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1. Introduction

The Riemann-Hilbert problem is a fundamental type of boundary value problem. The
Riemann-Hilbert problems for inhomogeneous complex partial differential equations are widely used
in the research of mechanics, physics, chemical cycling systems, laser and fiber optic communication,
electrical engineering, epidemiology, and other fields. For example, inhomogeneous Riemann-Hilbert
problems were applied in studying crack problems in engineering [1], Markov processes in queueing
system theory [2], and non-linear wave equations [3]. However, the research on these problems often
focuses on low-order, partial differential equations or discussions in low dimensional spaces.
Therefore, we hope to obtain relevant conclusions on higher-order Riemann-Hilbert problems or in
higher dimensional spaces, which is also the focus of this study. The conclusions drawn in this article
will generalize the existing results of boundary value problems, and would provide new methods for
high-dimensional signal processing in the engineering field.

The formation and development of the theory for partial differential equations are closely related to
the development of physics and other natural sciences. With the development of science and
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technology, the research on inhomogeneous Riemann-Hilbert problems has run through many fields
such as biological science, information science, geography science, astronomical science, and
environmental science. Therefore, the study of Riemann-Hilbert problems for inhomogeneous
complex partial differential equations not only has important scientific significance, but also has a
positive promoting effect on the progress and development of society, as well as promoting the
development of mathematics in function theory, algebra and topology, differential equations,
differential geometry and other aspects.

With the development of modern hydrodynamics, physics and engineering technology, many new
boundary value problems have emerged, which often lead to some related problems such as
high-order nonlinear partial differential equations, degenerate type equations and mixed-type
equations. These equations are usually very complex and difficult to solve, and have also attracted
many scholars to study them. Li, Tian and Yang [4] systematically studied the general n-component
nonlinear Schrodinger equations by the Riemann-Hilbert method. They obtained the corresponding
solutions and presented the interactions between solitons from weak to strong. They also proposed a
conjecture concerning the dynamical behaviors. Wang, Tian and Cheng [5] successfully derived the
three-component coupled Hirota equations by the d-dressing method, and first obtained the soliton
solutions of the equations. Yang, Tian and Li [6] successfully obtained the solutions of the
Riemann-Hilbert problem concerning the focusing nonlinear Schrodinger equation with multiple
high-order poles under nonzero boundary conditions for the first time, by solving the corresponding
algebraic system. Wu and Tian [7] successfully obtained the long-time asymptotic solution of the
nonlocal short pulse equation concerning a suitable Riemann-Hilbert problem, by using the nonlinear
steepest descent method. In addition, Li, Tian, Yang and Fan [8—10] have done some interesting work
in investigating the Cauchy problems of the complex short pulse equation and the
Wadati-Konno-Ichikawa equation with finite density initial data in the space-time solitonic regions
and weighted Sobolev space. The problems are associated with the corresponding Riemann-Hilbert
problems with the initial boundary value conditions. By the nonlinear 0-steepest descent method, they
derived the long time asymptotic behaviors of the solutions of these equations in a fixed space-time
cone. Based on the behaviors they proved the soliton resolution conjectures and the asymptotic
stability of the solutions of these equations. Applying a method of the Riemann-Hilbert problem,
Suzuki and Zhang [11, 12] discussed Zhang’s conjectures 1 and 2 in a ferromagnetic 3D Ising model:
trivialization of topological structure and topological phases. They constructed the solutions to
Zhang’s conjectures 1 and 2 by use of the monoidal transform. The above results are the latest
achievements on the solutions and applications of Riemann-Hilbert boundary value problems.

The Gauss theorem and Pompeiu formula [13] play an important role in the function theory of
generalized analytic functions. Many partial differential equations were studied on the basis of the
Pompeiu formula, see, for example, [14-17]. The classical Pompeiu formula was generalized to
different forms which are closely linked to the corresponding singular integral operators. Applying
the properties of the singular integral operators, many boundary value problems for higher order
complex partial differential equations or systems have been resolved [18-21].

Boundary value problems for functions of one complex variable, involving homogeneous or
inhomogeneous problems, have been widely investigated on different domains in the complex plane
C [22-26]. With the advent of explicit integral representation formulas for functions of several
complex variables, some corresponding boundary value problems were studied in C" [27-30]. For
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example, Suzuki [31] discussed Riemann and Hilbert problems on Stein manifolds and deduced the
relations of Fuchs on projective algebraic manifolds of high dimensions in several complex variables
by computing the characteristic polynomials. Celebi [14] developed a unified method to derive
integral representations for functions in C", based on which the Schwarz and Dirichlet problems for
higher-order model and linear equations were discussed. Applying the properties of higher-order
Neumann functions, Celebi [32] studied the Neumann problems for higher-order model equations in
the unit polydisc in C?>. Mohammed [33] studied the Riemann-Hilbert problem for holomorphic
functions in higher- dimensional poly domains. Although different types of boundary value problems
have been discussed in C", the above achievements are basically related to analytic functions. The
passive and irrotational physical fields have prompted people to study a wider range of function
classes than analytical functions, such as polyanalytic functions. There have been lots of results on
the study of polyanalytic functions in C, but there are few in C".

In 2020, Qiao, Cui, Li and Wang [34] obtained the Cauchy integral expression of k-holomorphic
functions on the bounded domain G = G; X G, X --- X G, in C":

k—1 n

f =1 W) 0

. J— . _kl - "n
6 0 He o KT -ant .o,

W@ = G

Applying this integral expression, we can discuss some boundary value problems for higher-order
complex partial differential equations. In [35] Cui discussed the Riemann boundary value problem on
the polydisc in C2, applying the properties of the Cauchy-type singular integral operators with
k-holomorphic kernels. By the above Cauchy integral expression, the Riemann-Hilbert problem
(homogeneous and non-homogeneous) for k-holomorphic functions can be discussed in the
following, in which the methods, the area, and boundary conditions are different from what is in the
above literatures.

In this paper, we mainly study a kind of Riemann-Hilbert problem for complex partial differential
operators of higher order on the bicylinder, and obtain the specific solutions of the boundary value
problem. The conclusions generalize the existing results of the corresponding Riemann-Hilbert
boundary value problem for lower-order partial differential equations.

Throughout this paper, D is the unit disk, D*> = D x D is the bicylinder in C2, and the characteristic
boundary of D? is §,D>.

2. Some lemmas

To get the main results, we need the following lemmas:

Lemma 2.1. [36] Letw € C'(G;C)NC (G; C), where G is a bounded smooth domain in the complex

plane. Then
dO'z_'
w(z) = —f (()— - ;f 5(4)— (2.1)

f wz(2)do, = l w(z)dz, f w(2)do, = —i. f w(z)dz. (2.2)
G 2i Joc G 2i Jog
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Lemma 2.2. Let D? be the bicylinder in C? and y € C(0yD?), and let

1 20,8 dgdg,
= ~1
"R (2ﬂi)2L027(§)[(§1—Zl)(gz—zz) ] 4l

k-1 —_ k(o _ ke
+(2;i)2f3w2 Z%[(Zl 01) N (22—=0n) Hlf‘é)'sz({)][ 2014, _1]d§1d§2

oo ki k! 4vh Q-2 14 (2.3)
k342 #0
1 @G- @) = (=L (=0 oy e, A1
+(27r)2ij;oDzS{kl’kFO K, 1) T I2W @) 0

Then 8% W(z) = 0 = 85 W(z) and RW({) = y({)({ € oD?) if and only if

Z déid,
v(OR ZIZZ_
LODZ (G2 22) 6182

< 2= (2 =0
= faopz k;() Q&[(Zl—&)k (22—0)" 8’262W(g>]%[ 4% l]dgld@

(2.4)

K1k ! G-)-2) 2V 0l

2,72
K320

Proof. Suppose that W(z) is the solution to RW({) = y()({ € 8,D?) and 3% W(z) = 0 = 3% W(2).
Applying the Cauchy integral expression of k-holomorphic functions, W(z) can be expressed as

1 - (@i- )z -0
W@ = W d. 25
(2) (2mi)? LODz kl%::() I — 2l —20) 0% (§)dédd, (2.5)

—2
On the other hand, as (%, %) ¢ D , then we have that

1 © @ -0 -0k Tdly  dl

0= oo w = —,
Qri)* Jo,p2 ot ki lky! G- b ({)1 -0 1 -0
which leads to
1 @ -5 - 0 212 dgdé,
0=—0 8w . 2.6
Q@ni)* Joypr A, kilky! R ({)(éu] —2)( - ) L& (20
Adding (2.5) and (2.6), we get that
W) = f { OO+ 212 R o @M @-G)° F W) 2.7)
2ni)* Jo,p2' (G =202 =22)01 8 o kilky! 4o :

ho-am g "2 @G- @-0)°
(G1—z2)(—22)00 o ki k!

1 f {[ 2014, _1_21(52—22)+Zz(§1—21)]
Qni)* Joop2 L& —21)(L2—22) (§1—z21)(r—22)

GO W(Q)}ddde,
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Z (21— (2 = H)e 97 lakz
ki,k=0 ki ks ! 4152
- +nl-z2) 1 1. @ @-L)
3
e k;O k!

1 2014, (-0 (=0 544 did,
_ SIS e w
(2ﬂi)2fa()pz[(§1—21)(§2—22) k; ky k! 2%,V (©) ST

1 2 2 -0 (-0 T déidés
-— 0. 0w
(27Tl')2faoD2(§1—Zl+ 52—22),( o ky k! 2% Lo

1 @G- (-0 515" dgidd,
5 0 oEwW )
- (Zﬂi)ZLODzl o kilky! a-a € I4T4)

R IZW(Q)}d¢ de,

As

W)

QriYJop 1—21 -2 o ki k! LG

_ lf @ -0 @-b)° dé,
- Qnmi)? ky k! o

1 S@=-h(-6)e k1 aks 1 ¢ B
* (Zﬂi)zf ky k! 6 0 W({)Z iy diHrb—=0+0=0

1 ( 21 2 ) @G- (-0 klakz d¢id,

ki ako
0,9,

(2.8)

2
90D? 1 =0 o

di

2
90D iy k=0 2

and

1 @ -0 (@ -G)° 515" dgdés
3 01O W
<2m>2faom’ Lkl %O

1 f 5| @) @) -0 (D)
Q@02 Jape ™\ 4

(2.9)
dg\di,
414

which is due to (2.5), plugging (2.8) and (2.9) into (2.7), we get W(z) = (2.3) + ic (where ¢ = IW(0)).
Equation (2.3) follows that

+i3W(0),

A aew
i ey ! LW

44 B l]dfldfz (2.10)

1
RW() = —— 29(OR| ————
© (2ﬂi)2LOD2 76 [(51 —z2({2—22) 44

k—

! fa . Z oy [a=0) @ ob) i) w[ bl 1jdads
057 kyka=0

" iy ks ! GGz 20 06

K43£0
Applying the properties of the Poisson kernel of D?,

1 f ) 1 -z 1-l|zl?d&ds
60D2

lim ——
—doD? (2mi)? 16— 2P 1 — 2P 446

= ¥(2),
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i.e.,

m L _ ab 1 222 \d§dd
: v (OR -5 =2 = (2). 2.11
o (27Ti)2‘[a;)Dz 7 ”(Q-Zl)({z—Zz) 2] ’ (G2 Q12 ra) 1D

Equations (2.10) and (2.11) lead to (2.4) if RW() = y({)(¢ € 0oD?).

On the other hand, (2.3) follows 3% W(z) = 0 = 8% W(z) obviously. In addition, by (2.10) and (2.11),
we get lim,_,5,p2 RW(2) = ¥(z) on the condition of (2.4). Therefore W(z) satisfies RW({) = y({)({ €
00D?), so we get the desired conclusion. O

Lemma 2.3. [37] Let p € Cy(C), G be a bounded domain in the complex plane, and

Tm,np(z) = f(; Km,n(z - éV)P(g)dUg,

where o)
m " _m—1=zn— 1 .
W Z m < 0;
=m!(=1 mlznl I’l<0'

b

K@) =4 "7 nt o
e 2 log P - Z%
Then 0:(Tnup) = Tyn-1p and (T ,p) = T o if m+n > 1.
In particularly, for m = 0,n = 1 in Lemma 2.3, Ty, 10(z) = = fG £4) Z=-do is usually denoted by the
T-operator Tp(z), and therefore 0:Tp(z) = Ty 0p(z) = p(2).
3. The Riemann-Hilbert BVP

Problem 3.1 (Problem RH). For vy, fy € C(0yD") (k > 1, redk € Z*) being given functions with

k.
7 nggé(Z) = 7 Iqu"(Z) (ki,kg > 1, ki, k, € Z" for 1,q =1,---,n), find a function W(z) on D" such that

RIWOI =yQ) (£ €D,
WO = fu(z) (ze D),

where p = (p1, P2, » Pu)s P1>P2>" "+ » Pn € Z, and the mixed partials of the compatibility condition
are the given functions.

Theorem 3.1. Let y, fy € C(,D?) (k > 1, k € Z*) with & f’“@ 7 ’f"kq“)

l,g=1,2), and let

(kiky = 1, ki, k, € Z* for

Wo = (To)1 fik + (Tog)2for — (TO,k)Z(TO,k)lalnglk (k=1,2,--+), 3.1
ky ki
AQ = Y CRCHI fam, = [(Tosem G fitc+ (Toxm 205" fo 52
m1=0 m2=0 ‘ » ‘ M

= Tosem)2Toxem 105, full0, "8 9787 (kiky = 0,1, k= 1),
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with

(3.3)

{<T0k>~f<zl- = % b o S f(@dorg (= 1,2),
(T-102f @) = 2 [, @25 (i; L1 f(o)dor,.

where Dy = D, = D. Then Problem RH on D? is solvable, and the solution is as follows:
(i) In the case of p1, p2 = 0,

k—1

S1 52 +00
— 1 =1
W(Z) = Zflzgzgo(z) + Z Z Z Z a(w—pl)(VQ—pz)SﬂlszlzZ‘l)lZZZZI IZZ *+ WO(Z)a (34)

$1,52=0 ;=0 I,=0 v{,»»=0

on the condition that

R 4% d¢dé, 2 %f iz g —— -1
L:)Dz(f) (G2)(lz) §182 +(k—1)! { D2[122 oSOz = 6)

21 )

P2 _P1 k—1
P e fu@a - 0 [ 713 7doados) 53)
-1 —
(- (—-0)k Iste 11d{1dd,
= ‘R AR _—
‘L:)Dzklk o[ kilky! ({)] [(51—21)(52—22) ] IST<a
k430
where
— 1 2018, dsdd
- 1
#)= (2r )ZL)DZ (g)[(fl—Z1)(§2—Z2) ] 418>
Jared — u(y {1)" 1 Zz(Zz 52)k1
_77(]1{_21)! f Ji(1, z22) 11_ v f Sz, H)———=— - gz]
1 pl i 21(z1 = ) R Zz(Zz—fz)kl
_— 0 = 0 =
72 (k- 1>JD N Ty oo e R 2o ey
4% g u =) 2z - o) (3.6)
TGO T T g o
@)1 @) 2414 1¥édd,
R A -1
+(27ri)2ja;DzZ [ kilk,! (éu)][({l—zl)(fz—zz) Yag
34930
1 O @M R)R | qdadd
— J A ,
" @ faoDz k;O ki lka! o5,
and a,—pv,—p2)silisal GF€ arbitrary complex constants satisfying
k=1 k=1 k=1 s
D D0 D Aty =0 (01 = py+ky = 1,2, k=),
e e 3.7)
Z A +1) (v +h)sili 2l = 0 (Vl 2 p+ k, V) 2 _p2)
$2=0 I,=051=0 [;=0

AIMS Mathematics Volume 11, Issue 1, 1463—-1488.



1470

k-1 s2 k-1 s

Z Z a’(V1+11)(Vsz)Slllszlz =0 (-p1r=vi<piL,v2pr+ k),

(=]
~
%)
Sl
(=]
©“
I
(=]
_‘T‘
O

Z s ostoysitssts + @ otrsmits | =0 (=p2<v2<pa),

2
k-1 52 S1 52 -
E a(Vl-Hl)(PzHWz)Slll3212+Z § E Za(ll—vl)(lz—pz—l—t)slllszlz =0,

s1,52=0 1L=0 [;=0 sy=t+1 h=t+1 51=0 [} =

k-1 s k-1 S
Z Z Z Za(h—p]—l—t)(lz—vz)mll wh =0 (v £ —pr—k),

52=0 Ih= Osl t+1 11 t+1

k-1 s k-
Z Z Z Za(p1+l-i-t-i-ll)(V2+12)S111S212 O (VZ > PZ + k)

s2=0 6,=0 51=0 [;=
k=1 s2 k-1 s S1

ZZ[ZZQ(MHWI)(VHz)HhS212+Z El(ll Pl—l—l)(lz—VZ)slllszlz] O(—p2<v2<p2)

s,=00,=0 5;=01[;=0 Sl—t+111 t+1
k-1 s2 k=1 s 52

ZE E ZQ(P1+1"+"11)(P2+H+H2)3111S212+Z Z Z Ey(ll Pl (lpl-)silis2b = =0,

S‘Q—Olz—OYl 0]1 Y2—t+llz—l‘+l si=t+11=t+1
- sy k=1 s1

k=1 s k- s
Z Z Z Za/(ll P pr-l-)sily ?212+Z Z ZZ(I(PIHWI)(Zz Pz—l—t)vlllszlz_o

5=0 [=0 s;=t+l1;=t+1 so=t+ll=t+1 5;=0 [;=0

where —py <vi < pyin(3.8)andt=0,1,--- k-2 (k> 2).

(ii) In the case of p; < 0 and p, > 0,

51 52

~ I =1
W(Z) —ZTZ?‘P(ZN;J] 0+Z Z Z Z Ay (vy— p2)51115212Z1 plZ;2Z1 1Z2 2+ WO(Z)a

51,52=0 1;=0 I,=0 v{,»»,=0

(9(2) and vy, (v,-p,)s,1, 5,1, aTe the same as in (i)) on the condition that

2 2122 d&di,
= R —
(2mi)? LDZY(O G~z )(42—22) IaTe:

2 - 1( g)
‘R 2(k 1)'f5§z évz Ju( D]z o 1{ P Zlgl_IZ] +g1(§1,z1)—g1(§1,())}do-gldo-{z

L2 R (22— &)
l(k 1),ff2k(21,§2)ﬁd0'§2

—p2+1
2 f (Zflk(o[ "'&—gm{hzmgl(a,m]%d o do,

RI-DIT
Zgz+1 Z]{l P1— Zz g2)k 1
T Rh-D Uy G 04113;{(4)(741%61%
Zizodo g, do
S —P1 #P2 T ~ a T_ _ T_ T ~ a’f \ K2 Ie (z
+ f§ O 1T x-)0of uHT-1.007 ok «(T-1 10)2(To a1k &ﬁk]({/(l_zlgl)(l—@gz)}

(3.8)

(3.9)

(3.10)

(3.11)
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2 f %[(Zl =)k (Zz—évz)kz ({)] [ $H1dn 1]d§1d{2
3D 41 15=0

(27”)2 kilky! Gzl z2) 2 4ids
K330
where
, 1 i =)
, =—— [or = ! — , 3.12
81(¢y,21) k(=p; — 1)!{ & [({14_1)(1 —Z1§1)]}§1=0 ( )

andforl=0,1,---,—p; — 1,

fa%{ffpl &P figeny—(To,)1 fik —(To,k)zai-fl_lfzk +(To,k)z(To,l)15§2f1k](§)}% 0. (3.13)
D, ‘ *

(iii) In the case of p1, p» <0,

S1 52

W(@) =2 22|y =prmo+ Z > Z“’ B R L (€9) (3.14)

s1,52=0 11=0 [,=0 v{,12=0

(p(2) and @y, y,5,1,5,1, are the same as in (i)) on the condition that

Z déidi,
YOR—IZ
fﬁoD2 (G21)(lz) §182

_ —p1-1 g=pr—la 4. $H2ie L7122

- m{fb SR agzaé“lw‘)(é)[(a—zl)(l ~26)  (1-240)(G=)
,05,Wo(z1, {2) 0, Wo(&1,22)

