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Abstract: This paper investigated primary resonance suppression in nonlinear spur gear systems using
a hybrid proportional and fractional-order derivative displacement feedback (P-FDDF) controller. The
dynamic model of the system was established through a second-order non-autonomous differential
equation incorporating time-varying meshing stiffness, backlash, and external excitations. The
amplitude-frequency response equation of primary resonance was derived via the multiple scale
method, while Lyapunov stability theory was employed to analyze the stability of steady-state
solutions. Numerical analyses examined the effects of meshing damping, load fluctuations, meshing
stiffness variations, and control parameters on resonance characteristics. Time history responses and
phase diagrams demonstrated that the P-FDDF strategy achieves simultaneous resonant amplitude
suppression and frequency tuning. The fractional-order component’s frequency-weighting and
memory properties enhance adaptability to complex nonlinear dynamics induced by time-varying
meshing stiffness and backlash, establishing the P-FDDF as a reliable solution for gear system vibration
control.
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1. Introduction

Gear mechanisms are the most widely used transmission components, indispensable in applications
ranging from simple mechanical equipment to complex industrial systems such as automobiles,
aircraft, ships, and industrial robots [1,2]. Among various gear types, spur gear systems are favored for
their compact structure and high efficiency, making them one of the most prevalent configurations in
practical applications [3,4]. The dynamic behavior of these systems, particularly their vibrations, not
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only directly determines operational stability but also significantly affects durability and performance.
Consequently, understanding and controlling these vibrational characteristics has become a key focus
in both powertrain engineering and nonlinear dynamics research [5, 6].

Given the critical impact of these vibrational properties on gear system performance, numerous
studies have systematically investigated the influencing factors. For instance, Howard et al. developed
a simplified gear dynamic model incorporating finite element-derived torsional mesh stiffness
variations to examine friction’s substantial impact on gear system vibration patterns [7]. Liu et
al. employed advanced perturbation methods to analyze nonlinear parametric excitation dynamics
in two-stage intermediate shaft gear systems [8, 9], while Yang et al. established a comprehensive
single-degree-of-freedom model that integrates backlash, time-varying mesh stiffness, and multi-
harmonic excitation to investigate multi-frequency excited nonlinear vibrations [10]. The importance
of understanding these vibrational characteristics is further underscored by Moradi et al.’s work,
which revealed critical phenomena such as jumping and instability in primary, superharmonic, and
subharmonic resonances in clearance-containing spur cylindrical gear systems [11]. Additionally,
comprehensive experimental and theoretical studies [12—-15] have systematically examined spur
gear system dynamics, covering essential aspects including backlash-related time-varying stiffness,
tooth root crack-induced tribo-dynamical characteristics, subharmonic resonances, and dynamic
performance during hovering maneuver flights. These collective investigations highlight the
fundamental importance of vibration analysis in ensuring optimal design and reliable operation of
gear transmission systems.

Building on the insights into gear system vibrational characteristics and their critical impacts,
researchers have shifted focus to developing effective vibration control strategies for nonlinear gear
systems. In terms of vibration control for such nonlinear gear systems, relevant studies have explored
various active control strategies. Chen et al. proposed an active vibration reduction method for gear
transmission by adjusting mesh stiffness and verified its effectiveness [16]. Li et al. developed a method
to suppress gear transmission vibration by actively controlling the vibration of gear rotor support
devices using piezoelectric stack devices, with experimental validation of its control performance [17].
Additionally, feedback control has emerged as a versatile tool for vibration suppression across a
wide range of mechanical and structural systems, from spur gear transmissions and cantilever-beam
dynamical systems to nonlinear motorcycle suspension schemes [18-23]. For example, in order to
reduce vibration in spur gear systems, a time-delay feedback vibration reduction dynamic model of
spur gears was established in [20], and the multiple scale method was applied to solve the time-delay
feedback gear transmission system.

In recent years, fractional calculus and its applications have developed rapidly. Among various
control methods, fractional-order control stands out for its superior adaptability in handling complex
nonlinear dynamics compared to integer-order methods, making it a promising candidate for enhancing
control performance [24-29]. However, despite the advancements in the aforementioned active control
strategies and the potential of fractional-order control, several critical issues remain unresolved.
Specifically, the potential of fractional-order control in addressing the nonlinear dynamics of spur
gear systems has not been fully explored, and the synergistic effects of combining proportional control
with fractional derivative control to simultaneously tune resonance frequency and suppress amplitudes
remain underexamined. Furthermore, drawing inspiration from the above literature, this study intends
to propose a hybrid proportional and fractional-order derivative displacement feedback (P-FDDF)
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controller to suppress primary resonance in nonlinear spur gear systems.

The structure of this paper is as follows: Section 2 introduces the mathematical modeling of the
spur gear system, including the dynamic equations with and without control, and details the derivation
of the amplitude-frequency equation using the multiple scale method. Section 3 analyzes how various
key parameters influence primary resonance characteristics through numerical simulations, including
meshing damping, load fluctuations, meshing stiffness fluctuations and control parameters. Section 4
presents time history and phase diagram analyses to further validate the effectiveness of the P-FDDF
controller by comparing the system’s dynamic behaviors under controlled and uncontrolled conditions.
Finally, Section 5 summarizes the main findings and presents the conclusions of the study.

2. Mathematical analysis

2.1. Mathematical modeling

To characterize the nonlinear dynamic behavior of a spur gear system, a simple torsional model of a
gear pair is employed, as shown in Figure 1. Based on the formulation in [20], the model is described
by the following second-order nonlinear differential equation that includes both constant and harmonic
excitations:

X+ ux+(1 + kcoswh)(d x + dax’) = Jo + f cos wt, 2.1

where x denotes the differential value between dynamic and static transmission errors and is inherently
displacement-related, as transmission errors in gear systems manifest as displacement-associated
quantities. u is the mesh damping coeflicient, 1 + k cos wt represents the time-varying mesh stiffness, &
is the fluctuation amplitude of time-varying meshing stiffness, w is the equivalent excitation frequency,
d,x + d,x* is the backlash function which is used to represent gear clearances, f; is the equivalence
static load, f cos wt is the equivalent dynamic load, and f is the amplitude of load fluctuation.

\Ml
Gear |

Figure 1. Dynamic model of a spur gear system [10].

Note that in the adopted model (2.1), the identical frequency of the time-varying mesh stiffness and
equivalent dynamic load reflects a practical scenario where both excitations originate primarily from
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the gear rotational motion. This modeling simplification focuses the analysis on primary resonance,

which is the core objective of this study.

. . . e . . def
Under certain conditions, primary resonance with limited amplitude occurs in (2.1) when w = wy =

Vd, or w = wy. To reduce vibrations in a spur gear system induced by external load fluctuations and
time-varying meshing stiffness, a dynamic model incorporating time-delay feedback control was also
established in [20], expressed as follows:

X+ pux+ (1 +kcoswt)(dx + drx*) = fo+ fcoswt + g1x(t —1y) + g1x(t — 7). 2.2)

While time-delay feedback control offers implementation simplicity and low computational demand
by utilizing delayed error signals without complex modeling, certain limitations should be noted.
The inherent time lag may compromise stability, particularly during high-speed operation or under
variable loading conditions. Furthermore, its effectiveness is constrained when addressing nonlinear
system characteristics such as backlash, meshing stiffness variations, and high-frequency vibrations,
potentially impacting overall robustness. To address these issues and suppress vibrations in the spur
gear system, we adopted a P-FDDF controller. Its closed-loop configuration is illustrated in Figure 2,
and the specific expression of this control strategy is as follows:

X+ pux+ (1 + kcoswt)(dx + drx®) = fo + fcoswr — Kyx(t) — K,DI x(1), 2.3)

where K, is the proportional displacement feedback control gain, and K, is the fractional-order
derivative displacement feedback control gain. Dx(r) with 0 < g < 1 is Caputo’s fractional derivative
of x(t) described by

Dix(t) = Iﬂ(l;—q)fo x(s)(t — s) 4ds,

in which I'(z) denotes the Euler gamma function, satisfying the recursive property I'(z + 1) = zI['(2).

f(, + f cos(r) T—» Spur gear systems %4-
//‘/ ~—_ - “\
</\Actuator = ( Sensor >
— ~—
P-FDDF . i
controller Sampling block e

Figure 2. Closed-loop block diagram of the P-FDDF control strategy.

The adoption of the P-FDDF controller in spur gear systems is motivated by its ability to effectively
address nonlinear resonant dynamics. The fractional-order component in the P-FDDF controller
exhibits frequency-dependent weighting characteristics and long-memory properties, allowing it to
adapt better to complex dynamics such as multi-frequency resonances. Additionally, the P-FDDF
controller simplifies controller design via decoupled design parameters, facilitating calibration across
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diverse operating conditions. Importantly, by directly targeting displacement-related transmission
errors, it achieves suppression of transient and steady-state resonant vibrations associated with such
errors, avoiding the phase distortions typical of time-delay approaches. These features make the
P-FDDF controller a more reliable and high-performance solution for precise primary resonance
suppression in spur gear systems.

2.2. Amplitude-frequency equation

In this study, following the classical framework of the multiple scale method, the amplitude-
frequency equation of the controlled spur gear system is derived, adhering to the standard procedure
described in the foundational references [30-32]. As a well-established tool for solving amplitude
equations in nonlinear vibration analysis, the multiple scale method is based on the core idea of
decomposing the system response into functions of distinct time scales for primary resonance analysis.

