Research article

An efficient series polynomial collocation method for solving matrix differential equations

  • Published: 16 January 2026
  • MSC : 34A30, 41A10, 65L05

  • This paper introduces a numerical method based on series polynomials and collocation techniques for the solution of first-order linear matrix differential equations. The proposed framework reformulates the original problem into a system of algebraic equations through structured matrix operations, including the use of Kronecker products. A rigorous error analysis is conducted to establish the accuracy and stability of the methods. Comprehensive numerical experiments are presented, comparing the performance of the series-based collocation approach with the Bernstein polynomial method. The results demonstrate notable improvements in accuracy, particularly for higher approximation orders, thereby validating the theoretical findings and confirming the superior precision of the proposed series-based techniques.

    Citation: Lakhlifa Sadek, Ibtisam Aldawish. An efficient series polynomial collocation method for solving matrix differential equations[J]. AIMS Mathematics, 2026, 11(1): 1266-1286. doi: 10.3934/math.2026054

    Related Papers:

  • This paper introduces a numerical method based on series polynomials and collocation techniques for the solution of first-order linear matrix differential equations. The proposed framework reformulates the original problem into a system of algebraic equations through structured matrix operations, including the use of Kronecker products. A rigorous error analysis is conducted to establish the accuracy and stability of the methods. Comprehensive numerical experiments are presented, comparing the performance of the series-based collocation approach with the Bernstein polynomial method. The results demonstrate notable improvements in accuracy, particularly for higher approximation orders, thereby validating the theoretical findings and confirming the superior precision of the proposed series-based techniques.



    加载中


    [1] A. Cañada, P. Drábek, A. Fonda, Handbook of differential equations: ordinary differential equations, Volume 3, Elsevier, 2006.
    [2] L. Sadek, H. T. Alaoui, Application of MGA and EGA algorithms on large-scale linear systems of ordinary differential equations, J. Comput. Sci., 62 (2022), 101719. https://doi.org/10.1016/j.jocs.2022.101719 doi: 10.1016/j.jocs.2022.101719
    [3] L. Sadek, H. T. Alaoui, Numerical methods for solving large-scale systems of differential equations, Ric. Mat., 72 (2023), 782–802. https://doi.org/10.1007/s11587-021-00585-1 doi: 10.1007/s11587-021-00585-1
    [4] J. Liu, Z. Zhang, Y. Xu, Lower and upper bounds of the solution for the Lyapunov matrix differential equation and an application in input-output finite-time stability of linear systems, Appl. Math. Lett., 152 (2024), 109023. https://doi.org/10.1016/j.aml.2024.109023 doi: 10.1016/j.aml.2024.109023
    [5] A. Golbabai, S. P. A. Beik, D. K. Salkuyeh, A new approach for solving the first-order linear matrix differential equations, Bull. Iran. Math. Soc., 42 (2016), 297–314.
    [6] E. Defez, L. Soler, A. Hervás, C. Santamaría, Numerical solution of matrix differential models using cubic matrix splines, Comput. Math. Appl., 50 (2005), 693–699. https://doi.org/10.1016/j.camwa.2005.04.012 doi: 10.1016/j.camwa.2005.04.012
    [7] E. Defez, M. M. Tung, J. J. Ibáñez, J. Sastre, Approximating and computing nonlinear matrix differential models, Math. Comput. Model., 55 (2012), 2012–2022. https://doi.org/10.1016/j.mcm.2011.11.060 doi: 10.1016/j.mcm.2011.11.060
    [8] L. N. Trefethen, Approximation theory and approximation practice, extended edition, Society for Industrial and Applied Mathematics, 2019. https://doi.org/10.1137/1.9781611975949
    [9] L. Sadek, A. S. Bataineh, O. R. Isik, H. T. Alaoui, I. Hashim, A numerical approach based on Bernstein collocation method: application to differential Lyapunov and Sylvester matrix equations, Math. Comput. Simulat., 212 (2023), 475–488. https://doi.org/10.1016/j.matcom.2023.05.011 doi: 10.1016/j.matcom.2023.05.011
    [10] L. Sadek, S. Ounamane, B. Abouzaid, E. M. Sadek, The Galerkin Bell method to solve the fractional optimal control problems with inequality constraints, J. Comput. Sci., 77 (2024), 102244. https://doi.org/10.1016/j.jocs.2024.102244 doi: 10.1016/j.jocs.2024.102244
    [11] Z. Gu, Chebyshev spectral collocation method for system of nonlinear Volterra integral equations, Numer. Algor., 83 (2020), 243–263. https://doi.org/10.1007/s11075-019-00679-w doi: 10.1007/s11075-019-00679-w
    [12] L. Sadek, A. S. Bataineh, The general Bernstein function: Application to $\chi$-fractional differential equations, Math. Method. Appl. Sci., 47 (2024), 6117–6142. https://doi.org/10.1002/mma.9910 doi: 10.1002/mma.9910
    [13] J. Liu, Z. Zhang, Y. Xu, The existence conditions of the positive semidefinite solution for the Lyapunov matrix differential equation and improvements in its bounds, J. Franklin I., 362 (2025), 107979. https://doi.org/10.1016/j.jfranklin.2025.107979 doi: 10.1016/j.jfranklin.2025.107979
    [14] J. Liu, Z. Zhang, W. Zeng, F. Tang, Upper and lower bounds for the solution of the Lyapunov matrix differential equation, Linear Multilinear A., 72 (2024), 3099–3111. https://doi.org/10.1080/03081087.2024.2306320 doi: 10.1080/03081087.2024.2306320
    [15] S. U. Altinbasak, M. Demiralp, Solutions to linear matrix ordinary differential equations via minimal, regular, and excessive space extension based universalization, J. Math. Chem., 48 (2010), 253–265. https://doi.org/10.1007/s10910-010-9665-7 doi: 10.1007/s10910-010-9665-7
    [16] H. Zheng, W. Han, On some discretization methods for solving a linear matrix ordinary differential equation, J. Math. Chem., 49 (2011), 1026–1041. https://doi.org/10.1007/s10910-010-9794-z doi: 10.1007/s10910-010-9794-z
    [17] E. Defez, A. Hervás, J. Ibáñez, M. M. Tung, Numerical solutions of matrix differential models using higher-order matrix splines, Mediterr. J. Math., 9 (2012), 865–882. https://doi.org/10.1007/s00009-011-0159-z doi: 10.1007/s00009-011-0159-z
    [18] W.-H. Steeb, Matrix calculus and Kronecker product with applications and C++ programs, World Scientific, 1997. https://doi.org/10.1142/3572
    [19] H. Abou-Kandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati equations in control and systems theory, Basel: Birkhäuser, 2003. https://doi.org/10.1007/978-3-0348-8081-7
    [20] G. Söderlind, The logarithmic norm. History and modern theory, BIT Numer. Math., 46 (2006), 631–652. https://doi.org/10.1007/s10543-006-0069-9 doi: 10.1007/s10543-006-0069-9
    [21] J. Shen, T. Tang, L. L. Wang, Spectral methods: algorithms, analysis and applications, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7
    [22] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single domains, Berlin, Heidelberg: Springer, 2006. https://doi.org/10.1007/978-3-540-30726-6
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(142) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog