In this paper, we mainly discussed an inhomogeneous Riemann-Hilbert boundary value problem for complex partial differential operators of higher order on the bicylinder $ D^2 $ in $ \mathbb{C}^2 $. Applying the classical Cauchy-Pompeiu formula and the Gauss theorem, we found out the solvable condition and obtained the specific solution of the inhomogeneous boundary value problem on the bicylinder $ D^2 $. The conclusion lays a solid foundation for further research on other types of boundary value problems concerning complex partial differential equations, such as mixed boundary value problems.
Citation: Yanyan Cui, Chaojun Wang. A higher-order Riemann-Hilbert problem for inhomogeneous complex partial differential equations[J]. AIMS Mathematics, 2026, 11(1): 1463-1488. doi: 10.3934/math.2026062
In this paper, we mainly discussed an inhomogeneous Riemann-Hilbert boundary value problem for complex partial differential operators of higher order on the bicylinder $ D^2 $ in $ \mathbb{C}^2 $. Applying the classical Cauchy-Pompeiu formula and the Gauss theorem, we found out the solvable condition and obtained the specific solution of the inhomogeneous boundary value problem on the bicylinder $ D^2 $. The conclusion lays a solid foundation for further research on other types of boundary value problems concerning complex partial differential equations, such as mixed boundary value problems.
| [1] | X. Li, An application of the periodic Riemann boundary value problem to a periodic crack problem, In: Complex Methods for Partial Differential and Integral Equations, New York: Springer, 1999. https://doi.org/10.1007/978-1-4613-3291-6_7 |
| [2] | J. W. Cohen, O. J. Boxma, Boundary Value Problems in Queueing System Analysis, New York: North-Holland Pub. Co., 1983. |
| [3] | M. Reed, Abstract Non-Linear Wave Equations, Berlin: Springer Lecture Notes in Mathematics, 1976. https://doi.org/10.1007/BFb0079271 |
| [4] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
|
| [5] |
Z. Y. Wang, S. F. Tian, J. Cheng, The $\bar{\partial}$-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
|
| [6] |
J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Phys. D, 432 (2022), 133162. https://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
|
| [7] |
X. Wu, S. F. Tian, On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: Without solitons, Phys. D., 448 (2023), 133733. https://doi.org/10.1016/j.physd.2023.133733 doi: 10.1016/j.physd.2023.133733
|
| [8] |
Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
|
| [9] |
Z. Q. Li, S. F. Tian, J. J. Yang, Soliton resolution for the Wadati-Konno-Ichikawa equation with weighted sobolev initial data, Ann. Henri Poincaré, 23 (2022), 2611–2655. https://doi.org/10.1007/s00023-021-01143-z doi: 10.1007/s00023-021-01143-z
|
| [10] |
Z. Q. Li, S. F. Tian, J. J. Yang, E. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equ., 329 (2022), 31–88. https://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003
|
| [11] |
O. Suzuki, Z. D. Zhang, A method of Riemann-Hilbert problem for Zhang's conjecture 1 in a ferromagnetic 3D Ising model: Trivialization of topological structure, Mathematics, 9 (2021), 776. https://doi.org/10.3390/math9070776 doi: 10.3390/math9070776
|
| [12] |
Z. D. Zhang, O. Suzuki, A method of the Riemann-Hilbert problem for Zhang's conjecture 2 in a ferromagnetic 3D Ising model: Topological phases, Mathematics, 9 (2021), 2936. https://doi.org/10.3390/math9222936 doi: 10.3390/math9222936
|
| [13] | D. Pompeiu, Sur une classe de fonctions d'une variable complexe et sur certaine equations integrals, Rend. Circ. Mat. Palermo., 35 (1913), 277–281. |
| [14] | S. Rogosin, A. O. Çelebi, Analysis as a Life, Birkh$\ddot{a}$user: Springer, 2019. https://doi.org/10.1007/978-3-030-02650-9 |
| [15] |
I. N. Dorofeeva, A. B. Rasulov, A linear matching problem for a generalized Cauchy-Riemann equation with super-singular points on a half-plane, Comput. Math. and Math. Phys., 62 (2022), 1859–1864. https://doi.org/10.1134/S0965542522110069 doi: 10.1134/S0965542522110069
|
| [16] |
A. Mera, N. Tarkhanov, An elliptic equation of finite index in a domain, Bol. Soc. Mat. Mex., 28 (2022), 49. https://doi.org/10.1007/s40590-022-00442-7 doi: 10.1007/s40590-022-00442-7
|
| [17] |
V. Gutlyanskiĭ, O. Nesmelova, V. Ryazanov, A. Yefimushkin, On boundary-value problems for semi-linear equations in the plane, J. Math. Sci., 259 (2021), 53–74. https://doi.org/10.1007/s10958-021-05604-y doi: 10.1007/s10958-021-05604-y
|
| [18] |