To apply this method for theoretical analysis, a small scaling parameter ¢ is first introduced. New
time variables are then defined as 7, = &'t (n = 0, 1,...). Consequently, the approximate solution of
Eq (2.3) with small amplitudes can be expressed as

x(t,e) = xo(To, T1,...)+ex1(To, T1,...)+---. 2.4)

In this study, T and T are considered to obtain the first-order uniform solution to O(¢).
The derivatives with respect to ¢ can be expressed in terms of the new scaled times 7, as a series of

partial derivatives:

d 0 dT, 0 dT,
d_04dhy, 6dh L ps 25
dt =~ 0T, dr ~ T, dt 0T e ’ (25

2
5= Dj +2eDyD; + & D + -+, (2.5b)
D! = D! +qeDV'Dy + -+, (2.5¢)
: : q _ o _ 0 2 _ & _
in which Djj = 3T D, = 3 D, = a2 (n=0,1).

Moreover, for such a small parameter €, the mesh damping, mesh stiffness, nonlinear term,
excitation load, and control gains must be ordered at the same level of approximation by letting

u—eu, k—oek, dy—-ed,, f—oef, K —eK,, K,— ek, (2.6)

By scaling these parameters to the same order of &, the amplitude of load fluctuation, damping,
nonlinear terms, and feedback control gains are retained in the same perturbation equation, such that a
uniformly valid asymptotic solution can be derived. This approach enables a comprehensive analysis
of the system’s dynamic behavior in the vicinity of parametric resonance.

Then, Eq (2.3) becomes

X+ eux + (1 + ekcoswr)(dx + edrx’) = fo + &f cos wt — eK 1 x(t) — eK, DI x(2). 22.7)

. . . def .
The resonance relation is considered as w = wy = Vd; or w = wp, and a detuning parameter o
describing the nearness of w to wy is introduced by

W = wy + &0 (2.8)
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Then, wt = wyTy + oT;. Substituting (2.4), (2.5a)—(2.5¢) into (2.3), equating the coefficients of the
same power of &, a set of linear differential equations is obtained:

0(°) : Djxo + wixo = fo, (2.9)

0(81) : D(z)xl + w%xl =—=2DyDxy — uDoxy — dzxg - Kixp— Kng)C() (2.10)
- w(z)kxo cos(wTy + oTy) + fcos(wTy + oT), '

from which x, and x; can be solved individually. In this way, the resonant solution x is dominated by
X, complemented by &x;.
The general solution of Eq (2.9) is of the form

xo = A(T))e o + A(T))e T + A, (2.11)

where A(T,) and A(T)) are unknown functions, A(7) denotes the complex conjugate of A(T), A =
Substituting (2.11) into Eq (2.10), and using the following two formulas [33-35],

@)

(woTo+0Ty) + e—i(w0T0+0'T])

2 b

Dl ~ (iw)%e", cos(woTy+oT)) =

the right-hand side of Eq (2.10) becomes

— w2kA ,
T = O otgint NS T 4 ce, (2.12)

[—2iwo D1 A —iwouA —3drA’A —3d, A’A — K| A — K> A(iwg)? +
where NST stands for the terms that do not produce secular terms and cc denotes the complex
conjugate of the preceding terms.

To eliminate the secular term from Eq (2.12), the following equation should be satisfied:

_ f— wikA
2iwoD1A + iwopA + 3d,AA + 3d,AA + KA + K A(iw,)! — Te'”' = 0. (2.13)
With the help of the Euler formula
i = (e"?)? = 72 = cos % +isin %, (2.14)

substituting the estimations A(T;) = , o(Ty) &« oT, — 6(T,), by separating the real and
imaginary parts of Eq (2.13), the differential equations governing amplitude a(7;) and ¢(T;) of A(T;)
are expressed as

a(g 1) elf(T1)

Ka ., . g« ,ua+f—w(2)kA

Dia = —T2w0 sin 575 2—0)0 sin ¢, (2.15a)
K _ K, + 3d,A? 3d — w2kA
aD1<,0=Ga—Law3 : OS@— 1 2 a- 2a3+f 0 cos . (2.15b)
2 2 2(1)0 86()0 2(1)0

By letting Dja = 0 and D¢ = 0 in Egs (2.15a) and (2.15b), the steady-state motions can be written
as
Kaa .\ gn_pa_ f- oA

> w, sin > 7 = z—wosintp, (2.16a)
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Ksa g-1 qr K, + 3d2A2 3d, 3 f_a)%kA
oca—- —w; S — — a— @ =—

2

Squaring and adding these two equations, the following amplitude-frequency response equation is
determined:

. 2.16b
2 20)0 86()() 2&)0 cos¢ ( )

1. q97T.» Ky 4
wy sin—)" + (00 — —w]

S@—K1+3d2A2— 3d, 2
2

a )2]a2 f_

[(_ 2 @ €055 2o 8g 2w

27

K, WkA

=2 .27

. . e RCRY)
Specifically, when all control gains are set to zero, i.e., K; = K, = 0, the amplitude-frequency

response equation under uncontrolled conditions can be derived, which is expressed as follows:

2 3d,A?  3d wWikA
T SO WS W S ke e (2.18)
4 20 8wy 2wy

The real solution a of Eq (2.18) determines the dominant part x, of the primary resonance response
amplitude. The maximum amplitude a,x of the response curve derived from Eq (2.18) is

(2.19)

It should be noted that the results of Eq (2.18) correct some errors in the amplitude-frequency
response equations presented in [10, 20], where incorrect results were obtained in calculating the
solution to Eq (2.9). This correction enhances the accuracy of the theoretical model and provides a
more reliable basis for subsequent analysis.