" 1——@4“2‘1% +7212," f 4" 1_—114«1‘10_:1}

]a’oigl doy,

+17,"' 2 { :

477
—‘R fflpl P (Tor- D0z 1HT0 5107, fok~(To j1)2(To k- 1)15]22f1k (5)%%'610‘4#0'@}
(=4 (Zz—évz)k2 I4T4) 11d¢idd,
R _Z
+»£0D2 ka0 [ kilk, ! ({)] [(51—21)(52—22) 2] {10
k%;kgaeo
(3.15)
and
l;D?% 4" oA To)fuATo)205, fuHTo2(To szlk](f)}g%=0, (3.16)
£D?% G 1)—(T0k)1(9k lflk_(TOI)Zka'*’(TOI)Z(TOk)l zflk]({)}%zo '
forl=0,1,---,—p1—1 andr=0,1,--- ,—p, — L.
Proof. For
-1 1 -0
Tosf@ = 7 [ G e fdo, (3.17)
by Lemma 2.3,
(Torf (@) = Toof (@) = f(2). (3.18)
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Applying (3.18) and 02 fi, = 0" far,, we get that

) ~ —_1 1 (-o)"!
% Wo(@) = fu@ + — fD k-D! &-2

Sl @) ol (@) (3.19)
”\fl)z(k—l)! H-2 821[7r(k—1)!£)l li-2 852f1k(£l’§2)d0'gl]d0'{2
= fi(@).

Similarly, 6’2‘2 Wo(z) = fa(z), and thus Wy(z) is a particular solution to 6’2‘IW(z) = fiul = 1,2). The
general solution is W(z) = ¢(z) + Wy (z), where ¢(z) is k-holomorphic on D?, and

a]z(Ika(Zl, (2)d0—{2

RGO = RULT' IV = Wo(DI = () = RIZT I Wo(D)] = yo(0)-

(i) In the case of py,p, > 0, let z,”'2,"¢(z) = @(z), and then ¢(z) is k-holomorphic if @(z) is k-
holomorphic. By Lemma 2.2, z/"'25*¢(z) is a particular solution to R[{]' Y ¢(0)] = y0({), where

_ 1 2060 déydg,
= -1
#(2) (2ni>2fwy°(§)[(a—zl)@z—zZ) ] L

k-1

1 Z%[(HW (2-0)"

208 fads

- 81516152 =PI #P2
e P e AL R eyl oY
kf;kgqeo
1 S[k_ 24" @0)e~(=4)A (-H)k 51 5 (711 7 ]d§1d§2
+(27T)2ifaoD2 ot J2=0 ki lky! RASRERAY ISTCN

on the condition of (2.4) in which y is replaced by yo = () — R[ZI"Z*Wy({)] and agag W() is
replaced by ag ag [P 2 (W — Wp)(0)), that is,

2 dad 7 ——  uh  dhd
[ om0 [ @papwee O 2 T

(G—=21)(=2) 6162 o (G—2)(G=2) 26162
k-1 —_—
(z1—{) (-0 414 11d{idd, (3.21)
= ‘R AR __
faoDz 2T o e e
k42 £0
where
ko
AQ) = ORI (W = Wo)D] = UG Y, Crrd (W = Woyd ™ &7 1) (3.22)

m;=0

kz k2
=G 1D G fom =0 Wo)d ™M &1y =) CrUR L (fom =0y WO ™ &7

m;=0 m1=0
) ki
— Z le{z sz(amzf _ amzaml 1% )akl—mz _Pl}akz—mlg_ p2
ka li N0z J2m a o 0%, 1 1%, 52
m1=0 my=0
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k k
_ Z Z le Cz:zalgz—ml Pzalq—mz Pl agz[fzml (é«) _ 02%1 Wo(f)]

m1=0 my=0

ke ki
my ~my akying pz k1—mo 7P
35 s oy

m1=0 mp=0

: aZz{fzml ) - [(TO,k)lagl Sk D) + (T gy )2 f21 () — (To,k—ml)2(T0,k)15§2f1k(§)]}

= Z Z leC’"zakﬁ"‘ pz@zlwszl [3m§3m1(§) (Tox- mz)lamflk(g)

m1=0 mp=0

- (To,k—ml)zag?lczk(g ) + (Tog=m, )2(T0,k—m2)15§f (1.
D First, we simplify (3.20), in which

1 20,0 didé,
—— 1
(27”)2]3:)1)2 0(4)[(51 —z21)({2—22) ] {18

1 2010 déidé,
=5 -1
(2ni>2faoDzm[({1—zl)(gz—m) ] L& (3.23)

1 — 44 11d&dgs
- W, yan - .
(2m>2fw[1 WO+ 8 WO e S = 1 g

In addition, (3.17) leads to

[0 T ol [ 7D a0 a2y
and [ -0 de
3mi) ST @7 =5 | O [27r S oy ] L s
k- 1)v_1ff « )Zwl(g—i)klda‘” :(k—pl)!_?l ka@)Z(Zzg’_f)f_ld% |
According to (3.24), we have that
(2;')2 e 2 O, e en
<zm)2 f 1T i+ (o = Toe(Toand ful(6) _dil)c(lg_zz)
2m aDz faul gfl(TOk)lflk(g)f dglzl]fzd—{zzz (3.26)
2m I 55 fa & Do fuld) zfzzz] adil
_% on, 11[2711' i, 2 Ton)e(Toend Sl dQZz](ldflzl
=0,
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and it follows that

1 >P1 7P2 1d&dd, _
Qni)? faoDz 16 WD) 70 =
Plgé)zwo(é/)l daiddh _

1
(Qniy faODz 1
Moreover, according to (3.25), we have that

2 408

(271i)2 D2 4 (g)({l —z{;(ggz“z—Zz) dngjz

= ﬁf I 52[(T0,k)1f1k+(To,k)zfzk—(To,k)z(To,k)lagflk]({)
- NG f QTR gldf‘m] gzdfzzz
5 . 1[% o (TO")Zfz"@gzdfzzZ]gldflzl

- N f T o T fu@rp | 2

_ b Pz -1 zi(z1 = &) ddp
‘2m'fa i ff”‘@ AR s

| a7 da
2t Jon, (k 1>'_f D= —dorg|

1 (20 — &)

$i =z

dddd,

- k
i ) f P f (oG ful@)= =2

Applying the Cauchy-Pompelu formula (2.1) on D,, we get that

0-{2]

H-21

1 =2 — 22)

Lf —z(z - fl)k_ldo_ ] dés
27i Jop, (k i abh-1 g
7 s A& 21z — 4!
" (k- 1>'nf meaaﬁ iy 2] 1—zl21 7
Zl pZa s _gl)k_ld
(k D [szlk(fl,Zz)‘i' f§2 fzflk(g)g Zz] -2, s

