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1. Introduction

The Riemann-Hilbert problem is a fundamental type of boundary value problem. The
Riemann-Hilbert problems for inhomogeneous complex partial differential equations are widely used
in the research of mechanics, physics, chemical cycling systems, laser and fiber optic communication,
electrical engineering, epidemiology, and other fields. For example, inhomogeneous Riemann-Hilbert
problems were applied in studying crack problems in engineering [1], Markov processes in queueing
system theory [2], and non-linear wave equations [3]. However, the research on these problems often
focuses on low-order, partial differential equations or discussions in low dimensional spaces.
Therefore, we hope to obtain relevant conclusions on higher-order Riemann-Hilbert problems or in
higher dimensional spaces, which is also the focus of this study. The conclusions drawn in this article
will generalize the existing results of boundary value problems, and would provide new methods for
high-dimensional signal processing in the engineering field.

The formation and development of the theory for partial differential equations are closely related to
the development of physics and other natural sciences. With the development of science and
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technology, the research on inhomogeneous Riemann-Hilbert problems has run through many fields
such as biological science, information science, geography science, astronomical science, and
environmental science. Therefore, the study of Riemann-Hilbert problems for inhomogeneous
complex partial differential equations not only has important scientific significance, but also has a
positive promoting effect on the progress and development of society, as well as promoting the
development of mathematics in function theory, algebra and topology, differential equations,
differential geometry and other aspects.

With the development of modern hydrodynamics, physics and engineering technology, many new
boundary value problems have emerged, which often lead to some related problems such as
high-order nonlinear partial differential equations, degenerate type equations and mixed-type
equations. These equations are usually very complex and difficult to solve, and have also attracted
many scholars to study them. Li, Tian and Yang [4] systematically studied the general n-component
nonlinear Schrödinger equations by the Riemann-Hilbert method. They obtained the corresponding
solutions and presented the interactions between solitons from weak to strong. They also proposed a
conjecture concerning the dynamical behaviors. Wang, Tian and Cheng [5] successfully derived the
three-component coupled Hirota equations by the ∂̄-dressing method, and first obtained the soliton
solutions of the equations. Yang, Tian and Li [6] successfully obtained the solutions of the
Riemann-Hilbert problem concerning the focusing nonlinear Schrödinger equation with multiple
high-order poles under nonzero boundary conditions for the first time, by solving the corresponding
algebraic system. Wu and Tian [7] successfully obtained the long-time asymptotic solution of the
nonlocal short pulse equation concerning a suitable Riemann-Hilbert problem, by using the nonlinear
steepest descent method. In addition, Li, Tian, Yang and Fan [8–10] have done some interesting work
in investigating the Cauchy problems of the complex short pulse equation and the
Wadati-Konno-Ichikawa equation with finite density initial data in the space-time solitonic regions
and weighted Sobolev space. The problems are associated with the corresponding Riemann-Hilbert
problems with the initial boundary value conditions. By the nonlinear ∂̄-steepest descent method, they
derived the long time asymptotic behaviors of the solutions of these equations in a fixed space-time
cone. Based on the behaviors they proved the soliton resolution conjectures and the asymptotic
stability of the solutions of these equations. Applying a method of the Riemann-Hilbert problem,
Suzuki and Zhang [11, 12] discussed Zhang’s conjectures 1 and 2 in a ferromagnetic 3D Ising model:
trivialization of topological structure and topological phases. They constructed the solutions to
Zhang’s conjectures 1 and 2 by use of the monoidal transform. The above results are the latest
achievements on the solutions and applications of Riemann-Hilbert boundary value problems.

The Gauss theorem and Pompeiu formula [13] play an important role in the function theory of
generalized analytic functions. Many partial differential equations were studied on the basis of the
Pompeiu formula, see, for example, [14–17]. The classical Pompeiu formula was generalized to
different forms which are closely linked to the corresponding singular integral operators. Applying
the properties of the singular integral operators, many boundary value problems for higher order
complex partial differential equations or systems have been resolved [18–21].

Boundary value problems for functions of one complex variable, involving homogeneous or
inhomogeneous problems, have been widely investigated on different domains in the complex plane
C [22–26]. With the advent of explicit integral representation formulas for functions of several
complex variables, some corresponding boundary value problems were studied in Cn [27–30]. For
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example, Suzuki [31] discussed Riemann and Hilbert problems on Stein manifolds and deduced the
relations of Fuchs on projective algebraic manifolds of high dimensions in several complex variables
by computing the characteristic polynomials. Çelebi [14] developed a unified method to derive
integral representations for functions in Cn, based on which the Schwarz and Dirichlet problems for
higher-order model and linear equations were discussed. Applying the properties of higher-order
Neumann functions, Çelebi [32] studied the Neumann problems for higher-order model equations in
the unit polydisc in C2. Mohammed [33] studied the Riemann-Hilbert problem for holomorphic
functions in higher- dimensional poly domains. Although different types of boundary value problems
have been discussed in Cn, the above achievements are basically related to analytic functions. The
passive and irrotational physical fields have prompted people to study a wider range of function
classes than analytical functions, such as polyanalytic functions. There have been lots of results on
the study of polyanalytic functions in C, but there are few in Cn.

In 2020, Qiao, Cui, Li and Wang [34] obtained the Cauchy integral expression of k-holomorphic
functions on the bounded domain G = G1 ×G2 × · · · ×Gn in Cn:

W(z) =
1

(2πi)n

∫
∂0G

k−1∑
k1,··· ,kn=0

n∏
j=1

z j − τ j
k j

k j!(τ j − z j)
∂k1+···+knW(τ)

∂τ1
k1 · · · ∂τn

kn
dτ.

Applying this integral expression, we can discuss some boundary value problems for higher-order
complex partial differential equations. In [35] Cui discussed the Riemann boundary value problem on
the polydisc in C2, applying the properties of the Cauchy-type singular integral operators with
k-holomorphic kernels. By the above Cauchy integral expression, the Riemann-Hilbert problem
(homogeneous and non-homogeneous) for k-holomorphic functions can be discussed in the
following, in which the methods, the area, and boundary conditions are different from what is in the
above literatures.

In this paper, we mainly study a kind of Riemann-Hilbert problem for complex partial differential
operators of higher order on the bicylinder, and obtain the specific solutions of the boundary value
problem. The conclusions generalize the existing results of the corresponding Riemann-Hilbert
boundary value problem for lower-order partial differential equations.

Throughout this paper, D is the unit disk, D2 = D × D is the bicylinder in C2, and the characteristic
boundary of D2 is ∂0D2.

2. Some lemmas

To get the main results, we need the following lemmas:

Lemma 2.1. [36] Let w ∈ C1(G;C)
⋂

C(G;C), where G is a bounded smooth domain in the complex
plane. Then

w(z) =
1

2πi

∫
∂G

w(ζ)
dζ
ζ − z

−
1
π

∫
G

wζ̄(ζ)
dσζ
ζ − z

, (2.1)

∫
G

wz̄(z)dσz =
1
2i

∫
∂G

w(z)dz,
∫

G
wz(z)dσz = −

1
2i

∫
∂G

w(z)dz̄. (2.2)
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Lemma 2.2. Let D2 be the bicylinder in C2 and γ ∈ C(∂0D2), and let

W(z)=
1

(2πi)2

∫
∂0D2
γ(ζ)
[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

+
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

][ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

−1
]dζ1dζ2
ζ1ζ2

+
1

(2π)2i

∫
∂0D2
ℑ
{ k−1∑

k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2−(−ζ1)k1(−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)
}dζ1dζ2
ζ1ζ2

.

(2.3)

Then ∂k
z̄1

W(z) = 0 = ∂k
z̄2

W(z) andℜW(ζ) = γ(ζ)(ζ ∈ ∂0D2) if and only if∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

=

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

.
(2.4)

Proof. Suppose that W(z) is the solution to ℜW(ζ) = γ(ζ)(ζ ∈ ∂0D2) and ∂k
z̄1

W(z) = 0 = ∂k
z̄2

W(z).
Applying the Cauchy integral expression of k-holomorphic functions, W(z) can be expressed as

W(z) =
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0

(z1 − ζ1)k1(z2 − ζ2)k2

k1!k2!(ζ1 − z1)(ζ2 − z2)
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)dζ1dζ2. (2.5)

On the other hand, as ( 1
z1
, 1

z2
) < D

2
, then we have that

0 =
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0

(z1 − ζ1)k1(z2 − ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

z1dζ1
1 − z1ζ1

z2dζ2
1 − z2ζ2

,

which leads to

0 =
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0

(z1 − ζ1)k1(z2 − ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

z1z2

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2
ζ1ζ2

. (2.6)

Adding (2.5) and (2.6), we get that

W(z) =
1

(2πi)2

∫
∂0D2

{ ζ1ζ2 + z1z2

(ζ1−z1)(ζ2−z2)ζ1ζ2
ℜ

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ) (2.7)

+
ζ1ζ2 − z1z2

(ζ1−z1)(ζ2−z2)ζ1ζ2
iℑ

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

}
dζ1dζ2

=
1

(2πi)2

∫
∂0D2

{[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

−1−
z1(ζ2−z2)+z2(ζ1−z1)

(ζ1−z1)(ζ2−z2)

]
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· ℜ

k−1∑
k1,k2=0

(z1 − ζ1)k1(z2 − ζ2)k2

k1!k2!

∂k1

ζ̄1
∂k2

ζ̄2
W

ζ1ζ2

+
[z1(ζ2−z2) + z2(ζ1−z1)

(ζ1−z1)(ζ2−z2)ζ1ζ2
+

1
ζ1ζ2

]
iℑ

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

}
dζ1dζ2

=
1

(2πi)2

∫
∂0D2

[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]
ℜ

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

dζ1dζ2
ζ1ζ2

−
1

(2πi)2

∫
∂0D2

( z1

ζ1−z1
+

z2

ζ2−z2

) k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

dζ1dζ2
ζ1ζ2

+
1

(2πi)2

∫
∂0D2

iℑ
k−1∑

k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

dζ1dζ2
ζ1ζ2

.