2.3. Stability of the steady resonant solutions

To conclude this section, Lyapunov stability theory is employed to examine the stability of steady-
state solutions. This mathematical framework, devised by Aleksandr Lyapunov in the late 19th century,
serves as a key tool for assessing the stability of dynamical systems. It comprises two main strategies:
The first (indirect) method and the second (direct) method of Lyapunov [36]. Here, we opt for
the first method, which entails linearizing the system around its equilibrium point and evaluating
the eigenvalues of the resulting Jacobian matrix. The equilibrium is asymptotically stable when all
eigenvalues have negative real parts; it is unstable when any eigenvalue possesses a positive real part;
and when eigenvalues have zero real parts, further analysis (like applying center manifold theory) is
required to judge stability.

Assume that (a, ¢) = (a”, ¢) is a steady solution of Eqs (2.15a) and (2.15b), and let Aa = a—a* and
Ap = ¢ — ¢*. According to Eqs (2.16a) and (2.16b), the linearized differential equations governing Aa
and Ay are

K — w2kA
DiAa = - 72(1)3 Usin % + %]Aa + fz—wz cos ¢* Ag, (2.20a)
Ky .1 qr K +3dA*> 9d, f- a)o
DA ————q — - - “1A A 2.20b
i [ 2a* %0 i 2 2woa* 8a)oa 1Aa = 2woa* sing” Ag. ( )
Let A2 J
Ky .1 qr U Ky .1 qr K, +3d,A 3d, ..,
P=220sin @ LBy m g 22 s & - y
2 @0 ST TT % 2w R
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K> 1 qr K+ 3d2A2 9d,
N =o — 22,0 at _ _
TT % 985 2000 800

(@),

and then the characteristic equation can be rewritten as

-P-2 -aM
%N _p_1l* 0. (2.21)
By expanding the determinant, one has
2 +2PA+ (P*+ MN) = 0. (2.22)

Consider when P > 0, where the steady solution (a, ¢) = (a*, ¢") is asymptotically stable if and
only if P> + MN > 0.

3. Analysis of the primary resonance characteristics

To investigate the vibration characteristics of spur gear systems, this section analyzes the effects
of meshing damping, load fluctuations, meshing stiffness fluctuations, and control parameters on
the primary resonance of such systems. This can be understood from the amplitude-frequency
equation (2.17), which is rewritten here in terms of the original system parameters as follows:

g-1 qr K, + 3d2A2 3d, 221 2 f - w%k{\
e T T VR V7%

Y. (3.1)

K, . K
[(g + jzwg 'sin %)2 +(W-wy— —w

The effect of different parameters on the amplitude of the resonant solutions is investigated numerically.

In the parameter study of the simplified gear transmission system, the basic parameters of the
selected spur gear sample are sourced from [20]. The initial dimensionless parameters of Eq (3.1)
are defined based on the physical parameters of the system as follows: The meshing damping ¢ = 0.1,
the fluctuation amplitude of time-varying meshing stiffness k = 0.2, the dimensionless static load
fo = 0.1, and the amplitude of dynamic load f = 0.3.

3.1. The influence of meshing damping

In the absence of feedback effects, i.e., K; = 0,K, = 0, the influence of meshing damping on
the primary resonance is illustrated in Figure 3, which depicts the amplitude-frequency relationship
of the gear system under different damping coefficients. In Figure 3(a), as u increases, the nonlinear
jump behavior of the system weakens and the resonance amplitude decreases. In other words, larger
values of u lead to a reduction in the unstable regions of the system. This indicates that the damping
coeflicient u is a critical parameter in spur gear systems: The smaller the damping coefficient, the
higher the amplitude of vibration during resonance. Figure 3(b) illustrates that when w exceeds the
primary resonance frequency and enters the unstable frequency band, a multi-valued phenomenon
emerges, which in turn leads to system instability.
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Figure 3. Effect of the damping coeflicient u on the amplitude-frequency curves when w, =
1,d, =0.5.

It is noteworthy that meshing damping is not a fixed parameter but can be adjusted in practice
through methods like lubrication optimization or structural design, which underscores its practical
significance as a key parameter for resonance control.

