M QN,M EN,M QN,M EN,M QN,M

32, 16 5.008 × 10−3 0.6924 1.232 × 10−2 0.4402 5.034 × 10−3 0.6934 1.446 × 10−2 0.6639
64, 32 3.099 × 10−3 0.8629 9.080 × 10−3 0.6753 3.113 × 10−3 0.8635 9.127 × 10−3 0.7844

128, 64 1.704 × 10−3 0.9327 5.686 × 10−3 0.8489 1.711 × 10−3 0.9325 5.299 × 10−3 0.7735
256, 128 8.927 × 10−4 0.9960 3.157 × 10−3 0.8853 8.965 × 10−4 0.9658 3.100 × 10−3 0.8950
512, 256 4.570 × 10−4 – 1.745 × 10−3 – 4.590 × 10−4 – 1.667 × 10−3 –

Table 14. For Example 5.1, maximum point-wise errors EN,M and orders of convergence
QN,M when ϑµ2 > Λε2 ≥ Λε1.

(N,M)
First Component z1 Second Component z2

BS mesh S mesh BS mesh S mesh

EN,M QN,M EN,M QN,M EN,M QN,M EN,M QN,M

32, 16 1.044 × 10−2 0.6352 1.822 × 10−2 0.3801 1.033 × 10−2 0.6358 1.805 × 10−2 0.3790
64, 32 6.722 × 10−3 0.6951 1.400 × 10−2 0.3624 6.648 × 10−3 0.6955 1.388 × 10−2 0.3647

128, 64 4.152 × 10−3 0.7932 1.089 × 10−2 0.4839 4.105 × 10−3 0.7937 1.078 × 10−2 0.4843
256, 128 2.396 × 10−3 0.8645 7.787 × 10−3 0.5494 2.368 × 10−3 0.8674 7.706 × 10−3 0.5506
512, 256 1.316 × 10−3 – 5.321 × 10−3 – 1.298 × 10−3 – 5.261 × 10−3 –
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Table 15. For Example 5.1, maximum point-wise errors EN,M and orders of convergence
QN,M when Λε1 < ϑµ

2 < Λε2.

(N,M)
First Component z1 Second Component z2

BS mesh S mesh BS mesh S mesh

EN,M QN,M EN,M QN,M EN,M QN,M EN,M QN,M

32, 16 3.033 × 10−3 0.7519 4.538 × 10−2 0.5785 3.017 × 10−3 0.7173 3.673 × 10−2 0.5579
64, 32 1.801 × 10−3 0.8302 3.039 × 10−2 0.6617 1.835 × 10−3 0.8317 2.495 × 10−2 0.6564

128, 64 1.013 × 10−3 0.8898 1.621 × 10−2 0.7411 1.031 × 10−3 0.8904 1.583 × 10−2 0.7391
256, 128 5.467 × 10−4 0.9147 9.698 × 10−3 0.8211 5.562 × 10−4 0.9149 9.484 × 10−3 0.8322
512, 256 2.900 × 10−4 – 5.489 × 10−3 – 2.950 × 10−4 – 5.327 × 10−3 –

6. Conclusions

In this work, we have considered the efficient numerical resolution of a type of 2D parabolic
singularly perturbed systems with two equations of convection-diffusion type. In the continuous
problem, the parabolic partial differential equation contains small positive parameters on both the
diffusion and the convection terms; moreover, we have assumed that the diffusion parameters can
be distinct, having a very different order of magnitude between them, but the convection parameters
are equal for both equations in the coupled system. Then, it is well known that, in general, different
types of overlapping boundary layers appear on the outflow and the inflow boundary, which depend on
the value and the ratio between the three small parameters. To solve the continuous problem, we have
constructed a method that combines the classical implicit Euler method, to discretize in time on the
most simple mesh (a uniform mesh), together with the well-known upwind finite difference scheme.
It is defined on a special nonuniform mesh of BS type, which is considerably different to the standard
piecewise uniform Shishkin mesh, in order to increase the order of uniform convergence. Therefore,
we have proved that the fully discrete scheme is a uniformly convergent method; moreover, in the
maximum norm, it has first order in both time and spatial variables, which is a better result than those
in the literature, where the order of uniform convergence in space was usually almost first order due the
logarithmic factor, which usually appears in the order of uniform convergence when standard Shishkin
meshes are used. So, the numerical results obtained with our algorithm for some test problems are
better than those in previous works in the literature, without any increase in the computational cost of
the numerical algorithm; from them, we clearly can observe the overlapping layers in the numerical
solution and also the important fact related with the order of uniform convergence. The numerical
results showed are in agreement with the theoretical results proved in the work.