As
1

(2πi)2

∫
∂0D2

( z1

ζ1−z1
+

z2

ζ2−z2

) k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

dζ1dζ2
ζ1ζ2

=
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

1
1
z1
−ζ1

dζ1
dζ2
ζ2

+
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

1
1
z2
−ζ2

dζ2
dζ1
ζ1
= 0 + 0 = 0

(2.8)

and
1

(2πi)2

∫
∂0D2

iℑ
k−1∑

k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

dζ1dζ2
ζ1ζ2

=
1

(2π)2i

∫
∂0D2
ℑ
{ k−1∑

k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2−(−ζ1)k1(−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

}dζ1dζ2
ζ1ζ2

+iℑW(0),

(2.9)

which is due to (2.5), plugging (2.8) and (2.9) into (2.7), we get W(z) = (2.3) + ic (where c = ℑW(0)).
Equation (2.3) follows that

ℜW(z) =
1

(2πi)2

∫
∂0D2

2γ(ζ)ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

(2.10)

+
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

2ℜ
[(z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
W(ζ)

]
· ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

.

Applying the properties of the Poisson kernel of D2,

lim
z→∂0D2

1
(2πi)2

∫
∂0D2
γ(ζ)

1 − |z1|
2

|ζ1 − z1|
2

1 − |z2|
2

|ζ2 − z2|
2

dζ1dζ2
ζ1ζ2

= γ(z),
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i.e.,

lim
z→∂0D2

1
(2πi)2

∫
∂0D2

2γ(ζ)ℜ
{[ ζ1ζ2

(ζ1−z1)(ζ2−z2)
−

1
2

]
+

z1z2

(ζ1−z1)(ζ2−z2)

}dζ1dζ2
ζ1ζ2

= γ(z). (2.11)

Equations (2.10) and (2.11) lead to (2.4) ifℜW(ζ) = γ(ζ)(ζ ∈ ∂0D2).
On the other hand, (2.3) follows ∂k

z̄1
W(z) = 0 = ∂k

z̄2
W(z) obviously. In addition, by (2.10) and (2.11),

we get limz→∂0D2ℜW(z) = γ(z) on the condition of (2.4). Therefore W(z) satisfies ℜW(ζ) = γ(ζ)(ζ ∈
∂0D2), so we get the desired conclusion. □

Lemma 2.3. [37] Let ρ ∈ C∞0 (C), G be a bounded domain in the complex plane, and

Tm,nρ(z) =
∫

G
Km,n(z − ζ)ρ(ζ)dσζ ,

where

Km,n(z) =


(−m)!(−1)m

(n−1)!π zm−1z̄n−1, m ≤ 0;
(−n)!(−1)n

(m−1)!π zm−1z̄n−1, n ≤ 0;

1
(m−1)!(n−1)!πz

m−1z̄n−1
[

log |z|2 −
m−1∑
k=1

1
k
−

n−1∑
l=1

1
l

]
, m, n ≥ 1.

Then ∂z̄(Tm,nρ) = Tm,n−1ρ and ∂z(Tm,nρ) = Tm−1,nρ if m + n ≥ 1.

In particularly, for m = 0, n = 1 in Lemma 2.3, T0,1ρ(z) = −1
π

∫
G
ρ(ζ)
ζ−z dσζ is usually denoted by the

T -operator Tρ(z), and therefore ∂z̄Tρ(z) = T0,0ρ(z) = ρ(z).

3. The Riemann-Hilbert BVP

Problem 3.1 (Problem RH). For γ, flk ∈ C(∂0Dn) (k ≥ 1, redk ∈ Z+) being given functions with
∂kq flkl (z)

∂z̄
kq
q
=
∂kl fqkq (z)

∂z̄
kl
l

(kl, kq ≥ 1, kl, kq ∈ Z
+ for l, q = 1, · · ·, n), find a function W(z) on Dn such that

 ℜ[ζ
p
W(ζ)] = γ(ζ) (ζ ∈ ∂0Dn),

∂kW(z)
∂z̄k

l
= flk(z) (z ∈ Dn),

where p = (p1, p2, · · · , pn), p1, p2, · · · , pn ∈ Z, and the mixed partials of the compatibility condition
are the given functions.

Theorem 3.1. Let γ, flk ∈ C(∂0D2) (k ≥ 1, k ∈ Z+) with
∂kq flkl (z)

∂z̄
kq
q
=
∂kl fqkq (z)

∂z̄
kl
l

(kl, kq ≥ 1, kl, kq ∈ Z
+ for

l, q = 1, 2), and let

W0 = (T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂
k
ζ̄2

f1k (k = 1, 2, · · · ), (3.1)

A(ζ) =
k2∑

m1=0

k1∑
m2=0

Cm1
k2

Cm2
k1
{∂m2

ζ̄1
f2m1 − [(T0,k−m2)1∂

m1

ζ̄2
f1k + (T0,k−m1)2∂

m2

ζ̄1
f2k

− (T0,k−m1)2(T0,k−m2)1∂
k
ζ̄2

f1k]}∂
k1−m2

ζ̄1
ζ̄

p1
1 ∂

k2−m1

ζ̄2
ζ̄

p2
2 (k1, k2 = 0, 1, · · · , k − 1),

(3.2)
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with  (T0,k)i f (zi) = −1
π

∫
Di

1
(k−1)!

(zi−ζi)k−1

ζi−zi
f (ζi)dσζi (i = 1, 2),

(T−1,k)2 f (z2) = −1
π

∫
D2

1
(k−1)!

(z2−ζ2)k−1

(z2−ζ2)2 f (ζ2)dσζ2 ,
(3.3)

where D1 = D2 = D. Then Problem RH on D2 is solvable, and the solution is as follows:
(i) In the case of p1, p2 ≥ 0,

W(z) = zp1
1 zp2

2 φ̃(z) +
k−1∑

s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

α(v1−p1)(v2−p2)s1l1 s2l2z
v1
1 zv2

2 z̄1
l1 z̄2

l2 +W0(z), (3.4)

on the condition that∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

+
2

(k − 1)!
ℜ
{ ∫

D2

[
ζ̄

p1
1 z̄p2

2 ∂ζ1 f2k(ζ)(z2 − ζ2)k−1

+ ζ
p2
2 zp1

1 ∂ζ2 f1k(ζ)(z1 − ζ1)k−1
] z1

1 − z1ζ̄1

z̄2

1 − z̄2ζ2
dσζ1dσζ2

}
=

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

,

(3.5)

where

φ̃(z)=
1

(2πi)2

∫
∂0D2
γ(ζ)
[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

−
zp1

1 zp2
2

π(k−1)!

[ ∫
D1

f1k(ζ1, z2)
z1(z1 − ζ1)k−1

1 − z1ζ̄1
dσζ1 +

∫
D2

f2k(z1, ζ2)
z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ2
]

−
1

π2(k−1)!

∫
D1

∫
D2

[
zp1

1 ζ
p2
2 ∂ζ2 f1k(ζ)

z1(z1 − ζ1)k−1

(1−z1ζ̄1)(ζ2−z2)
+ζ

p1
1 zp2

2 ∂ζ1 f2k(ζ)
z2(z2 − ζ2)k−1

(1−z2ζ̄2)(ζ1−z1)

−
zp1

1 zp2
2

(k−1)!
∂k
ζ̄2

f1k(ζ)
z1(z1 − ζ1)k−1

1 − z1ζ̄1

z2(z2 − ζ2)k−1

1 − z2ζ̄2

]
dσζ1dσζ2

+
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
][ 2ζ1ζ2

(ζ1−z1)(ζ2−z2)
−1
]dζ1dζ2
ζ1ζ2

+
1

(2π)2i

∫
∂0D2
ℑ
[ k−1∑

k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2−(−ζ̄1)k1(−ζ̄2)k2

k1!k2!
A(ζ)
]dζ1dζ2
ζ1ζ2

,

(3.6)

and α(v1−p1)(v2−p2)s1l1 s2l2 are arbitrary complex constants satisfying

k−1∑
l2=γ

k−1∑
s2=l2

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(−p2−γ+l2)s1l1 s2l2 = 0 (v1 ≥ p1 + k, γ = 1, 2, · · · , k−1),

k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(v2+l2)s1l1 s2l2 = 0 (v1 ≥ p1 + k, v2 ≥ −p2),

(3.7)
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k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(v2+l2)s1l1 s2l2 = 0 (−p1 ≤ v1 ≤ p1, v2 ≥ p2 + k),

k−1∑
s1,s2=0

s2∑
l2=0

s1∑
l1=0

[
α(v1+l1)(v2+l2)s1l1 s2l2+α(l1−v1)(l2−v2)s1l1 s2l2

]
=0 (−p2≤v2≤ p2),

k−1∑
s1,s2=0

s2∑
l2=0

s1∑
l1=0

α(v1+l1)(p2+1+t+l2)s1l1 s2l2+

k−1∑
s2=t+1

s2∑
l2=t+1

k−1∑
s1=0

s1∑
l1=0

α(l1−v1)(l2−p2−1−t)s1l1 s2l2 =0,

(3.8)



k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=t+1

s1∑
l1=t+1

α(l1−p1−1−t)(l2−v2)s1l1 s2l2 = 0 (v2 ≤ −p2 − k),

k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=0

s1∑
l1=0

α(p1+1+t+l1)(v2+l2)s1l1 s2l2 = 0 (v2 ≥ p2 + k),

k−1∑
s2=0

s2∑
l2=0

[ k−1∑
s1=0

s1∑
l1=0

α(p1+1+t+l1)(v2+l2)s1l1 s2l2+

k−1∑
s1=t+1

s1∑
l1=t+1

α(l1−p1−1−t)(l2−v2)s1l1 s2l2

]
=0(−p2≤v2≤p2),

k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=0

s1∑
l1=0

α(p1+1+t+l1)(p2+1+t+l2)s1l1 s2l2+

k−1∑
s2=t+1

s2∑
l2=t+1

k−1∑
s1=t+1

s1∑
l1=t+1

α(l1−p1−1−t)(l2−p2−1−t)s1l1 s2l2=0,

k−1∑
s2=0

s2∑
l2=0

k−1∑
s1=t+1

s1∑
l1=t+1

α(l1−p1−1−t)(l2−p1−1−t)s1l1 s2l2+

k−1∑
s2=t+1

s2∑
l2=t+1

k−1∑
s1=0

s1∑
l1=0

α(p1+1+t+l1)(l2−p2−1−t)s1l1 s2l2=0,

(3.9)

where −p1 ≤ v1 ≤ p1 in (3.8) and t = 0, 1, · · · , k − 2 (k ≥ 2).
(ii) In the case of p1 < 0 and p2 ≥ 0,

W(z) =zp1
1 zp2

2 φ̃(z)|p1=0+

k−1∑
s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

αv1(v2−p2)s1l1 s2l2z
v1+p1
1 zv2

2 z̄1
l1 z̄2

l2 +W0(z), (3.10)

(φ̃(z) and αv1(v2−p2)s1l1 s2l2 are the same as in (i)) on the condition that

2
(2πi)2

∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

(3.11)

=ℜ
{ 1
π2(k−1)!

∫
D2
∂ζ̄2[ζ̄

p2
2 f1k(ζ)]

z̄2

z̄2ζ2−1

{
z−p1

1
(z1−ζ1)k−1

ζ1−z1
+g1(ζ1,z1)−g1(ζ1,0)

}
dσζ1dσζ2

+
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

f2k(z1,ζ2)
(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

+
z̄p2+1

2

π2[(k−1)!]2

∫
D2
∂k
ζ̄2

f1k(ζ)
[
z−p1

1
(z1−ζ1)k−1

ζ1−z1
−g1(ζ1,z1)+g1(ζ1,0)

](z2−ζ2)k−1

1−z̄2ζ2
dσζ1dσζ2

−
z̄p2+1

2

π2(k−1)!

∫
D2

z1ζ
−p1−1
1

ζ1−z1
∂ζ̄1f2k(ζ)

(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2

+
1
π2

∫
D2
ζ
−p1
1 ζ̄

p2
2 [(T0,k−1)1∂ζ2f1k+(T−1,k)2∂ζ̄1f2k−(T−1,k)2(T0,k−1)1∂k

ζ̄2
f1k](ζ)

z̄1z2dσζ1dσζ2
(1−z̄1ζ1)(1−z2ζ̄2)

}
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+
2

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

,

where

g1(ζ
′

1, z1) =
1

k(−p1 − 1)!

{
∂
−p1−1
ζ̄1

[ (ζ1−ζ
′

1)k

(ζ̄1ζ
′

1−1)(1 − z1ζ̄1)

]}
ζ1=0
, (3.12)

and for l = 0, 1, · · · ,−p1 − 1,∫
∂D1

ℜ{ζ
−p1
1 ζ

−p2
2 [ f1(k−1)−(T0,1)1 f1k−(T0,k)2∂

k−1
ζ̄1

f2k+(T0,k)2(T0,1)1∂
k
ζ̄2

f1k](ζ)}
dζ1
ζ l+1

1

=0. (3.13)

(iii) In the case of p1, p2 < 0,

W(z)=zp1
1 zp2

2 φ̃(z)|p1=p2=0+

k−1∑
s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

αv1v2 s1l1 s2l2z
v1+p1
1 zv2+p2

2 z̄1
l1 z̄2

l2+W0(z) (3.14)

(φ̃(z) and αv1v2 s1l1 s2l2 are the same as in (i)) on the condition that∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

= −2ℜ
{ ∫

D2
ζ
−p1−1
1 ζ

−p2−1
2 ∂ζ̄2∂ζ̄1W0(ζ)

[ ζ2z1z̄2

(ζ1−z1)(1 − z̄2ζ2)
+

ζ1z̄1z2

(1 − z̄1ζ1)(ζ2−z2)

]
dσζ1dσζ2

+πz−p1
1 z̄2

∫
D2

ζ
−p2
2

∂ζ̄2W0(z1, ζ2)
1 − z̄2ζ2

dσζ2 + πz̄1z−p2
2

∫
D1

ζ
−p1
1

∂ζ̄1W0(ζ1, z2)
1 − z̄1ζ1

dσζ1
}

=ℜ
{∫

D2
ζ
−p1−1
1 ζ

−p2−1
2 [(T0,k−1)1∂ζ̄2f1k+(T0,k−1)2∂ζ̄1f2k−(T0,k−1)2(T0,k−1)1∂

k
ζ̄2

f1k](ζ)ℜ
−4z1̄z2

(ζ1−z1)(ζ2−z2)
·dσζ1dσζ2

}
+

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

(3.15)
and 

∫
∂D1
ℜ{ζ

−p1
1 ζ2

−p2[ f1(k−1)−(T0,1)1f1k−(T0,k)2∂
k−1
ζ̄1

f2k+(T0,k)2(T0,1)1∂
k
ζ̄2

f1k](ζ)}
dζ1
ζl+1

1
=0,∫

∂D2
ℜ{ζ1

−p1ζ
−p2
2 [ f2(k−1)−(T0,k)1∂

k−1
ζ̄2

f1k−(T0,1)2f2k+(T0,1)2(T0,k)1∂
k
ζ̄2

f1k](ζ)}
dζ2
ζr+1

2
=0

(3.16)

for l = 0, 1, · · · ,−p1 − 1 and r = 0, 1, · · · ,−p2 − 1.

Proof. For

T0,k f (z) =
−1
π

∫
D

1
(k − 1)!

(z − ζ)k−1

ζ − z
f (ζ)dσζ , (3.17)

by Lemma 2.3,
∂k

z̄(T0,k f (z)) = T0,0 f (z) = f (z). (3.18)
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Applying (3.18) and ∂k2
z̄2

f1k1 = ∂
k1
z̄1

f2k2 , we get that

∂k
z̄1

W0(z) = f1k(z) +
−1
π

∫
D2

1
(k − 1)!

(z2 − ζ2)k−1

ζ2 − z2
∂k

z̄1
f2k(z1, ζ2)dσζ2

−
−1
π

∫
D2

1
(k−1)!

(z2−ζ2)k−1

ζ2−z2
∂k

z̄1

[ −1
π(k−1)!

∫
D1

(z1−ζ1)k−1

ζ1−z1
∂k
ζ̄2

f1k(ζ1, ζ2)dσζ1
]
dσζ2

= f1k(z).

(3.19)

Similarly, ∂k
z̄2

W0(z) = f2k(z), and thus W0(z) is a particular solution to ∂k
z̄l
W(z) = flk(l = 1, 2). The

general solution is W(z) = φ(z) +W0(z), where φ(z) is k-holomorphic on D2, and

ℜ[ζ̄ p1
1 ζ̄

p2
2 φ(ζ)] = ℜ[{ζ̄ p1

1 ζ̄
p2
2 [W(ζ) −W0(ζ)]} = γ(ζ) −ℜ[ζ̄ p1

1 ζ̄
p2
2 W0(ζ)] � γ0(ζ).

(i) In the case of p1, p2 ≥ 0, let z−p1
1 z−p2

2 φ(z) = φ̃(z), and then φ(z) is k-holomorphic if φ̃(z) is k-
holomorphic. By Lemma 2.2, zp1

1 zp2
2 φ̃(z) is a particular solution toℜ[ζ̄ p1

1 ζ̄
p2
2 φ(ζ)] = γ0(ζ), where

φ̃(z)=
1

(2πi)2

∫
∂0D2
γ0(ζ)

[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

+
1

(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
(ζ̄ p1

1 ζ̄
p2
2 φ(ζ))

][ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

−1
]dζ1dζ2
ζ1ζ2

+
1

(2π)2i

∫
∂0D2
ℑ
[ k−1∑
k1,k2=0

(z1−ζ1)k1(z2−ζ2)k2−(−ζ̄1)k1(−ζ̄2)k2

k1!k2!
∂k1

ζ̄1
∂k2

ζ̄2
(ζ̄ p1

1 ζ̄
p2
2 φ(ζ))

]dζ1dζ2
ζ1ζ2

,

(3.20)

on the condition of (2.4) in which γ is replaced by γ0 = γ(ζ) − ℜ[ζ̄ p1
1 ζ̄

p2
2 W0(ζ)] and ∂k1

ζ̄1
∂k2

ζ̄2
W(ζ) is

replaced by ∂k1

ζ̄1
∂k2

ζ̄2
[ζ̄ p1

1 ζ̄
p2
2 (W −W0)(ζ)], that is,∫

∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

−ℜ

∫
∂0D2

[ζ̄ p1
1 ζ̄

p2
2 W0(ζ)+ζ p1

1 ζ
p2
2 W0(ζ)]

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
2ζ1ζ2

=

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

(3.21)

where

A(ζ) = ∂k1

ζ̄1
∂k2

ζ̄2
[ζ̄ p1

1 ζ̄
p2
2 (W −W0)(ζ)] = ∂k1

ζ̄1
{ζ̄1

p1[
k2∑

m1=0

Cm1
k2
∂m1

ζ̄2
(W −W0)∂k2−m1

ζ̄2
ζ̄2

p2]} (3.22)

=∂k1

ζ̄1
{ζ̄1

p1[
k2∑

m1=0

Cm1
k2

( f2m1−∂
m1

ζ̄2
W0)∂k2−m1

ζ̄2
ζ̄2

p2]}=
k2∑

m1=0

Cm1
k2
{∂k1

ζ̄1
[ζ̄1

p1( f2m1−∂
m1

ζ̄2
W0)]}∂k2−m1

ζ̄2
ζ̄2

p2

=

k2∑
m1=0

Cm1
k2
{

k1∑
m2=0

Cm2
k1

(∂m2

ζ̄1
f2m1 − ∂

m2

ζ̄1
∂m1

ζ̄2
W0)∂k1−m2

ζ̄1
ζ̄

p1
1 }∂

k2−m1

ζ̄2
ζ̄2

p2
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=

k2∑
m1=0

k1∑
m2=0

Cm1
k2

Cm2
k1
∂k2−m1

ζ̄2
ζ̄

p2
2 ∂

k1−m2

ζ̄1
ζ̄

p1
1 · ∂

m2

ζ̄1
[ f2m1(ζ) − ∂

m1

ζ̄2
W0(ζ)]

=

k2∑
m1=0

k1∑
m2=0

Cm1
k2

Cm2
k1
∂k2−m1

ζ̄2
ζ̄

p2
2 ∂

k1−m2

ζ̄1
ζ̄

p1
1

· ∂m2

ζ̄1
{ f2m1(ζ) − [(T0,k)1∂

m1

ζ̄2
f1k(ζ) + (T0,k−m1)2 f2k(ζ) − (T0,k−m1)2(T0,k)1∂

k
ζ̄2

f1k(ζ)]}

=

k2∑
m1=0

k1∑
m2=0

Cm1
k2

Cm2
k1
∂k2−m1

ζ̄2
ζ̄

p2
2 ∂

k1−m2

ζ̄1
ζ̄

p1
1 · [∂

m2

ζ̄1
f2m1(ζ) − (T0,k−m2)1∂

m1

ζ̄2
f1k(ζ)

− (T0,k−m1)2∂
m2

ζ̄1
f2k(ζ) + (T0,k−m1)2(T0,k−m2)1∂

k
ζ̄2

f1k(ζ)].