3.2. The influence of load fluctuations

When feedback effects are absent, the impact of load fluctuations on primary resonance is depicted
in Figure 4. In Figure 4(a), with the increase of the load fluctuation f, the nonlinear jump behavior of
the system becomes more pronounced, accompanied by an expansion of the resonance range and an
increase in resonance amplitude. Additionally, Figure 4(b) reveals the presence of multiple amplitude
branches as they enter the unstable frequency band.

0.1 - —w=2 e
; - S e gl

R I -
.
141 M — T 1

12 \ ~ |

08F \ ; 1
06F / e 1
04 Ve e ~

02r

L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) (b)

Figure 4. Effect of the load fluctuation f on the amplitude-frequency curves when wy = 1,
d, =0.5.
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This phenomenon aligns with the actual operational characteristics of spur gear transmissions: load
fluctuations directly affect the dynamic meshing force between gear teeth, intensifying the alternating
contact stress on the tooth surfaces. As fluctuations grow, the meshing process becomes increasingly
unstable, leading to more severe impacts and vibrations during tooth engagement. This not only widens
the frequency band where resonance occurs but also amplifies the amplitude of resonant vibrations,
which in turn may accelerate gear wear, increase noise levels, and even reduce the overall service
life of the transmission system. Thus, the observed trend in the figure underscores the critical need
to mitigate excessive load fluctuations in spur gear system design and operation to ensure stable and
reliable performance.

3.3. The influence of meshing stiffness fluctuations

The impact of meshing stiffness fluctuations on primary resonance is depicted in Figure 5.

—w=l2

-~ —w=13|]

—————w=14

16 =

(a) (b)

Figure 5. Effect of the meshing stiffness fluctuation k on the amplitude-frequency curves
when Wy = 1, dz =0.5.

Specifically, Figure 5(a) reveals that an increase in meshing stiffness fluctuation leads to a gradual
decrease in the maximum steady-state amplitude and a corresponding shrinkage of the unstable region.
This indicates that a moderate degree of stiffness fluctuation can effectively reduce the amplitude of
primary resonance and enhance the stability of resonant behavior. Such effect is closely associated
with dynamic tooth interaction, as controlled stiffness variations can mitigate the accumulation of
vibrational energy during meshing, thereby alleviating the intensity of resonant responses and reducing
the risk of excessive dynamic loads that may lead to tooth wear or structural fatigue.

Additionally, Figure 5(b) illustrates that when the excitation frequency enters the unstable region
in such systems, the dynamic behavior of the gears becomes more complex, with potential for abrupt
shifts in amplitude or erratic vibration patterns, and even sudden amplitude changes triggered by small
meshing stiffness fluctuations. This further underscores the significance of regulating meshing stiffness
fluctuations to maintain stable operation during resonant conditions.
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3.4. The influence of control parameters

In spur gear transmission systems, unstable transmission can be caused by meshing damping, load
fluctuations, and meshing stiffness fluctuations. To reduce system vibration and enhance operational
stability, the proposed P-FDDF controller will be applied here. Figures 68 present the primary
resonance characteristics of the spur gear system when specific control parameters change.

The effect of the proportional displacement feedback control gain on primary resonance suppression
is illustrated in Figure 6. As shown in Figure 6(a), compared with the uncontrolled case, the application
of proportional displacement feedback control alone does not reduce the peak amplitude of the primary
resonance. Instead, it shifts the resonance skeleton curve to the right, thereby altering the frequency
at which the peak amplitude occurs. Nevertheless, at a given excitation frequency w, a certain degree
of amplitude reduction can still be achieved. This is because the control introduces a linear force
proportional to displacement, effectively increasing the system’s stiffness. This modification changes
the dynamic equilibrium, shifting the resonance frequency, but the control itself provides no energy
dissipation mechanism to reduce the peak amplitude. A similar trend is observed in Figure 6(b). These
results confirm that proportional displacement feedback primarily tunes the resonance frequency rather
than attenuating the peak amplitude, which is consistent with its linear nature of modifying the effective
stiffness without altering the system’s inherent energy balance. This limitation of purely proportional
control underscores the necessity of incorporating the fractional derivative term to achieve effective
amplitude suppression, as demonstrated in the following analysis.

K,=0, K,=0

— — —K,=02K,=0

251
————— K

1
1
|=02K,=04
---------- K, =04K,=04

S 151

05 01l

K

w 1

(a) (b)

Figure 6. Effect of the proportional displacement feedback gain K; on the amplitude-
frequency curves when g = 0.9, wy = 1, d, = 0.5.