A. Proof of Lemma 4.3

A detailed analysis is presented for the layer function w⃗l, while a similar methodology can be
extended to the remaining components. From the results established in Theorem 2.5, it follows that the
truncation error corresponding to the singular component w⃗l satisfies
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∥L
N,N
ε,µ (Wl − wl)∥ ≤ C

[
∆t

∥∥∥∥∥∂2wl

∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥∂3w⃗l

∂x1
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2wl

∂x1
2

∥∥∥∥∥)
+ (k j + k j+1)

(
ε

∥∥∥∥∥∂3wl

∂x2
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2wl

∂x2
2

∥∥∥∥∥)]. (A.1)

If τ1 =
1
8 , τ2 =

1
4 , and σ1 =

1
4 , the proof can be readily obtained by applying standard techniques on

uniform meshes, taking into account that it follows µ−1ε1 ≤ CN−1, µ−1ε2 ≤ CN−1, and µ ≤ CN−1.
Then, using Theorem 2.5, we have

|L
N,N
ε,µ (Wl − wl)| ≤ C

 N−1µ3(ε−2
1 B

l
1(x1i−1) + ε−2

2 B
l
2(x1i−1)) + ∆t

N−1µ3(ε−1
1 ε
−1
2 B

l
1(x1i−1) + ε−2

2 B
l
2(x1i−1)) + ∆t

 . (A.2)

Now, define the mesh functions ψ⃗ψψ(x1i) and ψψψ(x2 j) on Q
N,M

by:

ψ1(x1i) = C
(

exp
(2hiµ

ε1

)ε−1
1 µRi

N ln N
+ exp

(2hiµ

ε2

)ε−1
2 µPi

N ln N

)
+C∆t, (A.3a)

ψ2(x1i) = C
(

exp
(2hiµ

ε2

)ε−1
1 µ Pi

N ln N

)
+C∆t, (A.3b)

where

Ri =
υN−i − 1
υN − 1

, with υ = 1 +
µhi

ε1
, Pi =

λN−i − 1
λN − 1

, with λ = 1 +
µhi

ε2
.

Similarly, the mesh function ψψψ(x2 j) is defined along the x2-direction.
Now, it follows directly that 0 ≤ Ri, and Pi ≤ 1, and in addition,

(−ε1δ
2
x1 x1
+ µD−x1

)Ri = 0, (−ε1δ
2
x1 x1
+ µD−x1

)Pi = 0,

D−x1
Ri ≤

µ

ε1
exp

(
µx1i+1

ε1

)
, D−x1

Pi ≤
µ

ε2
exp

(
µx1i+1

ε2

)
.

Therefore, it is clear that we have

|L
N,N
ε,µ ψψψ(x1i)| ≤

C
ε−2

1 µ3

N ln NB
l
1(x1i−1) +C ε−2

2 µ3

N ln NB
l
2(x11i−1) +C∆t

C µ3ε−1
1 ε−1

2
N ln N B

l
2(x1i−1) +C∆t

 , (A.4a)

and similarly, we can prove

|L
N,N
ε,µ ψψψ(x2 j)| ≤

C
ε−2

1 µ3

N ln NB
l
1(x2 j−1) +C ε−2

2 µ3

N ln NB
l
2(x2 j−1) +C∆t

C µ3ε−1
1 ε−1

2
N ln N B

l
2(x2 j−1) +C∆t

 . (A.4b)

Then, defining the mesh function

ΨΨΨ±(x1i, x2 j, tk) = ψψψ(x1i) +ψψψ(x2 j) ± (Wl − wl) (x1i, x2 j, tk),

it is straightforward to see that it holds

ΨΨΨ±(x1i, x2 j, tk) ≥ 000, (x1i, x2 j, tk) ∈ ΓN × (0,T ],
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and
L