ZPIsz 71(z k—1
=12 fflk(évl,Zz)%dO'g

~ ak—1)! 1- lgl
Pi k-1
7 - oy 2z — &)
_ s, fu(D) ——do,.
- 2 (k—1)! fDl o ZZflk(g) H-2 -z 7
Similarly,
1 _ff ({)Zz(zz - L) 1d ]
i (k 1)v e A e Vs
Pl Pz k—1
S —— (22— ()
= N —_d
7r(k— Y fzk(Zl $) - Zz{z os
8 gy 2(z2 — ) dorr .
7r2(k D1 f f (1f2k(§) e 0p
AIMS Mathematics
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By (3.25), we obtain that

1 ,,1 (- o) ¢
) 4l = 1), fmk)l e s

5 44 2 =)
n(k - f s f S e L

z, R N e (I O SRR T ) o 33D
_ 2 [ 121 — €1 2022 — O
k- 1)vf [(k D 7 f & 2l -1 dor | I—ol, Yo
4y @ =) 2 - o)
= k- wf f L ey
Plugging (3.23)—(3.31) into (3.20), we get (3.6).
@ Second, we simplify (3.21), in which

70 F PP () 2122 d&dd

ﬁODZ[{l 2 O(§)+§1 2 O(é’)](é’l—zl)—(gz—ZZ) 2{1{2

=f(; {Z{Jl_gZ[(TO,k)lflk+(T0,k)2f2k_(TO,k)2(TO,k)16§2flk]({) (3.32)
0.D?

2% d&dg
(L1—21)(Er22) 26182

Applying (3.24), (3.17), and (2.2), the terms on the right side of Eq (3.32) can be simplified.
Substituting the simplified results into (3.21) yields (3.5).

QIf ¢3(2) is k holomorphic on D* with R[{"' &7 ¢3(0)] = 0, then 20" 2@(z) + ¢3(2) is the general
solution to R[ go(g“ )] = y0(0). In the following, we seek ¢3(z). As ¢3(z) is k-holomorphic on D?,
then

+{0' [(To,k)lflk({)+(To,k)2f2k(§)—(To,k)z(To,k)13]é—ﬁzf1k(§)]}

51 52

o=l =1
@3(z) = Z ZZ Z A —py)(vao- P2)511152[2Z1 22T

$1,80=0 11=0 [,=0 v{,1,=0

where @, —p,)v,-pr)sili 521, ar€ arbitrary complex constants. Similarly, for the k-holomorphic function
@3(z) on D, it can be expressed as

k-1 s +

=l

(103(Z = § § CYSI(V,],)ZVZ,
s=0 [=0 v=0

where ay,—p) are arbitrary complex constants. Denote @, + @gi-y) = Ay, sy = By, Og2i-) = Cay.
k=1 k-1 _ vk-l s
As Y0 2m Conw = 2o 21=0 Csiv» then

k-1 s 00
RGO} = Z > +Z(0/51v§ + @) (3.33)
k-1 s p+2l I s +00 k-1 s -p-1
= ZZAslvé/v [+Z Z Zlevév l+ Z chzva_l
s=0 [=0v=-p s=0 [=0 v=p+2I+1 5s=0 [=0v=-00
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p k=1 k-1 k=1 k-1
—p—k+1
={ 22100 D A+ 77 3 X Ay + o T Aency
v=—p =0 s=I =1 s=I

k=1 k-1

k=1 k-
1 k=1
+ §p+ Z ZAYl(p+l+l) +{ Z Z sip+2+0) T o0+ §p+ A(k—l)(k—l)(p+2(k—1))}
=2 s=I

=1 s=I

1
§p+ Z Byopsn) + {7 Z Bsop+2) + Z le(p+3)

k=2 k-1 oo k-1 k-1
k-1
S+ T Z Z Bgpi-1+1) + Z ' Z Z le(m)
=0 s=I v=p+k =0 s=I
k-1 k-
—p—1 —p
+ {§ b Z Cso—p-n + ¢ Z Cso-p-2 + Csl(—p—l)]
s=0 =1
k=2 k-1 —pk 1 k-l
—pk+1
AL Z Z Ci(-p-k+1+1) + Z fv Z Csl(v+l)
1=0 s=1 e =0 o
ek k=l k-1 k=2 k=1

k 1
= E {v[ E Csl(v+l) + E E Csl(—p—k+1+l)+A(k—1)(k—l)(—p)]+
1=0

y=—00 =0 s=I s=

k-1 k-1 k-1 p k—l k—1
—p-1
+ { P [ CsO(—p—l) + ZASI( -p- 1+l)] + Z gv Asl(v+l)
s=0 =1 s=I Vv=—p 1=0 s=I
k-1 k-1 k-2 k-1
+1 +k— 1
+° [ZBSO(])+1)+Z Asl(p+1+l) +7 Bip+i—1+1)
= =1 s=I l:O s=1
+00 k-1 k-1

+A(k—l)(k—l)(p+2(k—l))] + Z KV[ Z Z Bsz(v+z)],

v=p+k =0 s=I

which is equivalent to

k—
Z Za/vl(vﬂ) =0 (V>P+k) Z Z[avl(vﬂ) + (= v)] 0 (_PSVSP),
:(1) =0 s=0 [=0
Zawmwz Zaﬂ( S =0 (=01, k=2, k22),
s=0 [=0 s=t+1 I=t+1

and in the case of k = 1, the last equation in the above system is non-existent.
Therefore, for Y, € OD and £, € dD fixed,

+00 k-1 s, 400
RIG"L 30 —ZZ 212020 20 @ )

s1=0 ;=0 vi=—py 52=0 I,=0 vy=—p»

k-1 s +o00
—— Zn-h\ A1V
(250, 2 T 7007

52=0 =0 vo=—p>

AIMS Mathematics Volume 11, Issue 1, 1463—-1488.
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is equivalent to

k-1 s k-1 s» +0o0
-l _

Ay atstinnds’ | =0 (1 2 py + k), (3.34)
s1=01;=0 s,=0 =0 V2=—p2
k-1 S 52 +00

— Zn-bf| _

Z { § [a(w-i-ll)vzs]lmzlz{z + Qv asihish & ]}—0 (=p1 <vi < py), (3.35)
51,52=0 [1=0 DL=0vy=—p»
k=1 sp 400 k=1 51 S1

l l
[ Q(pi+1+t+l)vasiy szlzévzz P+ Z Z Q1 -p1-1-twvasily s2lp {22 2] =0, (3.36)