Figure 7 illustrates how the fractional derivative displacement feedback control gain K, affects
primary resonance suppression. As observed from Figure 7(a), compared with the uncontrolled case,
using this gain alone suppresses the maximum amplitude of primary resonance. A larger K, value
reduces the steady-state amplitude more significantly, enhancing system stability. Notably, when
combined with proportional displacement feedback control, this strategy both suppresses steady-state
amplitude and shifts the frequency corresponding to the maximum amplitude. This synergy holds
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critical importance in gear systems. The fractional-order derivative term, characterized by frequency-
selective damping and energy-dissipating properties, is highly effective at attenuating resonant
magnitudes and mitigating tooth meshing vibrations. Meanwhile, the proportional term complements
it by tuning the resonance frequency to prevent overlap with variable meshing frequencies, which is a
prevalent issue in gear system operation. Together, they tackle the dual challenges of amplitude control
and frequency tuning. They overcome the limitation of fractional-order control alone, which cannot
alter resonance frequency characteristics, and form a more comprehensive resonance control solution.

w=1.1
16| ———w=12
————— w=13

K,=0,K,=0

— — —K,=0,K,=04

251

1
1

----- K =02K,=04 14l
1

K,=0.2K,=0.6

S 151

051

(a) (b)

Figure 7. Effect of the fractional derivative displacement feedback gain K, on the amplitude-
frequency curves when ¢ = 0.9, wy =1, d, = 0.5.

Figure 7(b) shows the curves illustrating the influence of the fractional derivative displacement
feedback control gain on the steady-state amplitude of primary resonance. It can be observed that when
the gain K, takes values within a certain range, the steady-state amplitude increases. This phenomenon
may occur when the phase contribution of the fractional derivative term, under inappropriate values of
K, and ¢, leads to a constructive interaction with the excitation force, effectively introducing positive
feedback that amplifies the vibration response instead of damping it. Consequently, in suppressing
primary resonance in spur gear systems, selecting appropriate control parameters is critical to achieving
effective control outcomes.

Figure 8 illustrates the effect of the order of fractional derivative displacement feedback control on
primary resonance suppression. As observed from the figure, the smaller the order ¢, the larger the
steady-state amplitude of the primary resonance, with a corresponding rightward shift of the primary
resonance skeleton curve. Notably, the resonant amplitude reaches its minimum when g = 1. However,
fractional derivative displacement feedback control (with ¢ # 1) remains valuable in practical gear
system applications. This is due to the fact that integer-order control (where ¢ = 1) functions as a pure
derivative action, exhibiting high sensitivity to high-frequency noise in gear meshing signals. This
type of noise, originating from tooth surface imperfections or load variations, is prone to amplification,
resulting in unwanted oscillations. In contrast, fractional-order control allows for flexible tuning of
the order g between 0 and 1, balancing energy dissipation capacity and noise robustness. By adjusting
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the fractional-order ¢, it can achieve near-optimal amplitude suppression while mitigating the noise
amplification issue inherent to integer-order derivative control, making it a more adaptable solution for
the complex, noisy operating environments of gear systems.

0.8

q=1

07|~ ~gq=09 b
_____ 4=0.8 e,
""""" q=0.6 * R

0.1r i

0.6 0.8 1 12 1.4 16 18

Figure 8. Effect of the fractional-order ¢ on the amplitude-frequency curves when wy = 1,
d,=05,K, =02, K, =04.

3.5. Guidelines for practical parameter selection

To enhance the engineering applicability of the proposed P-FDDF controller strategy,
supplementary guidelines for parameter selection are established based on the numerical analysis in
Section 3.4.

The proportional gain K; is fundamentally correlated with resonance frequency shift, as it
effectively augments the system’s linear stiffness. This relationship is derived from the linearized form
of the stiffness term in the amplitude-frequency response equation (2.17), where K; explicitly modifies
the effective natural frequency of the system. For the dimensionless system with wy = 1, a practical
operating range of K; = 0.15 to 0.3 times the square of the system’s natural frequency (a)g) provides
sufficient frequency detuning. In practice, this ratio should be scaled according to the specific system’s
characteristic frequency.

The fractional derivative gain K, governs the damping intensity required for vibration suppression,
a characteristic directly influenced by the system’s load level. This relationship is reflected in
the damping term of the amplitude equation, 5 + %wg_l sin . For instance, numerical results
under a medium-load condition (dimensionless load amplitude f = 0.3) indicate effective vibration
suppression with K, =~ 0.1. Accordingly, light-load gears (load amplitude below 0.2 N) employ K,
values from 0.03 to 0.08. Medium-load gears (load amplitude between 0.2 N and 0.5 N) adopt K,
in the range of 0.08 to 0.15. Heavy-load gears (load amplitude above 0.5 N) require K, values from
0.15 to 0.25 to effectively counteract resonant vibrations induced by high operational loads. Higher
K, values under heavy loads are necessary to counteract the stronger resonant vibrations induced by
substantial external excitations.
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The fractional derivative order ¢ is correlated with the meshing damping of the system, as it
regulates both the frequency-dependent weighting characteristics and the memory properties of the
controller. Figure 8 demonstrates that a decrease in ¢ increases the steady-state amplitude and shifts
the resonance skeleton curve. Based on the trend observed in Figure 8, where ¢ = 1 yields the
lowest amplitude under ideal conditions, this value serves as a theoretical benchmark for performance
optimization. Nevertheless, to preserve the essential advantages of fractional-order control, such as
its superior noise robustness and adaptability to complex dynamics, practical implementations should
consider fractional values in the range 0.8 < g < 1. This approach retains the frequency-weighting
benefits of fractional calculus while still providing adequate vibration suppression. It thus represents
an optimal balance between theoretical performance and the practical requirements of general-purpose
transmission systems.