N,N
ε,µ ΨΨΨ

±(x1i, x2 j, tk) ≥ 000, (x1i, x2 j, tk) ∈ QN,M,

where the above results follow from (A.2) and (A.4). Hence, by applying Lemma 3.1, we obtain

|(Wl − wl)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

Next, from (4.2), when τ2 =
ε2

µϑ
ln N, for the mesh points (x1i, x2 j, tk), N/4 ≤ i ≤ N, 0 ≤ j ≤

N, and 0 ≤ k ≤ M, we have

|(Wl1 − wl1)(x1i, x2 j, tk)| ≤ |Wl1(x1i, x2 j, tk)| + |wl1(x1i, x2 j, tk)| ≤ CBl,N
2 (x1i) +CBl,N

2 (x1i)

≤ CBl,N
2 (τ2) +CBl,N

2 (τ2) ≤ CN−1. (A.5)

Analogously, it follows that

|(Wl2 − wl2)(x1i, x2 j, tk)| ≤ CN−1. (A.6)

When τ2 =
ε2

µϑ
ln N, there are two distinct cases to consider: 2ε1 ≥ ε2 and 2ε1 < ε2, respectively. In

the case where
ε2

2
≤ ε1 ≤ ε2, for N/8 ≤ i ≤ N/4, 0 ≤ j ≤ N, and 0 ≤ k ≤ M, we observe that

τ2 ≤
2ε1

µϑ
ln N holds. Hence, we can obtain

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2Bl
1(x1i−1) + ε−1

2 µ
2Bl

2(x1i−1) + ∆t

ε−1
2 µ

2Bl
2(x1i−1) + ∆t

 (
as hi ≤

ε1

µ

)
.

In the case ε2 > 2ε1, for N/8 ≤ i ≤ N/4, 0 ≤ j ≤ N, and 0 ≤ k ≤ M, we have

|L
N,N
ε⃗,µ

(Wl − wl)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2Bl
1(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

Cε−1
2 µ

2Bl
1(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

 .
For 0 ≤ i ≤ N

8 , 0 ≤ j ≤ N, 0 ≤ k ≤ M, and τ1 ≤
ε1
ϑ

ln N, the local error satisfies

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2Bl
1(x1i−1) + ε−1

2 µ
2Bl

2(x1i−1) + ∆t

ε−1
2 µ

2Bl
2(x1i−1) + ∆t

 .
For 0 ≤ i ≤

N
8

, 0 ≤ j ≤ N, and 0 ≤ k ≤ M, we define the mesh functions ψψψ(x1i) and ψψψ(x2 j) by

ψ1(x1i) = C
(

exp
(2ϑhiµ

ε1

)
B

l,N
1 (x1i) + exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ2 − x1i) +C∆t, (A.7a)

ψ2(x1i) = C
(

exp
(2ϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ2 − x1i) +C∆t. (A.7b)
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Similarly, the mesh function ψψψ(x2 j) can be defined along the x2-direction. Now, for
N
8
≤ i ≤

N
4

,
0 ≤ j ≤ N, and 0 ≤ k ≤ M, we consider the functions

ψ1(x1i) = C
(
B

l,N
1 (x1i) + exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ2 − x1i) +C∆t, (A.7c)

ψ2(x1i) = C
(

exp
(2ϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ2 − x1i) +C∆t. (A.7d)

Analogously, the mesh function ψψψ(x2 j) can be defined along the x2-direction.
Now, we construct the barrier function

ΨΨΨ±(x1i, x2 j, tk) = ψψψ(x1i) +ψψψ(x2 j) ± (Wl − wl) (x1i, x2 j, tk).

For 0 ≤ i ≤ N
4 , 0 ≤ j ≤ N, and 0 ≤ k ≤ M, it follows from Lemma 3.1 that

ΨΨΨ±(x1i, x2 j, tk) ≥ 0⃗00, for all 0 ≤ i ≤
N
4
, 0 ≤ j ≤ N, 0 ≤ k ≤ M.