1O First, we simplify (3.20), in which

1
(2πi)2

∫
∂0D2
γ0(ζ)

[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

=
1

(2πi)2

∫
∂0D2
γ(ζ)
[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

−
1

(2πi)2

∫
∂0D2

[ζ̄ p1
1 ζ̄

p2
2 W0(ζ) + ζ p1

1 ζ
p2
2 W0(ζ)]

[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

.

(3.23)

In addition, (3.17) leads to

1
2πi

∫
∂D
ζ−pT0,k fk(ζ)

dζ
ζ−z
=

1
(k−1)!

−1
π

∫
D

fk(ζ′)
[−1
2πi

∫
∂D
ζ̄ p (ζ − ζ′)k−1

ζ̄ζ′ − 1
dζ̄

zζ̄ − 1

]
dσζ′ =0, (3.24)

and
1

2πi

∫
∂D
ζ pT0,k fk(ζ)

dζ
ζ − z

=
1

(k−1)!
−1
π

∫
D

fk(ζ′)
[ 1
2πi

∫
∂D
ζ p (ζ − ζ′)k−1

ζ̄′ − ζ̄

dζ
ζ − z

]
dσζ′

=
1

(k−1)!
−1
π

∫
D

fk(ζ′)
zp+1(z − ζ′)k−1

zζ̄′ − 1
dσζ′ =

zp

(k−1)!
−1
π

∫
D

fk(ζ)
z(z − ζ)k−1

zζ̄ − 1
dσζ .

(3.25)

According to (3.24), we have that

1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

ζ1ζ2
(ζ1 − z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

=
1

(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 [(T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂

k
ζ̄2

f1k](ζ)
dζ1dζ2

(ζ1 − z1)(ζ2−z2)

=
1

2πi

∫
∂D2

ζ̄
p2
2

[ 1
2πi

∫
∂D1

ζ̄
p1
1 (T0,k)1 f1k(ζ)

dζ1
ζ1 − z1

] dζ2
ζ2 − z2

+
1

2πi

∫
∂D1

ζ̄
p1
1

[ 1
2πi

∫
∂D2

ζ̄
p2
2 (T0,k)2 f2k(ζ)

dζ2
ζ2 − z2

] dζ1
ζ1 − z1

−
1

2πi

∫
∂D1

ζ̄
p1
1

[ 1
2πi

∫
∂D2

ζ̄
p2
2 (T0,k)2(T0,k)1∂

k
ζ̄2

f1k(ζ)
dζ2
ζ2 − z2

] dζ1
ζ1 − z1

= 0,

(3.26)
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and it follows that  1
(2πi)2

∫
∂0D2 ζ̄

p1
1 ζ̄

p2
2 W0(ζ)1

2
dζ1dζ2
ζ1ζ2
= 0,

1
(2πi)2

∫
∂0D2 ζ

p1
1 ζ

p2
2 W0(ζ)1

2
dζ1dζ2
ζ1ζ2
= 0.

(3.27)

Moreover, according to (3.25), we have that

1
(2πi)2

∫
∂0D2
ζ

p1
1 ζ

p2
2 W0(ζ)

ζ1ζ2
(ζ1 − z1)(ζ2 − z2)

dζ1dζ2
ζ1ζ2

=
1

(2πi)2

∫
∂0D2
ζ

p1
1 ζ

p2
2 [(T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂

k
ζ̄2

f1k](ζ)
dζ1dζ2

(ζ1 − z1)(ζ2 − z2)

=
1

2πi

∫
∂D2

ζ
p2
2

[ 1
2πi

∫
∂D1

ζ
p1
1 (T0,k)1 f1k(ζ)

dζ1
ζ1 − z1

] dζ2
ζ2 − z2

+
1

2πi

∫
∂D1

ζ
p1
1

[ 1
2πi

∫
∂D2

ζ
p2
2 (T0,k)2 f2k(ζ)

dζ2
ζ2 − z2

] dζ1
ζ1 − z1

−
1

2πi

∫
∂D1

ζ
p1
1

[ 1
2πi

∫
∂D2

ζ
p2
2 (T0,k)2(T0,k)1∂

k
ζ̄2

f1k(ζ)
dζ2
ζ2 − z2

] dζ1
ζ1 − z1

=
1

2πi

∫
∂D2

ζ
p2
2

[ zp1
1

(k−1)!
−1
π

∫
D1

f1k(ζ)
z1(z1 − ζ1)k−1

z1ζ̄1 − 1
dσζ1
] dζ2
ζ2 − z2

+
1

2πi

∫
∂D1

ζ
p1
1

[ zp2
2

(k−1)!
−1
π

∫
D2

f2k(ζ)
z2(z2 − ζ2)k−1

z2ζ̄2 − 1
dσζ2
] dζ1
ζ1 − z1

−
1

2πi

∫
∂D1

ζ
p1
1

[ zp2
2

(k−1)!
−1
π

∫
D2

(T0,k)1∂
k
ζ̄2

f1k(ζ)
z2(z2 − ζ2)k−1

z2ζ̄2 − 1
dσζ2
] dζ1
ζ1 − z1

.

(3.28)

Applying the Cauchy-Pompeiu formula (2.1) on D2, we get that

1
2πi

∫
∂D2

ζ
p2
2

[ zp1
1

(k−1)!
−1
π

∫
D1

f1k(ζ)
z1(z1 − ζ1)k−1

z1ζ̄1 − 1
dσζ1
] dζ2
ζ2 − z2

=
zp1

1

(k−1)!
1
π

∫
D1

[ 1
2πi

∫
∂D2

ζ
p2
2 f1k(ζ)

dζ2
ζ2 − z2

]z1(z1 − ζ1)k−1

1 − z1ζ̄1
dσζ1

=
zp1

1

(k−1)!
1
π

[
zp2

2 f1k(ζ1, z2) +
1
π

∫
D2

ζ
p2
2 ∂ζ2 f1k(ζ)

dσζ2
ζ2 − z2

]z1(z1 − ζ1)k−1

1 − z1ζ̄1
dσζ1

=
zp1

1 zp2
2

π(k−1)!

∫
D1

f1k(ζ1, z2)
z1(z1 − ζ1)k−1

1 − z1ζ̄1
dσζ1

+
zp1

1

π2(k−1)!

∫
D1

∫
D2

ζ
p2
2 ∂ζ2 f1k(ζ)

dσζ2
ζ2 − z2

z1(z1 − ζ1)k−1

1 − z1ζ̄1
dσζ1 .

(3.29)

Similarly,
1

2πi

∫
∂D1

ζ
p1
1

[ zp2
2

(k−1)!
−1
π

∫
D2

f2k(ζ)
z2(z2 − ζ2)k−1

z2ζ̄2 − 1
dσζ2
] dζ1
ζ1 − z1

=
zp1

1 zp2
2

π(k−1)!

∫
D2

f2k(z1, ζ2)
z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ2

+
zp2

2

π2(k−1)!

∫
D1

∫
D2

ζ
p1
1 ∂ζ1 f2k(ζ)

dσζ1
ζ1 − z1

z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ2 .

(3.30)
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By (3.25), we obtain that

1
2πi

∫
∂D1

ζ
p1
1

[ zp2
2

(k−1)!
−1
π

∫
D2

(T0,k)1∂
k
ζ̄2

f1k(ζ)
z2(z2 − ζ2)k−1

z2ζ̄2 − 1
dσζ2
] dζ1
ζ1 − z1

=
zp2

2

π(k−1)!

∫
D2

[ 1
2πi

∫
∂D1

ζ
p1
1 (T0,k)1∂

k
ζ̄2

f1k(ζ)
dζ1
ζ1 − z1

]z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ2

=
zp2

2

π(k−1)!

∫
D2

[ zp1
1

(k−1)!
−1
π

∫
D1

∂k
ζ̄2

f1k(ζ)
z1(z1 − ζ1)k−1

z1ζ̄1 − 1
dσζ1
]z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ2

=
zp1

1 zp2
2

π2[(k−1)!]2

∫
D1

∫
D2

∂k
ζ̄2

f1k(ζ)
z1(z1 − ζ1)k−1

1 − z1ζ̄1

z2(z2 − ζ2)k−1

1 − z2ζ̄2
dσζ1dσζ2 .

(3.31)

Plugging (3.23)–(3.31) into (3.20), we get (3.6).
2O Second, we simplify (3.21), in which∫

∂0D2
[ζ̄ p1

1 ζ̄
p2
2 W0(ζ)+ζ p1

1 ζ
p2
2 W0(ζ)]

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
2ζ1ζ2

=

∫
∂0D2
{ζ̄

p1
1 ζ̄

p2
2 [(T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂

k
ζ̄2

f1k](ζ)

+ζ
p1
1 ζ

p2
2 [(T0,k)1 f1k(ζ)+(T0,k)2 f2k(ζ)−(T0,k)2(T0,k)1∂

k
ζ̄2

f1k(ζ)]}
z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
2ζ1ζ2

.

(3.32)

Applying (3.24), (3.17), and (2.2), the terms on the right side of Eq (3.32) can be simplified.
Substituting the simplified results into (3.21) yields (3.5).