52=0 I,=0 V2=—p2 s1=0 1;=0 si=t+1 11 =t+1

wheret =0,1,--- ,k—2 (k > 2), and (3.36) will disappear ifk=1.
Furthermore, for V¢, € 0D, vi > p; + k, and Zsz OZ 0 Xy le -0 sz ,2 a1, (3.34) 1s
equivalent to

k-1 52 +o00 k—1 S1

0= Z Z Z [ Z a(Vl+ll)(V2+l2)51115212:|§;2
=0 0

$2=0 [p=0 vy=—pr—Lh 51=0 /1=
k-1 k-1 —p2— 1 +o00 k— 52 51
— V2
_[ E § § E E E E a/(Vl+11>(V2+12)51115212:|§2
b=1 so=lp vo=—pr—lh  va=—p3 52=0 [L=0 s1=0[;=0
k=1 k-1 k-1 s k=1 k-1 k-1 s

Z Z%wzl)( rtsihsaldy +Z Z Z Z%wll)( rasitisnds”
l1=

h=1 s2=b 51=0 bh=2 sy=b s1= Ol|

+oo k- 52 k—
por{(k-1)
+Z Za(vl+ll)( P2S1115212{2 +Z Z Z Z Z a’(V1+11)(V2+12)S111Szlz]{ .
l1=

51=0 vo=—p2 52=0 =0 s1=0 [1=

So we get (3.7) in which the first equation will disappear for k = 1.
For V¢, € 0D, similar to the discussion of (3.33), (3.35) is equivalent to

k-1 s» +o0
Pl Ih—vy
Z Z Z Z Z a,(Vl"‘ll)stlllszlz +Z Z Q(lvy)vasili 52069 ]

0=
52=0 L=0vy=-p 51=01[= $1=0 1=
k=1 s pr2h -
= Vvo—Ip
- Z Z Z Za("“{l)vﬂlll ‘2l2+§ / E ‘a(ll—V1)(2lz—\/2)nllszlz]{
=0 L=0vo=-p> 51=0 11 51=0 [;,=0

ikl S1
-1
Z Z Z Z Z Qv )wosi ‘zlzé"ﬁ 2

lz 0V2 pz+212+1 s1= 0[1
k— s2 —p2— 1 k-1 S1

-l
+ZZ Z ZZ“(Zw.)(zlm>s.lmlz e

sH= 0[2 0V2:—00S1 011 =0

-

which means (3.8) and the last equation in (3.8) will disappear if k = 1. Similarly, (3.36) is equivalent
to (3.9), and (3.9) will disappear for k = 1.

Thus the general solution to R[{V'Zo(D] = yo(0) is ¢(z) = z}'2@(z) + ¢3(z) in which the
coeflicients are arbitrary complex constants satisfying (3.7)—(3.9).
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By @, @, and Q), (3.4) is the solution of Problem RH on the condition of (3.5).
(i) In the case of p; < 0 and p, > 0, the boundary condition is R{{;”'5H (0} = yo(). Let
z,"'¢(z) = ¢1(2), and then

RS L0} = 70 & RG01(O} = y0(O).

Since p; < 0 and ¢(z) is k-holomorphic, then ¢;(z) is k-holomorphic, and therefore ¢;(z) is the solution
of the boundary value problem for k-holomorphic functions satisfying R{E01(0)) = vo(0). To get
¢(z), we need to find the solution to R{5"¢1(0)} = vo({), where ¢,(2) is k-holomorphic, and ensure
that ¢(z) is k-holomorphic at the same time.

@ First, we seek the solution to R{5"*¢1(0)} = vo(¢), which is just the case of p; = 0 and p, > 0
in (i). Therefore,

51 52

1) = P p-0 + Z > Z @or2-prsihsat?) 2520 (3.37)

51,82=0 11=0 [,=0 v{,1,=0

and the condition (3.21) leads to

2 f WOR— 22 d6ds
@ Jap " (G Grz) D12
- R fa LA Wy — 2 hn pade)

(2ri) ()G Gz Gl (3.38)
2 Ty [ @0 @) iYe 11d¢1ds,
—_— R AR —— )
+(2ni)2fao%,{zzzo P RS L 7wz ! v
kf;kgqto
By (2.1), (2.2), (3.1), and Lemma 2.3, we get that
1 e 22 dg,dé, 339
@iy 1 2 (G—2)(Grz) §1&2 o
_ L D2 L p1-1 1
= 27” angz [27” {1 W(()g d(l]l_ zgzdg

1 _
=55 o, [Z1p1W0(21,§2)+ f e IBZIWO(g’)g d(le] _ZE é,zd{z
oz w2 L aaza o 2 e
fazz CP(To01 fik + (To)2fox — (Tox)a(To, 1<)1a Judz §2) § ——doy,
_ do Zod
+—= f O T(Tox-)1fik HT 0420z, fox ~To.x)2(To - )15§2fl DI l_pl_lzgl—_czl ZIZ—ZZZ
Pl
542{52 [(To 1 fik + (Tox)2fox — (To )2 (T, k)lak flklzlafz) { ——doy,
= f DA (Topor) fo K To a0 s« T (o) QNP0 240
WA 1T ou-D1f 1k HT 0,020z, for «(To.0)2(To.-1) 0 fix 1{1Z1 =0,

AIMS Mathematics Volume 11, Issue 1, 1463—-1488.



1479

1 =2 ¢ o, 22dog
= fD ?Zz{fz [(Tos-D 11k HT0.40)207, fox {To.a0)2 (o) 0 Ju (DI, 7 dog

124"
where
—P1
%f 352[Z§Z(To,k)1f1k(21,52)] é,do-é'z
D> -
_ g -l & (@ - fl)kl )
EINS 0e| — fD TR WO |7 VAL (340

-z, " (z1 — m’” 2

e
= 0. [ doydoy,,
712(k - 1)! sz (2 flk(é)] éf <1 1 Z2§2 a e

—P1
Zﬂ fazz{ [(To)2f— (TOk)z(TOk)l(9 Sz, 52)} 2{ doy,
—m
J *(Tox)al for— (TOk)lazzflk](Zl 52)1 - §2d§2
J 2 Toal = (Toh & fild @1.0) ——d&
P § -2

1 k-l i}
Lﬁ 7P 1 f @4 - &) [fax—(T, k)1(9k Sz, fz)do'g } £ —dé,
0D, D

&0 4-6 &-%
= f oy Tondy ful )| J P“@Z_gz; Zz’f dl, |do;
B o 2 ah (3.41)
:2::521)' T ﬁd(zl@%d o
TR [ e E=E e,
L=pa+] —
_ikzgl)'fpz[_?l fp T s f“‘@d(’“]%d%
—f;(,fjl)l, | e 52); o
+N2Z[I:]‘€Z§21J;I!]2 2 ”‘({)(Zlg glz)lk 1(Zi :ZZ o,
= [ o o0 ;fi‘l—z{z (3.42)

1 -1 G- oo
B FL2 {ﬂ(k_ D' Jp, -4 0z fidy, &)ldo '}§ e —szzdo-gldo-&

1 -1 : G- g %
= 7—_[];2 {JT(k—l)Vf (942[(5 flk(gl 52)][7_[ o, fl lgl é,ll_ZldO'a]dO'(;}—_dg-gz

AIMS Mathematics Volume 11, Issue 1, 1463—-1488.