4. Time history and phase diagram analysis

To further validate the dynamic characteristics of the spur gear system under the P-FDDF controller,
time history curves and phase portraits (displacement vs. velocity) are analyzed to visualize transient
and steady-state behaviors. These analyses complement the amplitude-frequency response results from
Section 3. They reveal the system’s temporal evolution and stability transitions, thereby providing a
more comprehensive understanding of how control parameters and operational perturbations influence
dynamic performance.

To establish a baseline for evaluating the P-FDDF controller’s effectiveness, a numerical
investigation was carried out to explore the dynamic behavior of a spur gear transmission system
subjected to different parameter perturbations, with a specific focus on the system response in the
absence of active control measures. As illustrated in Figure 9, the simulation encompasses three distinct
operational scenarios that mirror realistic variations in loading and stiffness conditions encountered
in practical gear applications. System parameters were configured in line with the dimensionless
mathematical model presented in Eq (2.1) of this paper, with key values set as follows: u = 0.1,
di=1,d, =05, fo = 0.1, f = 0.3, and k = 0.2. The simulation employed MATLAB’s ode45 solver,
with a time span of 0 to 20 seconds and a time step of 0.01 seconds, to ensure accurate capture of both
transient and steady-state dynamic responses of the system.

Three critical operational conditions were analyzed: A normal operating condition with baseline
parameters (f = 0.3,k = 0.2) shown in blue; a large-load disturbance condition with dynamic
load amplitude f = 0.6 (100% increase) shown in red; and a large stiffness fluctuation condition
with stiffness fluctuation amplitude k£ = 0.5 (150% increase) shown in green. The time-domain
responses in Figure 9(a) demonstrate that the normal condition exhibits stable periodic oscillations with
amplitudes of approximately +0.1, the large-load disturbance condition shows increased amplitudes of
approximately +0.15, and the large stiffness fluctuation condition maintains similar amplitude levels
with modified oscillation patterns. The corresponding phase portraits in Figure 9(b) were generated
using data points collected after the initial 60% of simulation duration to characterize steady-state
behavior, effectively eliminating transient effects. All three conditions generate closed limit cycles,
confirming the existence of stable periodic solutions. The expansion of limit cycles under parameter
perturbations indicates increased oscillatory energy while maintaining structural stability. The analysis
verifies that the uncontrolled gear system retains its fundamental periodic nature under substantial
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parameter variations. However, it also demonstrates the system’s vulnerability to load and stiffness
fluctuations, highlighting an urgent need for an effective active controller to counteract such adverse
effects.

L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20 03

(@) (b)

Figure 9. Dynamic behavior subjected to different parameter perturbations: (a) time
responses, (b) corresponding phase portraits.

Building directly on the baseline analysis of the uncontrolled system, Figure 10 presents the
dynamic response of a spur gear system under P-FDDF control (K; = 0.2,K, = 0.4, = 0.9) for
three operational conditions: Normal (f = 0.3,k = 0.2), large load disturbance (f = 0.6,k = 0.2),
and large stiffness fluctuation (f = 0.3,k = 0.5). Figure 10(a) shows the time-domain displacement
responses. The normal condition exhibits regular periodic oscillations. The load disturbance condition
demonstrates increased amplitude response due to 100% higher dynamic excitation. The stiffness
fluctuation condition shows comparable amplitudes but modified oscillation patterns, indicating the
controller’s adaptation to parameter variations. Figure 10(b) displays the corresponding phase portraits.
All three conditions produce closed limit cycles, confirming stable periodic behavior. The red cycle
(load disturbance) expands notably compared to the blue baseline, reflecting increased oscillatory
energy. The green cycle (stiffness fluctuation) shows shape distortion, representing altered system
dynamics under stiffness variation. This direct comparative analysis demonstrates that the P-FDDF
controller effectively mitigates parameter perturbations: it maintains small-amplitude, stable periodic
motion across all tested conditions, outperforming the uncontrolled system by reducing oscillation
energy and enhancing dynamic stability.

To further isolate and quantify the resonance suppression effect of the P-FDDF controller, Figure 11
compares the time history responses of the uncontrolled and controlled systems under identical
operating parameters. The blue curve corresponds to the uncontrolled system with parameters g = 0.9,
u=01,k=02,f=01,f=03, w=12,wy= Vd, = 1,d, =0.5.
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Figure 10. P-FDDF controlled system response: (a) time responses under different working
conditions, (b) corresponding phase portraits.
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Figure 11. Time history responses of the controlled and uncontrolled systems.