3O If φ3(z) is k-holomorphic on D2 withℜ[ζ−p1
1 ζ

−p2
2 φ3(ζ)] = 0, then zp1

1 zp2
2 φ̃(z) + φ3(z) is the general

solution to ℜ[ζ̄ p1
1 ζ̄

p2
2 φ(ζ)] = γ0(ζ). In the following, we seek φ3(z). As φ3(z) is k-holomorphic on D2,

then

φ3(z) =
k−1∑

s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

α(v1−p1)(v2−p2)s1l1 s2l2z
v1
1 zv2

2 z̄1
l1 z̄2

l2 ,

where α(v1−p1)(v2−p2)s1l1 s2l2 are arbitrary complex constants. Similarly, for the k-holomorphic function
φ̃3(z) on D, it can be expressed as

φ̃3(z) =
k−1∑
s=0

s∑
l=0

+∞∑
v=0

αsl(v−p)zvz̄l,

where αsl(v−p) are arbitrary complex constants. Denote αslv + αsl(2l−v) �Aslv, αslv � Bslv, αsl(2l−v) � Cslv.
As
∑k−1

l=0
∑k−1

s=l Cslv =
∑k−1

s=0
∑s

l=0 Cslv, then

0 = ℜ{ζ̄ pφ̃3(ζ)} =
k−1∑
s=0

s∑
l=0

+∞∑
v=−p

(αslvζ
v−l + αslvζ

l−v) (3.33)

=

k−1∑
s=0

s∑
l=0

p+2l∑
v=−p

Aslvζ
v−l+

k−1∑
s=0

s∑
l=0

+∞∑
v=p+2l+1

Bslvζ
v−l +

k−1∑
s=0

s∑
l=0

−p−1∑
v=−∞

Cslvζ
v−l
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=
{ p∑

v=−p

ζv
[ k−1∑

l=0

k−1∑
s=l

Asl(v+l)

]
+ ζ−p−1

k−1∑
l=1

k−1∑
s=l

Asl(−p−1+l) + · · · + ζ
−p−k+1A(k−1)(k−l)(−p)

+ ζ p+1
k−1∑
l=1

k−1∑
s=l

Asl(p+1+l) + ζ
p+2

k−1∑
l=2

k−1∑
s=l

Asl(p+2+l) + · · · + ζ
p+k−1A(k−1)(k−1)(p+2(k−1))

}
+
{
ζ p+1

k−1∑
s=0

Bs0(p+1) + ζ
p+2
[ k−1∑

s=0

Bs0(p+2) +

k−1∑
s=1

Bs1(p+3)

]
+ · · · + ζ p+k−1

k−2∑
l=0

k−1∑
s=l

Bsl(p+k−1+l) +

+∞∑
v=p+k

ζv
[ k−1∑

l=0

k−1∑
s=l

Bsl(v+l)

]}
+
{
ζ−p−1

k−1∑
s=0

Cs0(−p−1) + ζ
−p−2
[ k−1∑

s=0

Cs0(−p−2) +

k−1∑
s=1

Cs1(−p−1)

]
+ · · · + ζ−p−k+1

k−2∑
l=0

k−1∑
s=l

Csl(−p−k+1+l) +

−p−k∑
v=−∞

ζv
[ k−1∑

l=0

k−1∑
s=l

Csl(v+l)

]}
=

−p−k∑
v=−∞

ζv
[ k−1∑

l=0

k−1∑
s=l

Csl(v+l)

]
+ ζ−p−k+1

[ k−2∑
l=0

k−1∑
s=l

Csl(−p−k+1+l) + A(k−1)(k−l)(−p)

]
+ · · ·

+ ζ−p−1
[ k−1∑

s=0

Cs0(−p−1) +

k−1∑
l=1

k−1∑
s=l

Asl(−p−1+l)

]
+

p∑
v=−p

ζv
[ k−1∑

l=0

k−1∑
s=l

Asl(v+l)

]
+ ζ p+1

[ k−1∑
s=0

Bs0(p+1)+

k−1∑
l=1

k−1∑
s=l

Asl(p+1+l)

]
+ ζ p+k−1

[ k−2∑
l=0

k−1∑
s=l

Bsl(p+k−1+l)

+A(k−1)(k−1)(p+2(k−1))

]
+

+∞∑
v=p+k

ζv
[ k−1∑

l=0

k−1∑
s=l

Bsl(v+l)

]
,

which is equivalent to

k−1∑
s=0

s∑
l=0

αsl(v+l) = 0 (v≥ p+k),
k−1∑
s=0

s∑
l=0

[αsl(v+l) + αsl(l−v)] = 0 (−p≤v≤ p),

k−1∑
s=0

s∑
l=0

αsl(p+1+t+l)+

k−1∑
s=t+1

s∑
l=t+1

αsl(−p−1−t+l) = 0 (t = 0, 1, · · · , k − 2, k ≥ 2),

and in the case of k = 1, the last equation in the above system is non-existent.
Therefore, for ∀ζ1 ∈ ∂D and ζ2 ∈ ∂D fixed,

0 = ℜ[ζ−p1
1 ζ

−p2
2 φ3(ζ)] =

k−1∑
s1=0

s1∑
l1=0

+∞∑
v1=−p1

[( k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=−p2

αv1v2 s1l1 s2l2ζ
v2−l2
2

)
ζv1−l1

1

+
( k−1∑

s2=0

s2∑
l2=0

+∞∑
v2=−p2

αv1v2 s1l1 s2l2 ζ̄
v2−l2
2

)
ζ l1−v1

1

]
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is equivalent to

k−1∑
s1=0

s1∑
l1=0

[ k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=−p2

α(v1+l1)v2 s1l1 s2l2ζ
v2−l2
2

]
= 0 (v1 ≥ p1 + k), (3.34)

k−1∑
s1,s2=0

s1∑
l1=0

{ s2∑
l2=0

+∞∑
v2=−p2

[
α(v1+l1)v2 s1l1 s2l2ζ

v2−l2
2 + α(l1−v1)v2 s1l1 s2l2 ζ̄

v2−l2
2

]}
=0 (−p1 ≤ v1 ≤ p1), (3.35)

k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=−p2

[ k−1∑
s1=0

s1∑
l1=0

α(p1+1+t+l1)v2 s1l1 s2l2ζ
v2−l2
2 +

k−1∑
s1=t+1

s1∑
l1=t+1

α(l1−p1−1−t)v2 s1l1 s2l2 ζ̄
v2−l2
2

]
=0, (3.36)

where t = 0, 1, · · · , k − 2 (k ≥ 2), and (3.36) will disappear if k = 1.
Furthermore, for ∀ζ2 ∈ ∂D, v1 ≥ p1 + k, and

∑k−1
s2=0
∑s2

l2=0 αs2,l2 =
∑k−1

l2=0
∑k−1

s2=l2 αs2,l2 , (3.34) is
equivalent to

0 =
k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=−p2−l2

[ k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(v2+l2)s1l1 s2l2

]
ζv2

2

=
[ k−1∑

l2=1

k−1∑
s2=l2

−p2−1∑
v2=−p2−l2

+

+∞∑
v2=−p2

k−1∑
s2=0

s2∑
l2=0

][ k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(v2+l2)s1l1 s2l2

]
ζv2

2

=

k−1∑
l2=1

k−1∑
s2=l2

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(−p2−1+l2)s1l1 s2l2ζ
−p2−1
2 +

k−1∑
l2=2

k−1∑
s2=l2

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(−p2−2+l2)s1l1 s2l2ζ
−p2−2
2

+ · · ·+

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(−p2)s1l1 s2l2ζ
−p2−(k−1)
2 +

+∞∑
v2=−p2

k−1∑
s2=0

s2∑
l2=0

[ k−1∑
s1=0

s1∑
l1=0

α(v1+l1)(v2+l2)s1l1 s2l2

]
ζv2

2 .

So we get (3.7) in which the first equation will disappear for k = 1.
For ∀ζ2 ∈ ∂D, similar to the discussion of (3.33), (3.35) is equivalent to

0 =
k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=−p2

[ k−1∑
s1=0

s1∑
l1=0

α(v1+l1)v2 s1l1 s2l2ζ
v2−l2
2 +

k−1∑
s1=0

s1∑
l1=0

α(l1−v1)v2 s1l1 s2l2ζ
l2−v2
2

]
=

k−1∑
s2=0

s2∑
l2=0

p2+2l2∑
v2=−p2

[ k−1∑
s1=0

s1∑
l1=0

α(v1+l1)v2 s1l1 s2l2+

k−1∑
s1=0

s1∑
l1=0

α(l1−v1)(2l2−v2)s1l1 s2l2

]
ζv2−l2

2

+

k−1∑
s2=0

s2∑
l2=0

+∞∑
v2=p2+2l2+1

k−1∑
s1=0

s1∑
l1=0

α(v1+l1)v2 s1l1 s2l2ζ
v2−l2
2

+

k−1∑
s2=0

s2∑
l2=0

−p2−1∑
v2=−∞

k−1∑
s1=0

s1∑
l1=0

α(l1−v1)(2l2−v2)s1l1 s2l2ζ
v2−l2
2 ,

which means (3.8) and the last equation in (3.8) will disappear if k = 1. Similarly, (3.36) is equivalent
to (3.9), and (3.9) will disappear for k = 1.

Thus the general solution to ℜ[ζ̄ p1
1 ζ̄

p2
2 φ(ζ)] = γ0(ζ) is φ(z) = zp1

1 zp2
2 φ̃(z) + φ3(z) in which the

coefficients are arbitrary complex constants satisfying (3.7)–(3.9).
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By 1O, 2O, and 3O, (3.4) is the solution of Problem RH on the condition of (3.5).
(ii) In the case of p1 < 0 and p2 ≥ 0, the boundary condition is ℜ{ζ−p1

1 ζ̄2
p2φ(ζ)} = γ0(ζ). Let

z−p1
1 φ(z) = φ1(z), and then

ℜ{ζ
−p1
1 ζ̄2

p2φ(ζ)} = γ0(ζ)⇔ℜ{ζ̄2
p2φ1(ζ)} = γ0(ζ).

Since p1 < 0 and φ(z) is k-holomorphic, then φ1(z) is k-holomorphic, and therefore φ1(z) is the solution
of the boundary value problem for k-holomorphic functions satisfying ℜ{ζ̄2

p2φ1(ζ)} = γ0(ζ). To get
φ(z), we need to find the solution to ℜ{ζ̄2

p2φ1(ζ)} = γ0(ζ), where φ1(z) is k-holomorphic, and ensure
that φ(z) is k-holomorphic at the same time.