1480

-1 e oy 1 G- di, 2
{n(k—l)‘ f Oclt; flk({l’é)][ Japy $i4 =1 (=240 ]d%l}l —Zzé“zdggz

_lf
7 Jp,

1
:mj;z 0zlL 2f1k(§)]g1({1,Z1) { doydoy,,
1 : dor,
ﬂtfad <ﬂM»@ﬁA0Mflffmf§%%
—P1
f {11 f AT (TOk)zazlfzk(é)] { dO'évz}doz1

l P> ] Z2
f gl 21 27Tl fapz (To,k)28§|f2k(§)1 _ Z { d(z}dO'gl

— ({2 ot 2
1 7D2 2 ,
f = 1)' Dzaafﬂc(fhfz f Tt 1_ZZ§2d§2]d0'gz}dO'gl (3.43)

(éVZ gz)kl 22
»P2
f {1 -z Jr(k 1)'f aﬁfz}((gl’é f Ho-1 & - sz{g]d@'( }doyl

f 1 P2+1 a f ( (ZZ {2)k 1d }d
51 2 7T(k 1)7 b, W 2k 4)74, O (a0,

Z§2+1 1 (Zz é’z)kl
= By 7y =, O T doadoe,

and similarly,

1 do, Zodoy,
jbd oo DO ST
=p2+1 ~p1 k-1
> 2 4 (TOk Dlakjuc({)uda'(lda{z
TRk 0= 2
-2 P @ l)! G449
= k- 1), zf( 0 Dla&flk(f; —— doydoy,
-5 - (- @Vl

(2 LA Dg1 (&, z)————

— ——do §1d0-§2’

(k D! 72 (k—D!Jp 20—

in which the last equation is similar to (3.42), and g;(¢; 1»21) 18 the function in (3.12).

Since the third term at the right end of (3.44) is the opposite of its second term for z; = 0, then
from (3.42)—(3.44), we get that

zD2 —p1— Zodoy )
L o 01 (Tox DI dog 752 = ,rz(k o o 02,180 fu(D1g1(<1, )1 Zdodoy,,
do, -
J‘DZ 6(2[ (TO k)26(1f2k(§)]§] - ld §1 212 222 ?dﬂ-Z(k ! Lz (] b 6[1 f2 (év) (Z;;;z) dO’gldO'évz,
sz 3:2 &5 (Tog)2(Tox- 1)13k i1, 7 (le le ZZZ

== (@-0)
@Mngmmmm@;mwﬁ

(3.45)
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Plugging (3.40)—(3.45) into (3.39), we obtain that

1 7P 302y 2122 d&idg,
<2m'>2faom b2 "@(a—zl)(@—a) e

S - f OL1L Q)] {e” @0 - 0)}dordor
2(k ! LS = ( (1_21 > ’ S 6}
Pl—p2+1 k— 1

(Zz - (2)
7r(k 1),f flz1.0)———=——dog, (3.406)
z 1<zl o=t @=5)!
+7T2[(kz 1)!]2f flk@{ i 71 _gl({l,Z1)+gl(§1’0)] =220, dodoy,
! ag ™! (zZ 2-H)"!
TR 7= fz,((g)gido-(lda{z.
On the other hand, by Lemma 2.3 and (2.2), we get that
f 212 d{dd,
2ri)* Jop2 5 (§1—Zl)(§2—22) are:
-1 _Pl f Z
27i Jap, & oD, O(é)l—zﬁz 42]1—Z1§1 ¢
— __1 —Pry_ | _— °p2 Z
= f e 841 52 3:zWo(§) 25 d“(z]l . doy, )
= f {1 p|§§2a(1 [GZzWO(f)] 14,] 1 _Zzzé—,zdo-(do_fz
Z120doydo
- DU (T To V05 For—(T, AIRY. 212200 ¢ gz_
ff 00 [(Toxa 11k +(Tox)20g,forx— (To g )2(Tox—1 Qflk](g)(l—zlél)(l—zﬁz)
Zradogdoy,

=3 szfpl (Tox-)00 1k + (T-1,007,fok — (T—l,k)Z(TO,k—l)langlk](§>(1 (-2
Plugging (3.46) and (3.47) into (3.38), we get (3.11). Hence, ¢;(z) in (3.37) is the solution to
R{L”@1(0)} = y0(¢) on the condition of (3.11).

@ Second, we seek the condition to ensure that ¢(z) is k-holomorphic for ¢(z) = z;p 'o(z). We
need only to ensure that ¢(z) is k-holomorphic for z; since the k-holomorphism for z; is the same for
©(z) and ¢;(z). As the k-holomorphism of ¢(z) = zl_p '¢(z) for z; is equivalent to the holomorphism of
3 1p1(2) = 2”95 p(2) for zy, then, applying the properties of the Schwarz operator for holomorphic
functions, we get that

50 (21, &)

1 1 2 ak—1 2 ak—1 2(1 _ d§1
=50t o [ e 0+ e ) 1
N | @rgre e + i e o lﬂ}
=0 <7t Jop,
1 B -
3 | GG 0+ T Ers
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Since p; < 0, then ¢(z1, £,) is k-holomorphic for z; (i.e., 5! ¢(z1, 2) is holomorphic for z) if and only
ifz,"'¢, pza’gl‘lgo(zl, {>) has a zero of order at least —p; at z; = 0. Therefore,

2t Jp G100 G )+ éfza’glso({l,éz)]% =0 (=01 ,=p1 = D),
that is, (3.13).

Hence, by D and @, we get that (3.10) is the solution of Problem RH on the conditions of (3.11)
and (3.13).

(iii) In the case of pi, p, < 0, the boundary condition is R[£; "', ¢(0)] = yo(). Let ;"' 2,7 ¢(2) =
¢2(2), and then

RIG"GEP0(D] = v0(0) © Rlga(D] = yo(0).

Similar to (ii), we need to find the solution to R[¢,(0)] = yo({), where ¢,(z) is k-holomorphic, and
ensure that ¢(z) is k-holomorphic at the same time.
O First, R[p12(0)] = yo(Q) is just the case of p; = p» = 0 in (i). Therefore

ST S

¢2(2) = P(pi=pr=0 + Z > Z Cuvssiind) 250" 5" (3.48)

s1,52=0 11=0 [,=0 v;,1=0
on the condition of (3.38). Moreover, by (2.1) and (2.2), we get that

0% dgidi,
(2m)2f G 0(4)(41—@)(52—@) O
47 Wo)——d|

aD, -2 OH—2 O

2r
1 - 1 _
= ;sz §2p2852[7_rf il 1041Wo(§){ d0'41+z1 WO(ZI’{Z)]—ZszO-& (3.49)

2122

(51 —z)(1 = 2200)

<1

22%

) [
2
2711 oD,

1 o1
:pf &P, 107, Wo()]

d()'évlda'(2

do;,,
p 6]

1 _
+—f plé}pza{zWo(Zl,fz)
D, Zz(z

and Z dgdg
=p1 _pZW 2122 1462
(2mi)? J,p2 fr e ol©) (G -2 —2) G182

1 ar 1 - 2 2 dd
= — |~ S/ d —=
o |50 ), @™ WOz @]gl_zl 2

1 _
fﬁmaa f(zpz lagzwo(f) dffzﬁzz Wo(Zl’ZZ)] doy, (3.50)
{ Zl§1

2122

(1 =214 — 22)

dO‘( 1

dO'évl d(T{z

f g] pl§2p2 lazz[aglwo(g)]

f £ "2, Wo(fl,Zz)
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Plugging (3.49) and (3.50) into (3.38), we get (3.15). Therefore, ¢,(z) in (3.48) is the solution to
Rlp2()] = yo() on the condition of (3.15).