Hence, it follows that

|(Wl − wl)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t), 0 ≤ i ≤ N/4, 0 ≤ j ≤ N, 0 ≤ k ≤ M. (A.8)

From (A.5), (A.6), and (A.8), for the case τ2 =
ε2
µϑ

ln N, it follows that∣∣∣(Wl − wl) (x1i, x2 j, tk)
∣∣∣ ≤ C(N−1 + ∆t).

Next, the case τ2 = 1/4, σ1 = 1/4, and τ1 =
ε1

µϑ
ln N is considered; then, µ−1ε2 ≤ CN−1 holds for

(x1i, x2 j, tk) ∈ (0, τ1] × (0, 1) × (0,T ], hi ≤ Cε1µ
−1. Hence, from the truncation error estimate (4.4), we

obtain

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

ε−1
1 µ

2Bl
1(x1i−1) + ε−1

2 µ
2Bl

2(x1i−1) + ∆t

ε−1
2 µ

2Bl
2(x1i−1) + ∆t

 .
For (x1i, x2 j, tk) ∈ [τ1, τ2] × (0, 1) × (0,T ], from (4.4) and Lemma 2.5, we have

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2Bl
1(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

Cε−1
2 µ

2Bl
2(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

 .
Similarly, for (x1i, x2 j, tk) ∈ [τ2, 1) × (0, 1) × (0,T ], from (4.4) and Lemma 2.5, we can obtain

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤

Cε−1
1 µ

2Bl
1(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

Cε−1
2 µ

2Bl
2(x1i−1) +Cε−1

2 µ
2Bl

2(x1i−1) +C∆t

 .
To analyze the layer component, an appropriate barrier function is introduced and defined by

ΨΨΨ±(x1i, x2 j, tk) = ψψψ(x1i) +ψψψ(x2 j) ± (Wl − wl)(x1i, x2 j, tk) for 0 ≤ i ≤ N/8, 0 ≤ j ≤ N, 0 ≤ k ≤ M,
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where

ψ1(x1i) = C
(

exp
(2ϑhiµ

ε1

)
B

l,N
1 (x1i) + exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ1 − x1i) +C∆t,

ψ2(x1i) = C
(

exp
(2ϑϑhiµ

ε2

)
B

l,N
2 (x1i)

)
+C

µε−1

N ln N
(τ1 − x1i) +C∆t,

for N/8 ≤ i ≤ N/4, 0 ≤ j ≤ N, and 0 ≤ k ≤ M, and as

ψ1(x1i) = CBl,N
1 (x1i) +C exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i) +C

µε−1

N ln N
(τ2 − x1i) +C∆t,

ψ2(x1i) = C exp
(2ϑhiµ

ε2

)
B

l,N
2 (x1i) +C

µε−1

N ln N
(τ2 − x1i) +C∆t,

and finally, for N/4 ≤ i ≤ N, 0 ≤ j ≤ N, and 0 ≤ k ≤ M, as

ψ1(xi) = CBl,N
1 (x1i) +CN−1 exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i) +C∆t,

ψ2(x1i) = CBl,N
1 (x1i) +CN−1 exp

(2ϑhiµ

ε2

)
B

l,N
2 (x1i) +C∆t.

Similarly, the mesh function ψ⃗ψψ(x2 j) can be defined along the x2-direction.
Hence, for all the considered cases, the following estimate is obtained:∣∣∣(Wl − wl) (x1i, x2 j, tk)

∣∣∣ ≤ C(N−1 + ∆t),

which is the required result.

B. Proof of Lemma 4.4

If τ1 =
1
8

and τ2 =
1
4

, the proof follows by applying standard techniques for uniform meshes, while

taking into account that it holds µ−1ε1 ≤ CN−1,
√
ε2 ≤ CN−1, and µ ≤ CN−1. Therefore, by

utilizing (4.2) and Theorem 2.5, we obtain

∥L
N,N
ε,µ (Wl − wl)∥ ≤ C

[
∆t

∥∥∥∥∥∂2wl

∂t2

∥∥∥∥∥ + (hi + hi+1)
(
ε

∥∥∥∥∥∂3wl

∂x1
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2wl

∂x1
2

∥∥∥∥∥) + (k j + k j+1)
(
ε

∥∥∥∥∥∂3wl

∂x2
3

∥∥∥∥∥ + µ∥∥∥∥∥∂2wl

∂x2
2

∥∥∥∥∥)]
≤ CN−1.