This curve exhibits large-amplitude oscillations with sustained fluctuations, indicating strong
resonant vibrations caused by time-varying meshing stiffness and fluctuating loads. In comparison,
the system under P-FDDF control with gain parameters K; = 0.2,K, = 0.4, represented by the
red curve, shows a notable improvement in dynamic performance. The time history response of the
controlled system demonstrates a rapid decay of transient vibrations, quickly converging to a steady-
state amplitude of about 0.5. This swift stabilization underscores the efficacy of the fractional-order
derivative term in dissipating vibrational energy.

Complementing the time history analysis, the corresponding phase portraits provide deeper insight
into the system’s dynamic stability mechanisms. In the uncontrolled case, shown in Figure 12(a), the
trajectory is scattered and non-convergent, forming multiple irregular loops. This pattern signifies
chaotic dynamics and inherent instability, which aligns with the previously observed multi-valued
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amplitude phenomenon and confirms the system’s inability to attain a stable steady state without
control. In contrast, the phase portrait under P-FDDF control, presented in Figure 12(b), reveals a
distinct transformation into a compact and well-defined closed limit cycle. This clear periodic orbit
demonstrates the successful suppression of resonance and a significant enhancement of the system’s
overall stability.

0.6
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Figure 12. Phase portraits of the uncontrolled and controlled systems.

Finally, to investigate how adjustments to control parameters influence the controller’s performance,
Figure 13 illustrates the time history responses of the system under two distinct control parameter
sets. The blue curve, corresponding to the case with control gains set to K; = 0.2 and K, = 0.4,
exhibits a steady-state oscillation with a relatively large amplitude. In contrast, the red curve
represents the controlled system with gains K; = 0.4 and K, = 0.4. This configuration results
in a significant reduction in the vibration amplitude while maintaining a stable periodic response.
The comparison clearly demonstrates that increasing the K; gain effectively suppresses the system’s
oscillatory response, leading to improved dynamic performance.

In summary, the time history and phase diagram analyses demonstrate the superior performance
of P-FDDF control. It effectively suppresses the large-amplitude vibrations characteristic of the
uncontrolled system, ensuring rapid convergence to a stable, low-amplitude steady state. This behavior,
visualized as a compact limit cycle, provides comprehensive validation of the control’s ability to
mitigate primary resonance in spur gear systems. Compared with the prior study in [10] that utilized
time-delay feedback control, a method often associated with stability limitations and constrained
adaptability in strongly nonlinear regimes, the present work introduces a proportional-fractional-
derivative feedback controller. This approach effectively suppresses resonant amplitudes while tuning
the system frequency, leveraging the complementary actions of proportional control and fractional-
order damping, the latter offering frequency-dependent weighting and memory effects. The study also
corrects analytical inaccuracies in earlier amplitude-frequency equations, supplies practical parameter
selection guidelines tailored to distinct operational conditions, and demonstrates enhanced control
performance through comprehensive numerical simulations under various perturbation scenarios.
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Figure 13. Time responses under different control parameters.

5. Conclusions

This study establishes a comprehensive solution for primary resonance suppression in nonlinear
spur gear systems through the proposed P-FDDF controller. The developed dynamic model
incorporates essential nonlinearities including time-varying stiffness and backlash effects, while the
multiple scale analysis provides a theoretical foundation for amplitude-frequency characteristics
prediction. Stability analysis verifies that control parameters can effectively enhance system stability.
Numerical results reveal that increased meshing damping effectively diminishes the amplitude of
primary resonance, while greater load fluctuations amplify vibrational responses and expand the
resonance range. Meanwhile, meshing stiffness fluctuations exert a dual influence on system stability:
Moderate fluctuations reduce steady-state resonance amplitudes and shrink unstable regions, whereas
excessive or erratic fluctuations can trigger abrupt amplitude shifts and complicate dynamic behavior.

The efficacy of P-FDDF control is further confirmed through time history analyses and phase
portraits, which illustrate significant reduction in vibration amplitude and improved stability.
Uncontrolled systems exhibit persistent large-amplitude vibrations with irregular, non-convergent
trajectories in phase portraits, reflecting unstable dynamics. In contrast, under P-FDDF control,
time history curves show rapid attenuation of transient vibrations, converging to small steady-state
amplitudes, and phase portraits form compact, closed limit cycles, indicating stable periodic motion.
These visualizations confirm that the control strategy not only suppresses resonant amplitudes but also
accelerates the system’s transition to a steady state, reinforcing its effectiveness in stabilizing complex
gear dynamics.

In terms of control strategies, the P-FDDF controller achieves excellent performance by leveraging
its proportional term to tune resonance frequency and its fractional-order derivative term to suppress
amplitudes, addressing both amplitude-related and frequency-related issues. This research corrects
previous analytical errors in the amplitude-frequency response equations [10, 20], and offers insights
into how key parameters (e.g., meshing stiffness, control gains) influence the system.
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