@ Second, we seek the condition to ensure that ¢(z) is k-holomorphic from ¢,(z) = z;”'z,"¢(2).
Similar to the discussion in @ of (ii), ¢(z) is k-holomorphic for z; and z, if and only if (3.16).

Hence, by (D and @), we obtain that (3.14) is the solution of Problem RH on the conditions of (3.15)
and (3.16). O

Remark 3.2. Setting k = 1 in Theorem 3.1, we obtain the corresponding conclusion of the Riemann-
Hilbert problem for R[PW(O)] = v() (¢ € 8yD?) and 6W(Z) = f(z)(z € D?), which is more concise
than that of Theorem 3.1.

Corollary 3.3. Let vy, fi, f» € C(8yD?) with 0=, f, = 0-, f1, and let

-1 i .
T,'f(Zi) = 7 jl; g‘(_{;dO'(l (l = 1,2, Dl = D2 = D)

Then, the Riemann-Hilbert problem

RIZPWD] =70 (£ € 8D, ;W) = fiz) 1= 1,2, z€ D?)

is solvable, and the solution is as follows:
(i) In the case of py, p> = 0,
2p1 2p>
W(z) = ' (z) + Z Z Q- ppa-p)2y 2y + [T1fi + Tafo — T2 T10g f11(2),

v1=0v,=0

where «,,,, are arbitrary complex constants satisfying

Ay, + Aoy =0 (=p1 Vv < p1, —p2 < v < po),

and

_ 1 20,4 dZ,dé,
=— -1
= iy faODz 7(5)[(41—zl)(§2—@) ] L

Zlegz 21/1({1,22) szz(Zl,fz)
| N —— = doy + N doy,|

1-z24 1 -6
P1+1 P2 £~ p1 P2+l oy p1+l p2+1
& azzfl({) V00 () —— 7 bt
_ — 07 do;doy,,
f f (a2t U-wda-m OT 70 —szz] Tados
on the condition that
f YOR 2122 dg,di,
dD? (G—2)(G=22) §182 )
= —Z‘R{f [é“p] 250, HO) + 7z ]ﬁzzfl(f)]l a1 _Z;gzdo?] dO’gz}.
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(ii) In the case of p1 < 0 and p, > 0,

2py

W(z) =z [Zgza(zﬂpl:o + Z a’O(vz—pz)Z;z] + [T fi + Taofs = ToT10 f11(2)

=0

(¢(z) and «,,,, are the same as in (i)) on the condition that

2 f W) U2 d&dd,
(27i)* J gy (a—zo@z—zz) I516)

1 Z_Pl
-l [ o] Oldery de,
" "”“ : N 00./1(©)
+- T ‘[Dz ]162(_&;2‘10'{2 = ‘Lz [51 —g1(§1,Z1)+g1(§1,0)] ‘ l{ dodoy,

zgzﬂ a0 H(0)
2 -2 bh-1

Zizodogdog, }

1 —P1 7
dorgder, + 2 f G O

and
d
Q) = RGP G (T fi + Tofs — TaT0n fOON ek =0 (1= 0,1, ,—py - 1),
aD; 1
where

1 1
)= — o — .
lera) =5, it [@14—1)(1 —zla)]}w
(iii) In the case of p1, p» <0,
W(z) =22y [(p(z)lp1:p2:0 + a’OO] + [T fi + Tofo — ToT10g, f11(2).

(¢(2) is the same as in (i) and Rayy = 0) on the condition that

f HOR—42 d0do
doD? ((1—z21)({22) 4T6)

_ pi=1 y=pr—1 $H2ie {12122
= 2‘R L 474 aglfzq)[(&—zl)(l —%0) + a —2151)(52—Z2)]d0-§1d0-§2

0 221, 0) _ - f n J1(d1,22)
+ do, + n7,2,” =" do .
& jz; 1-24  ° 2 D1{1 1 -214 g}

For j=1,2,

f? Q) = RIG LT fi + Tofo = T T, [i1)()] g’é'” =0 (r;=0,1,---,—p; - 1).
oD

J j

The following is a simple example of the corresponding Riemann-Hilbert problem. Through simple
calculations, it can be verified that the solvable conditions in Corollary 3.3 are satisfied.
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Example 3.4. Let f; = f, = 0 and
1’ pl»pz > 09
y(é/): g;p]’ D1 <O,p220’
4G pLpa<0
for { € 0yD? and p,, p> € Z. Then the solution to the Riemann-Hilbert problem

RIZPWD] = 7(0) (L €D, p=(p1,p2), W@ = fiz) I = 1,2, z€ D?)

is:

2}' 2 f 204 dt,d¢,
W(z) = ~1
@ = Gmip aopzm[(gl—zl)@z—@) ] L

2p1 2p2

Z Z a(Vl—Pl)(Vz—Pz)Z¥]Z;2’ p1,p2 20,

v1=0v,=0
+ 2p)
v
Z o-p)%y’ > P1 <0,p2 20,
=0
oo, pl’pz < 07

where a,,,, are arbitrary complex constants satisfying
Ay + Uy =0 (=p1 Svi < p1, = p2 <y < po).
4. Conclusions

Applying the classical Cauchy-Pompeiu formula and the Gauss theorem, we obtain the solvable
condition and the specific solution of an inhomogeneous Riemann-Hilbert boundary value problem for
complex partial differential operators of higher order on the bicylinder D? in C?. With the methods
in this article, some other boundary value problems for complex partial differential operators in C"
can be studied further. The conclusions generalize the existing results of the corresponding Riemann-
Hilbert boundary value problems for lower-order partial differential equations, enrich the research of
complex partial differential equations in C", and provide a solid basis for future research of boundary
value problems in C". The method proposed here can also be extended to more general domains in C2,
although the integral representations would become more complicated. In addition, the conclusions
drawn in this article are expected to contribute to some physical or engineering problems, such as
string theory and quantum gravity research, high-dimensional signal and image processing, and so on.
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