D. E. G. Valencia, R. A. Blaya, M. P. R. Alejandre, A. M. Garcia, On the plane Lamé-Navier system in fractal domains, Complex Anal. Oper. Theory, 15 (2021), 43. https://doi.org/10.1007/s11785-021-01088-5 doi: 10.1007/s11785-021-01088-5
|
| [19] |
L. K. Ha, $C^k$-estimates for $\overline{\partial}$-equation on certain convex domains of infinite type in ${\mathbb {C}}^n$, J. Geom. Anal., 31 (2021), 2058–2087. https://doi.org/10.1007/S12220-019-00332-X doi: 10.1007/S12220-019-00332-X
|
| [20] |
J. Bory-Reyes, D. Barseghyan, B. Schneider, Dirichlet-type problems for certain Beltrami equations. Mediterr. J. Math., 18 (2021), 103. https://doi.org/10.1007/s00009-021-01760-2 doi: 10.1007/s00009-021-01760-2
|
| [21] |
L. Kim Ha, Hölder and $L^p$ estimates for the $\overline{\partial}$-equation in a class of convex domains of infinite type in ${\mathbb {C}}^n$, Monatsh Math., 190 (2019), 517–540. https://doi.org/10.1007/s00605-019-01327-0 doi: 10.1007/s00605-019-01327-0
|
| [22] |
M. M. Sirazhudinov, S. P. Dzhamaludinova, Estimates for the locally periodic homogenization of the Riemann-Hilbert problem for a generalized Beltrami equation, Diff. Equat., 58 (2022), 771–790. https://doi.org/10.1134/S0012266122060064 doi: 10.1134/S0012266122060064
|
| [23] |
S. Wang, F. He, On the variable exponent Riemann boundary value problem for Liapunov open curve, J. Geom. Anal., 33 (2023), 62. https://doi.org/10.1007/s12220-022-01113-9 doi: 10.1007/s12220-022-01113-9
|
| [24] |
M. Marin, S. Pirlog, O. M. Hapenciuc, Study of plane boundary value problems in the asymmetric elasticity theory, Contin. Mech. Therm., 37 (2025), 79. https://doi.org/10.1007/s00161-025-01412-w doi: 10.1007/s00161-025-01412-w
|
| [25] |
S. Alexandrov, E. Lyamina, Y. R. Jeng, A new method of solving plane-strain boundary value problems for the double slip and rotation model, J. Mech., 40 (2024), 53. https://doi.org/10.1093/jom/ufae004 doi: 10.1093/jom/ufae004
|
| [26] |
H. Emkanpour, N. Taghizadeh, Three boundary value problems of the Cauchy-Riemann equation in the Eclipse domain, Complex Var. Elliptic Equ., 69 (2022), 510–529. https://doi.org/10.1080/17476933.2022.2151004 doi: 10.1080/17476933.2022.2151004
|
| [27] |
S. Sambou, E. Bodian, W. O. Ingoba, I. Hamidine, Solution of the $\partial$$\overline{\partial}$-problem in a pseudoconvex domain of ${\mathbb {C}}^n$, J. Anal., 30 (2022), 1361–1375. https://doi.org/10.1007/s41478-022-00385-2 doi: 10.1007/s41478-022-00385-2
|
| [28] |
D. Chakrabarti, P. S. Harrington, Exact sequences and estimates for the $\overline{\partial}$-problem, Math. Z., 299 (2021), 1837–1873. https://doi.org/10.1007/S00209-021-02750-6 doi: 10.1007/S00209-021-02750-6
|
| [29] |
M. Fassina, S. Pinton, Existence and interior regularity theorems for $\overline{\partial}$ on q-convex domains, Complex Anal. Oper. Theory, 13 (2019), 2487–2494. https://doi.org/10.1007/s11785-018-0874-6 doi: 10.1007/s11785-018-0874-6
|
| [30] |
A. El-Gasmi, The Dirichlet problem for the complex Hessian operator in the class $N_m(\Omega, f)$, Math. Scand., 127 (2021), 287–316. https://doi.org/10.7146/math.scand.a-125994 doi: 10.7146/math.scand.a-125994
|
| [31] | O. Suzuki, The problems of Riemann and Hilbert and the relations of fuchs in several complex variables, In: Equations Différentielles et Systèmes de Pfaff dans le Champ Complexe, Berlin: Springer, 712 (1977), 325–364. https://doi.org/10.1007/BFb0062822 |
| [32] | A. Okay Çelebi, Neumann problem in polydomains, In: Analysis, Probability, Applications, and Computation, Switzerland: Springer, 2019. http://doi.org/10.1007/978-3-030-04459-6_12 |
| [33] |
A. Mohammed, The Riemann-Hilbert problem for certain poly domains and its connection to the Riemann problem, J. Math. Anal. Appl., 343 (2008), 706–723. https://doi.org/10.1016/j.jmaa.2008.01.053 doi: 10.1016/j.jmaa.2008.01.053
|
| [34] |
Y. Qiao, Y. Cui, Z. Li, L. Wang, k-holomorphic functions in spaces of several complex variables, Complex Var. Ellipt. Equ., 65 (2020), 1826–1845. https://doi.org/10.1080/17476933.2019.1681417 doi: 10.1080/17476933.2019.1681417
|
| [35] |
Y. Cui, C. Wang, Y. Xie, Y. Qiao, Boundary value problems of conjugate and generalized k-holomorphic functions in $\mathbb{C}^n$, Acta Math. Sci., 44 (2024), 1837–1852. https://doi.org/10.1007/s10473-024-0511-6 doi: 10.1007/s10473-024-0511-6
|
| [36] | I. N. Vekua, Generalized Analytic Functions, Oxford: Pergamon Press, 1962. https://doi.org/10.1007/3-540-34459-4_4 |
| [37] |
H. Begehr, G. N. Hile, A hierarchy of integral operators, Rocky MT. J. Math., 27 (1997), 669–706. https://doi.org/10.1216/rmjm/1181071888 doi: 10.1216/rmjm/1181071888
|