Further, if τ1 =
ε1

µϑ
ln N, τ2 =

1
4

, and σ1 =
τ2

2
and we assume that (x1i, x2 j, tk) ∈ (τ2, 1 − τ2) ×

(0, 1) × (0,T ] ∪ (τ1, τ2) × (0, 1) × (0,T ] ∪ (1 − τ2, 1 − σ1) × (0, 1) × (0,T ], then we have

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

N−1ε−1/2
2 Bl

2(x1i−1) + ∆t

N−1ε−1/2
2 Bl

2(x1i−1) + ∆t

 .
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When (x1i, x2 j, tk) ∈ (0, τ1] × (0, 1) × (0,T ] or (x1i, x2 j, tk) ∈ [1 − σ1, 1] × (0, 1) × (0,T ], it follows
that

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

µ2ε−1
1 + ε

−1/2
2 + ∆t

µ2ε−1
1 + ε

−1/2
2 + ∆t

 (as hi ≤
ε1

µ

)
.

If τ2 =

√
ε2

Λϑ
ln N and τ1 =

τ2

2
, with

√
ε2

2
≤
√
ε1 <

√
ε2, then τ2 ≤ C

√
ε1 ln N. To establish the error

estimate in the region (x1i, x2 j, tk) ∈ [τ2, 1− τ2]× (0, 1)× (0,T ], we construct suitable barrier functions

B
l,N
1 (x1i) =

i∏
ι=1

(
1 +

(
ϑµ

2ε1

)
hι
)−1

, B
l,N
2 (x1i) =

i∏
ι=1

(
1 +

√(
Λ

ε2

)
hι
)−1

, (B.1)

with Bl,N
1 (x10) = Bl,N

2 (x10) = 1. After applying Theorem 2.5, we can conclude that it holds

|(Wl − wl)(x1i, x2 j, tk)| ≤ |Wl(x1i, x2 j, tk)| + |wl(x1i, x2 j, tk)| ≤ CBl,N
2 (τ2) +CBl,N

2 (τ2) ≤ CN−1.

To derive suitable error bounds in the regions (x1i, x2 j, tk) ∈ (τ1, τ2) × (0, 1) × (0,T ] or (1 − τ2, 1 −
σ1) × (0, 1) × (0,T ], using that (hi + hi+1) ≤ CN−1, (k j + k j+1) ≤ CN−1, it follows that

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C

N−1√ε2(µ3ε−2
1 + ε

−1/2
2 ) + ∆t

N−1√ε2(µε−1
1 + ε

−1/2
2 ) + ∆t

 .
Using the suitable barrier functions, then we have

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t).

For (x1i, x2 j, tk) ∈ (0, τ1) × (0, 1) × (0,T ] or (1 − σ1, 1) × (0, 1) × (0,T ], the relation hi + hi+1 ≤ CN−1

holds. Consequently, by applying the same arguments as before, the corresponding bounds follow.

Assuming τ1 =
ε1

µϑ
ln N and τ2 =

√
ε2

Λϑ
ln N, in the regions (x1i, x2 j, tk) ∈ [τ2, 1 − τ2] × (0, 1) ×

(0,T ], (0, τ1]×(0, 1)×(0,T ], or (1−σ1, 1)×(0, 1)×(0,T ], the desired bounds can be derived using
similar arguments as those applied in the corresponding intervals of the previous cases. For the regions
(x1i, x2 j, tk) ∈ (τ1, τ2)× (0, 1)× (0,T ] or (1− τ2, 1−σ1)× (0, 1)× (0,T ], we have hi + hi+1 ≤ CN−1.

Consequently, we obtain

|L
N,N
ε,µ (Wl − wl)(x1i, x2 j, tk)| ≤ C(N−1 + ∆t),

which is the required result.
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