1O First, we seek the solution to ℜ{ζ̄2
p2φ1(ζ)} = γ0(ζ), which is just the case of p1 = 0 and p2 ≥ 0

in (i). Therefore,

φ1(z) = zp2
2 φ̃(z)|p1=0 +

k−1∑
s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

αv1(v2−p2)s1l1 s2l2z
v1
1 zv2

2 z̄1 (3.37)

and the condition (3.21) leads to

2
(2πi)2

∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

= ℜ
{ 1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

[ z1z̄2

(ζ1−z1)(ζ2−z2)
+

z̄1z2

(ζ1−z1)(ζ2−z2)

]dζ1dζ2
ζ1ζ2

}
+

2
(2πi)2

∫
∂0D2

k−1∑
k1,k2=0
k2

1+k
2
2,0

ℜ
[ (z1−ζ1)k1(z2−ζ2)k2

k1!k2!
A(ζ)
]
ℜ
[ ζ1ζ2
(ζ1−z1)(ζ2−z2)

−
1
2

]dζ1dζ2
ζ1ζ2

.

(3.38)

By (2.1), (2.2), (3.1), and Lemma 2.3, we get that

1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

(3.39)

=
1

2πi

∫
∂D2

ζ̄
p2
2

[ 1
2πi

∫
∂D1

ζ
−p1−1
1 W0(ζ)

z1

ζ1−z1
dζ1
] z̄2

1 − z̄2ζ2
dζ2

=
1

2πi

∫
∂D2

ζ̄
p2
2

[
z−p1

1 W0(z1, ζ2) +
1
π

∫
D1

ζ
−p1−1
1 ∂ζ̄1W0(ζ)

z1

ζ1−z1
dσζ1
] z̄2

1 − z̄2ζ2
dζ2

=
z−p1

1

π

∫
D2

∂ζ̄2[ζ̄
p2
2 W0(z1,ζ2)]

z̄2dσζ2
1−z̄2ζ2

+
1
π2

∫
D2
∂ζ̄2[ζ̄

p2
2 ∂ζ̄1W0(ζ)]ζ−p1−1

1
z1

ζ1−z1

z̄2

1−z̄2ζ2
dσζ1dσζ2

=
z−p1

1

π

∫
D2

∂ζ̄2{ζ̄
p2
2 [(T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂

k
ζ̄2

f1k](z1,ζ2)}
z̄2

1−z̄2ζ2
dσζ2

+
1
π2

∫
D2
∂ζ̄2{ζ̄

p2
2 [(T0,k−1)1f1k+(T0,k)2∂ζ̄1f2k−(T0,k)2(T0,k−1)1∂

k
ζ̄2

f1k](ζ)}ζ
−p1−1
1

z1dσζ1
ζ1−z1

z̄2dσζ2
1−z̄2ζ2

=
z−p1

1

π

∫
D2

∂ζ̄2{ζ̄
p2
2 [(T0,k)1 f1k + (T0,k)2 f2k − (T0,k)2(T0,k)1∂

k
ζ̄2

f1k](z1,ζ2)}
z̄2

1−z̄2ζ2
dσζ2

+
1
π2

∫
D2
∂ζ̄2{ζ̄

p2
2 [(T0,k−1)1f1k+(T0,k)2∂ζ̄1f2k−(T0,k)2(T0,k−1)1∂

k
ζ̄2

f1k](ζ)}ζ
−p1
1

dσζ1
ζ1−z1

z̄2dσζ2
1−z̄2ζ2
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−
1
π2

∫
D2
∂ζ̄2{ζ̄

p2
2 [(T0,k−1)1f1k+(T0,k)2∂ζ̄1f2k−(T0,k)2(T0,k−1)1∂

k
ζ̄2

f1k](ζ)}ζ
−p1−1
1 dσζ1

z̄2dσζ2
1−z̄2ζ2

,

where
z−p1

1

π

∫
D2

∂ζ̄2[ζ̄
p2
2 (T0,k)1 f1k(z1,ζ2)]

z̄2

1 − z̄2ζ2
dσζ2

=
z−p1

1

π

∫
D2

∂ζ̄2
[−1
π

∫
D1

ζ̄
p2
2

(k − 1)!
(z1 − ζ1)k−1

ζ1 − z1
f1k(ζ)dσζ1

] z̄2

1 − z̄2ζ2
dσζ2

=
−z−p1

1

π2(k − 1)!

∫
D2
∂ζ̄2[ζ̄

p2
2 f1k(ζ)]

(z1 − ζ1)k−1

ζ1 − z1

z̄2

1 − z̄2ζ2
dσζ1dσζ2 ,

(3.40)

z−p1
1

π

∫
D2

∂ζ̄2{ζ̄
p2
2 [(T0,k)2 f2k−(T0,k)2(T0,k)1∂

k
ζ̄2

f1k](z1,ζ2)}
z̄2

1−z̄2ζ2
dσζ2

=
z−p1

1

2πi

∫
∂D2

ζ̄
p2
2 (T0,k)2[ f2k−(T0,k)1∂

k
ζ̄2

f1k](z1,ζ2)
z̄2

1−z̄2ζ2
dζ2

=
z−p1

1

2πi

∫
∂D2

ζ̄
p2−1
2 (T0,k)2[ f2k−(T0,k)1∂

k
ζ̄2

f1k](z1,ζ2)
z̄2

ζ̄2 − z̄2
dζ̄2

=
z−p1

1

2πi

∫
∂D2

ζ̄
p2−1
2

{−1
π

∫
D2

1
(k−1)!

(ζ2 − ζ
′

2)k−1

ζ
′

2 − ζ2
[ f2k−(T0,k)1∂

k
ζ̄
′

2
f1k](z1,ζ

′

2)dσζ′2
} z̄2

ζ̄2 − z̄2
dζ̄2

=
−z−p1

1

π

∫
D2

1
(k−1)!

[ f2k−(T0,k)1∂
k
ζ̄
′

2
f1k](z1,ζ

′

2)
[ 1
2πi

∫
∂D2

ζ̄
p2−1
2

(ζ2 − ζ
′

2)k−1

ζ
′

2 − ζ2

z̄2

ζ̄2 − z̄2
dζ̄2
]
dσζ′2

=
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

[ f2k−(T0,k)1∂
k
ζ̄2

f1k](z1,ζ2)
(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

=
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

f2k(z1,ζ2)
(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

−
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

[−1
π

∫
D1

1
(k − 1)!

(z1 − ζ1)k−1

ζ1 − z1
∂k
ζ̄2

f1k(ζ)dσζ1
] (z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

=
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

f2k(z1,ζ2)
(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

+
z−p1

1 z̄p2+1
2

π2[(k−1)!]2

∫
D2
∂k
ζ̄2

f1k(ζ)
(z1 − ζ1)k−1

ζ1 − z1

(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ1dσζ2 ,

(3.41)

1
π2

∫
D2
∂ζ̄2[ζ̄

p2
2 (T0,k−1)1f1k(ζ)]ζ

−p1
1

dσζ1
ζ1 −z1

z̄2dσζ2
1 − z̄2ζ2

(3.42)

=
1
π2

∫
D2

{ −1
π(k − 1)!

∫
D1

(ζ1 − ζ
′

1)k−1

ζ
′

1 − ζ1
∂ζ̄2[ζ̄

p2
2 f1k(ζ

′

1, ζ2)]dσζ′1
} ζ−p1

1

ζ1 − z1

z̄2

1 − z̄2ζ2
dσζ1dσζ2

=
1
π

∫
D2

{ −1
π(k−1)!

∫
D1

∂ζ̄2[ζ̄
p2
2 f1k(ζ

′

1, ζ2)]
[1
π

∫
D1

(ζ1−ζ
′

1)k−1

ζ
′

1−ζ1

ζ
−p1
1

ζ1 − z1
dσζ1
]
dσζ′1
} z̄2

1 − z̄2ζ2
dσζ2
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=
1
π

∫
D2

{ −1
π(k−1)!

∫
D1

∂ζ̄2[ζ̄
p2
2 f1k(ζ

′

1, ζ2)]
[ 1
2kπi

∫
∂D1

(ζ1−ζ
′

1)k

ζ̄1ζ
′

1−1
dζ̄1

(1 − z1ζ̄1)ζ̄−p1
1

]
dσζ′1
} z̄2

1 − z̄2ζ2
dσζ2

=
−1

π2(k−1)!

∫
D2
∂ζ̄2[ζ̄

p2
2 f1k(ζ)]g1(ζ1, z1)

z̄2

1 − z̄2ζ2
dσζ1dσζ2 ,

1
π2

∫
D2
∂ζ̄2[ζ̄

p2
2 (T0,k)2∂ζ̄1f2k(ζ)]ζ

−p1
1

dσζ1
ζ1 − z1

z̄2dσζ2
1 − z̄2ζ2

=
1
π

∫
D1

ζ
−p1
1

ζ1 − z1

{1
π

∫
D2

∂ζ̄2[ζ̄
p2
2 (T0,k)2∂ζ̄1f2k(ζ)]

z̄2

1 − z̄2ζ2
dσζ2
}
dσζ1

=
1
π

∫
D1

ζ
−p1
1

ζ1 − z1

{ 1
2πi

∫
∂D2

ζ̄
p2
2 (T0,k)2∂ζ̄1f2k(ζ)

z̄2

1 − z̄2ζ2
dζ2
}
dσζ1

=
1
π

∫
D1

ζ
−p1
1

ζ1 − z1

{ −1
π(k−1)!

∫
D2

∂ζ̄1f2k(ζ1, ζ
′

2)
[ 1
2πi

∫
∂D2

ζ̄
p2
2

(ζ2−ζ
′

2)k−1

ζ
′

2−ζ2

z̄2

1 − z̄2ζ2
dζ2
]
dσζ′2
}
dσζ1

=
1
π

∫
D1

ζ
−p1
1

ζ1 − z1

{ −1
π(k−1)!

∫
D2

∂ζ̄1f2k(ζ1, ζ
′

2)
[ 1
2πi

∫
∂D2

ζ̄
p2
2

(ζ2−ζ
′

2)k−1

ζ̄2ζ
′

2−1
z̄2

ζ̄2 − z̄2
dζ̄2
]
dσζ′2
}
dσζ1

=
1
π

∫
D1

ζ
−p1
1

ζ1 − z1

{ −z̄p2+1
2

π(k−1)!

∫
D2

∂ζ̄1f2k(ζ)
(z2−ζ2)k−1

z̄2ζ2−1
dσζ2
}
dσζ1

=
−z̄p2+1

2

π2(k−1)!

∫
D2

ζ
−p1
1

ζ1 −z1
∂ζ̄1f2k(ζ)

(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2 ,

(3.43)

and similarly,
1
π2

∫
D2
∂ζ̄2[ζ̄

p2
2 (T0,k)2(T0,k−1)1∂

k
ζ̄2

f1k(ζ)]ζ
−p1
1

dσζ1
ζ1−z1

z̄2dσζ2
1−z̄2ζ2

=
−z̄p2+1

2

π2(k−1)!

∫
D2

ζ
−p1
1

ζ1−z1
(T0,k−1)1∂

k
ζ̄2

f1k(ζ)
(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2

=
−z̄p2+1

2

(k−1)!
1
π2

∫
D2

(T0,k−1)1∂
k
ζ̄2

f1k(ζ)
ζ
−p1
1

ζ1−z1

(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2

=
−z̄p2+1

2

(k−1)!
−1

π2(k−1)!

∫
D2
∂k
ζ̄2
[ f1k(ζ)]g1(ζ1, z1)

(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2 ,

(3.44)

in which the last equation is similar to (3.42), and g1(ζ
′

1, z1) is the function in (3.12).
Since the third term at the right end of (3.44) is the opposite of its second term for z1 = 0, then

from (3.42)–(3.44), we get that

1
π2

∫
D2 ∂ζ̄2[ζ̄

p2
2 (T0,k−1)1 f1k(ζ)]ζ

−p1−1
1 dσζ1

z̄2dσζ2
1−z̄2ζ2

= −1
π2(k−1)!

∫
D2 ∂ζ̄2[ζ̄

p2
2 f1k(ζ)]g1(ζ1, 0) z̄2

1−z̄2ζ2
dσζ1dσζ2 ,

1
π2

∫
D2 ∂ζ̄2[ζ̄

p2
2 (T0,k)2∂ζ̄1 f2k(ζ)]ζ

−p1−1
1 dσζ1

z̄2dσζ2
1−z̄2ζ2

=
−z̄p2+1

2
π2(k−1)!

∫
D2 ζ

−p1−1
1 ∂ζ̄1 f2k(ζ)

(z2−ζ2)k−1

z̄2ζ2−1 dσζ1dσζ2 ,
1
π2

∫
D2 ∂ζ̄2[ζ̄

p2
2 (T0,k)2(T0,k−1)1∂

k
ζ̄2

f1k(ζ)]ζ
−p1
1

dσζ1
ζ1−z1

z̄2dσζ2
1−z̄2ζ2

=
−z̄p2+1

2
(k−1)!

−1
π2(k−1)!

∫
D2 ∂

k
ζ̄2

[ f1k(ζ)]g1(ζ1, z1) (z2−ζ2)k−1

z̄2ζ2−1 dσζ1dσζ2 .
(3.45)
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Plugging (3.40)–(3.45) into (3.39), we obtain that

1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

z1z̄2

(ζ1 − z1)(ζ2 − z2)

dζ1dζ2
ζ1ζ2

=
1

π2(k−1)!

∫
D2
∂ζ̄2[ζ̄

p2
2 f1k(ζ)]

z̄2

z̄2ζ2 − 1

{
z−p1

1
(z1−ζ1)k−1

ζ1−z1
+g1(ζ1, z1)−g1(ζ1, 0)

}
dσζ1dσζ2

+
z−p1

1 z̄p2+1
2

π(k−1)!

∫
D2

f2k(z1,ζ2)
(z2 − ζ2)k−1

1 − z̄2ζ2
dσζ2

+
z̄p2+1

2

π2[(k− 1)!]2

∫
D2
∂k
ζ̄2

f1k(ζ)
[
z−p1

1
(z1−ζ1)k−1

ζ1−z1
−g1(ζ1,z1)+g1(ζ1,0)

](z2−ζ2)k−1

1−z̄2ζ2
dσζ1dσζ2

−
z̄p2+1

2

π2(k−1)!

∫
D2

z1ζ
−p1−1
1

ζ1 − z1
∂ζ̄1f2k(ζ)

(z2−ζ2)k−1

z̄2ζ2−1
dσζ1dσζ2 .

(3.46)

On the other hand, by Lemma 2.3 and (2.2), we get that

1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

z̄1z2

(ζ1 − z1)(ζ2 − z2)

dζ1dζ2
ζ1ζ2

=
−1
2πi

∫
∂D1

ζ
−p1
1

[ 1
2πi

∫
∂D2

ζ̄
p2
2 W0(ζ)

z2

1 − z2ζ̄2
dζ̄2
] z̄1

1 − z̄1ζ1
dζ1

=
−1
π

∫
D1

ζ
−p1
1 ∂ζ̄1

[−1
π

∫
D2

ζ̄
p2
2 ∂ζ2W0(ζ)

z2

1 − z2ζ̄2
dσζ2
] z̄1

1 − z̄1ζ1
dσζ1

=
1
π2

∫
D2
ζ
−p1
1 ζ̄

p2
2 ∂ζ̄1[∂ζ2W0(ζ)]

z̄1

1 − z̄1ζ1

z2

1 − z2ζ̄2
dσζ1dσζ2

=
1
π2

∫
D2
ζ
−p1
1 ζ̄

p2
2 ∂ζ2[(T0,k−1)1f1k+(T0,k)2∂ζ̄1f2k−(T0,k)2(T0,k−1)1∂k

ζ̄2
f1k](ζ)

z̄1z2dσζ1dσζ2
(1−z̄1ζ1)(1−z2ζ̄2)

=
1
π2

∫
D2
ζ
−p1
1 ζ̄

p2
2 [(T0,k−1)1∂ζ2f1k + (T−1,k)2∂ζ̄1f2k − (T−1,k)2(T0,k−1)1∂k

ζ̄2
f1k](ζ)

z̄1z2dσζ1dσζ2
(1 − z̄1ζ1)(1 − z2ζ̄2)

.

(3.47)

Plugging (3.46) and (3.47) into (3.38), we get (3.11). Hence, φ1(z) in (3.37) is the solution to
ℜ{ζ̄2

p2φ1(ζ)} = γ0(ζ) on the condition of (3.11).
2O Second, we seek the condition to ensure that φ(z) is k-holomorphic for φ1(z) = z−p1

1 φ(z). We
need only to ensure that φ(z) is k-holomorphic for z1 since the k-holomorphism for z2 is the same for
φ(z) and φ1(z). As the k-holomorphism of φ1(z) = z−p1

1 φ(z) for z1 is equivalent to the holomorphism of
∂k−1

z̄1
φ1(z) = z−p1

1 ∂
k−1
z̄1
φ(z) for z1, then, applying the properties of the Schwarz operator for holomorphic

functions, we get that

ζ
−p2
2 z−p1

1 ∂
k−1
z̄1
φ(z1, ζ2)

=
1

2πi

∫
∂D1

[ζ−p1
1 ζ

−p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2)+ζ p1

1 ζ
p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2)]

[ 2ζ1
ζ1 − z1

−1
]dζ1
2ζ1

=

∞∑
l=0

{ 1
2πi

∫
∂D1

[ζ−p1
1 ζ

−p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2) + ζ p1

1 ζ
p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2)]

dζ1
ζ l+1

1

}
zl

1

−
1

2πi

∫
∂D1

[ζ−p1
1 ζ

−p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2) + ζ p1

1 ζ
p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2)]

dζ1
2ζ1
.
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Since p1 < 0, then φ(z1, ζ2) is k-holomorphic for z1 (i.e., ∂k−1
z̄1
φ(z1, ζ2) is holomorphic for z1) if and only

if z−p1
1 ζ

−p2
2 ∂

k−1
z̄1
φ(z1, ζ2) has a zero of order at least −p1 at z1 = 0. Therefore,

1
2πi

∫
∂D1

[ζ−p1
1 ζ

−p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2) + ζ p1

1 ζ
p2
2 ∂

k−1
ζ̄1
φ(ζ1, ζ2)]

dζ1
ζ l+1

1

= 0 (l = 0, 1, · · · ,−p1 − 1),

that is, (3.13).
Hence, by 1O and 2O, we get that (3.10) is the solution of Problem RH on the conditions of (3.11)

and (3.13).
(iii) In the case of p1, p2 < 0, the boundary condition isℜ[ζ−p1

1 ζ
−p2
2 φ(ζ)] = γ0(ζ). Let z−p1

1 z−p2
2 φ(z) =

φ2(z), and then
ℜ[ζ−p1

1 ζ
−p2
2 φ(ζ)] = γ0(ζ)⇔ℜ[φ2(ζ)] = γ0(ζ).

Similar to (ii), we need to find the solution to ℜ[φ2(ζ)] = γ0(ζ), where φ2(z) is k-holomorphic, and
ensure that φ(z) is k-holomorphic at the same time.

1O First,ℜ[φ2(ζ)] = γ0(ζ) is just the case of p1 = p2 = 0 in (i). Therefore

φ2(z) = φ̃(z)|p1=p2=0 +

k−1∑
s1,s2=0

s1∑
l1=0

s2∑
l2=0

+∞∑
v1,v2=0

αv1v2 s1l1 s2l2z
v1
1 zv2

2 z̄1
l1 z̄2

l2 (3.48)

on the condition of (3.38). Moreover, by (2.1) and (2.2), we get that

1
(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

z1z̄2

(ζ1 − z1)(ζ2 − z2)

dζ1dζ2
ζ1ζ2

=
1

2πi

∫
∂D2

ζ
−p2
2

[ 1
2πi

∫
∂D1

ζ
−p1−1
1 W0(ζ)

z1

ζ1 − z1
dζ1
] z̄2

ζ2 − z2

dζ2
ζ2

=
1
π

∫
D2

ζ
−p2
2 ∂ζ̄2

[1
π

∫
D1

ζ
−p1−1
1 ∂ζ̄1W0(ζ)

z1

ζ1 − z1
dσζ1+z−p1

1 W0(z1, ζ2)
] z̄2

1 − z̄2ζ2
dσζ2

=
1
π2

∫
D2
ζ
−p1−1
1 ζ

−p2
2 ∂ζ̄2[∂ζ̄1W0(ζ)]

z1z̄2

(ζ1 − z1)(1 − z̄2ζ2)
dσζ1dσζ2

+
1
π

∫
D2

z−p1
1 ζ

−p2
2 ∂ζ̄2W0(z1, ζ2)

z̄2

1 − z̄2ζ2
dσζ2 ,

(3.49)

and
1

(2πi)2

∫
∂0D2
ζ̄

p1
1 ζ̄

p2
2 W0(ζ)

z̄1z2

(ζ1 − z1)(ζ2 − z2)

dζ1dζ2
ζ1ζ2

=
1

2πi

∫
∂D1

ζ
−p1
1

[ 1
2πi

∫
∂D2

ζ
−p2−1
2 W0(ζ)

z2

ζ2 − z2
dζ2
] z̄1

ζ1 − z1

dζ1
ζ1

=
1
π

∫
D1

ζ
−p1
1 ∂ζ̄1

[1
π

∫
D2

ζ
−p2−1
2 ∂ζ̄2W0(ζ)

z2

ζ2 − z2
dσζ2+z−p2

2 W0(ζ1, z2)
] z̄1

1 − z̄1ζ1
dσζ1

=
1
π2

∫
D2
ζ
−p1
1 ζ

−p2−1
2 ∂ζ̄2[∂ζ̄1W0(ζ)]

z̄1z2

(1 − z̄1ζ1)(ζ2 − z2)
dσζ1dσζ2

+
1
π

∫
D1

ζ
−p1
1 z−p2

2 ∂ζ̄1W0(ζ1, z2)
z̄1

1 − z̄1ζ1
dσζ1 .

(3.50)
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Plugging (3.49) and (3.50) into (3.38), we get (3.15). Therefore, φ2(z) in (3.48) is the solution to
ℜ[φ2(ζ)] = γ0(ζ) on the condition of (3.15).

2O Second, we seek the condition to ensure that φ(z) is k-holomorphic from φ2(z) = z−p1
1 z−p2

2 φ(z).
Similar to the discussion in 2O of (ii), φ(z) is k-holomorphic for z1 and z2 if and only if (3.16).

Hence, by 1O and 2O, we obtain that (3.14) is the solution of Problem RH on the conditions of (3.15)
and (3.16). □

Remark 3.2. Setting k = 1 in Theorem 3.1, we obtain the corresponding conclusion of the Riemann-
Hilbert problem for ℜ[ζ̄ pW(ζ)] = γ(ζ) (ζ ∈ ∂0D2) and ∂W(z)

∂z̄l
= fl(z)(z ∈ D2) , which is more concise

than that of Theorem 3.1.

Corollary 3.3. Let γ, f1, f2 ∈ C(∂0D2) with ∂z̄1 f2 = ∂z̄2 f1, and let

Ti f (zi) =
−1
π

∫
Di

f (ζi)
ζi − zi

dσζi (i = 1, 2, D1 = D2 = D).

Then, the Riemann-Hilbert problem

ℜ[ζ̄ pW(ζ)] = γ(ζ) (ζ ∈ ∂0D2), ∂z̄lW(z) = fl(z) (l = 1, 2, z ∈ D2)

is solvable, and the solution is as follows:
(i) In the case of p1, p2 ≥ 0,

W(z) = zp1
1 zp2

2 φ̃(z) +
2p1∑

v1=0

2p2∑
v2=0

α(v1−p1)(v2−p2)z
v1
1 zv2

2 + [T1 f1 + T2 f2 − T2T1∂ζ̄2 f1](z),

where αv1v2 are arbitrary complex constants satisfying

αv1v2 + α(−v1)(−v2) = 0 (−p1 ≤ v1 ≤ p1, − p2 ≤ v2 ≤ p2),

and

φ̃(z)=
1

(2πi)2

∫
∂0D2
γ(ζ)
[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

−
zp1

1 zp2
2

π

[ ∫
D1

z1 f1(ζ1, z2)
1 − z1ζ̄1

dσζ1 +
∫

D2

z2 f2(z1, ζ2)
1 − z2ζ̄2

dσζ2
]

−
1
π2

∫
D1

∫
D2

[ zp1+1
1 ζ

p2
2 ∂ζ2 f1(ζ)

(1−z1ζ̄1)(ζ2−z2)
+
ζ

p1
1 zp2+1

2 ∂ζ1 f2(ζ)

(1−z2ζ̄2)(ζ1−z1)
− ∂ζ̄2f1(ζ)

zp1+1
1

1 − z1ζ̄1

zp2+1
2

1 − z2ζ̄2

]
dσζ1dσζ2 ,

on the condition that∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

= −2ℜ
{ ∫

D2

[
ζ̄

p1
1 z̄p2

2 ∂ζ1 f2(ζ) + ζ p2
2 zp1

1 ∂ζ2 f1(ζ)
] z1

1 − z1ζ̄1

z̄2

1 − z̄2ζ2
dσζ1dσζ2

}
.
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(ii) In the case of p1 < 0 and p2 ≥ 0,

W(z) = zp1
1

[
zp2

2 φ̃(z)|p1=0 +

2p2∑
v2=0

α0(v2−p2)z
v2
2

]
+ [T1 f1 + T2 f2 − T2T1∂ζ̄2 f1](z)

(φ̃(z) and αv1v2 are the same as in (i)) on the condition that

2
(2πi)2

∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

= ℜ
{ 1
π2

∫
D2
∂ζ̄2[ζ̄

p2
2 f1(ζ)]

z̄2

z̄2ζ2−1

{ z−p1
1

ζ1−z1
+g1(ζ1,z1)−g1(ζ1, 0)

}
dσζ1dσζ2

+
z−p1

1 z̄p2+1
2

π

∫
D2

f2(z1,ζ2)
1 − z̄2ζ2

dσζ2 +
z̄p2+1

2

π2

∫
D2

[ z−p1
1

ζ1−z1
−g1(ζ1,z1)+g1(ζ1,0)

]∂ζ̄2 f1(ζ)
1−z̄2ζ2

dσζ1dσζ2

−
z̄p2+1

2

π2

∫
D2

z1ζ
−p1−1
1

ζ1−z1

∂ζ̄1 f2(ζ)
z̄2ζ2−1

dσζ1dσζ2 +
1
π2

∫
D2
ζ
−p1
1 ζ̄

p2
2 ∂ζ2 f1(ζ)

z̄1z2dσζ1dσζ2
(1−z̄1ζ1)(1−z2ζ̄2)

}
and ∫

∂D1

{γ(ζ) −ℜ[ζ−p1
1 ζ

−p2
2 (T1 f1 + T2 f2 − T2T1∂ζ̄2 f1)(ζ)]}

dζ1
ζ l+1

1

= 0 (l = 0, 1, · · · ,−p1 − 1),

where

g1(ζ
′

1, z1) =
1

(−p1 − 1)!

{
∂
−p1−1
ζ̄1

[ 1
(ζ̄1ζ

′

1−1)(1 − z1ζ̄1)

]}
ζ1=0
.

(iii) In the case of p1, p2 < 0,

W(z) = zp1
1 zp2

2

[
φ̃(z)|p1=p2=0 + α00

]
+ [T1 f1 + T2 f2 − T2T1∂ζ̄2 f1](z).

(φ̃(z) is the same as in (i) andℜα00 = 0) on the condition that∫
∂0D2
γ(ζ)ℜ

z1z̄2

(ζ1−z1)(ζ2−z2)

dζ1dζ2
ζ1ζ2

= −2ℜ
{ ∫

D2
ζ
−p1−1
1 ζ

−p2−1
2 ∂ζ̄1 f2(ζ)

[ ζ2z1z̄2

(ζ1−z1)(1 − z̄2ζ2)
+

ζ1z̄1z2

(1 − z̄1ζ1)(ζ2−z2)

]
dσζ1dσζ2

+πz−p1
1 z̄2

∫
D2

ζ
−p2
2

f2(z1, ζ2)
1 − z̄2ζ2

dσζ2 + πz̄1z−p2
2

∫
D1

ζ
−p1
1

f1(ζ1, z2)
1 − z̄1ζ1

dσζ1
}
.

For j = 1, 2,∫
∂D j

{γ(ζ) −ℜ[ζ−p1
1 ζ

−p2
2 (T1 f1 + T2 f2 − T2T1∂ζ̄2 f1)(ζ)]}

dζ j

ζ
r j+1
j

= 0 (r j = 0, 1, · · · ,−p j − 1).

The following is a simple example of the corresponding Riemann-Hilbert problem. Through simple
calculations, it can be verified that the solvable conditions in Corollary 3.3 are satisfied.
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Example 3.4. Let f1 = f2 = 0 and

γ(ζ) =


1, p1, p2 ≥ 0,
ζ
−p1
1 , p1 < 0, p2 ≥ 0,
ζ
−p1
1 ζ

−p2
2 , p1, p2 < 0

for ζ ∈ ∂0D2 and p1, p2 ∈ Z. Then the solution to the Riemann-Hilbert problem

ℜ[ζ̄ pW(ζ)] = γ(ζ) (ζ ∈ ∂0D2, p = (p1, p2)), ∂z̄lW(z) = fl(z) (l = 1, 2, z ∈ D2)

is:

W(z) =
zp1

1 zp2
2

(2πi)2

∫
∂0D2
γ(ζ)
[ 2ζ1ζ2
(ζ1−z1)(ζ2−z2)

− 1
]dζ1dζ2
ζ1ζ2

+



2p1∑
v1=0

2p2∑
v2=0

α(v1−p1)(v2−p2)z
v1
1 zv2

2 , p1, p2 ≥ 0,

2p2∑
v2=0

α0(v2−p2)z
v2
2 , p1 < 0, p2 ≥ 0,

α00, p1, p2 < 0,

where αv1v2 are arbitrary complex constants satisfying

αv1v2 + α(−v1)(−v2) = 0 (−p1 ≤ v1 ≤ p1, − p2 ≤ v2 ≤ p2).

4. Conclusions

Applying the classical Cauchy-Pompeiu formula and the Gauss theorem, we obtain the solvable
condition and the specific solution of an inhomogeneous Riemann-Hilbert boundary value problem for
complex partial differential operators of higher order on the bicylinder D2 in C2. With the methods
in this article, some other boundary value problems for complex partial differential operators in Cn

can be studied further. The conclusions generalize the existing results of the corresponding Riemann-
Hilbert boundary value problems for lower-order partial differential equations, enrich the research of
complex partial differential equations in Cn, and provide a solid basis for future research of boundary
value problems in Cn. The method proposed here can also be extended to more general domains in C2,
although the integral representations would become more complicated. In addition, the conclusions
drawn in this article are expected to contribute to some physical or engineering problems, such as
string theory and quantum gravity research, high-dimensional signal and image processing, and so on.
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