In this article, the circular (wrapped) version of Lindley-exponential (WRLE) distribution was introduced, and its different distributional, statistical, and mathematical properties were studied. The maximum likelihood method was used to estimate the model parameters. Simulation results were used to investigate the performance of the estimates. The importance of the proposed distribution was illustrated over: wrapped Lindley, wrapped exponential, new wrapped exponential, and the wrapped xgamma distributions by means of real directional data set.
Citation: Hazem Al-Mofleh. The wrapped Lindley-exponential distribution: properties and application in circular data appearing in geological context[J]. AIMS Mathematics, 2026, 11(1): 1287-1310. doi: 10.3934/math.2026055
In this article, the circular (wrapped) version of Lindley-exponential (WRLE) distribution was introduced, and its different distributional, statistical, and mathematical properties were studied. The maximum likelihood method was used to estimate the model parameters. Simulation results were used to investigate the performance of the estimates. The importance of the proposed distribution was illustrated over: wrapped Lindley, wrapped exponential, new wrapped exponential, and the wrapped xgamma distributions by means of real directional data set.
| [1] | K. V. Mardia, P. E. Jupp, Directional statistics, 2 Eds., John Wiley & Sons, Inc., 1999. https://doi.org/10.1002/9780470316979 |
| [2] | J. S. Rao, G. A. Sen, Topics in circular statistics, World Scientific, 2001. https://doi.org/10.1142/4031 |
| [3] |
P. Lévy, L'addition des variables aléatoires définies sur une circonférence, Bull. Soc. Math. France, 67 (1939), 1–41. https://doi.org/10.24033/bsmf.1288 doi: 10.24033/bsmf.1288
|
| [4] |
S. R. Jammalamadaka, T. J. Kozubowski, New families of wrapped distributions for modeling skew circular data, Commun. Stat., 33 (2004), 2059–2074. https://doi.org/10.1081/STA-200026570 doi: 10.1081/STA-200026570
|
| [5] |
S. Roy, M. A. S. Adnan, Wrapped generalized Gompertz distribution: an application to ornithology, J. Biom. Biostat., 3 (2012), 153–156. https://doi.org/10.4172/2155-6180.1000153 doi: 10.4172/2155-6180.1000153
|
| [6] |
S. Roy, M. A. S. Adnan, Wrapped weighted exponential distributions, Stat. Probab. Lett., 82 (2012), 77–83. https://doi.org/10.1016/j.spl.2011.08.023 doi: 10.1016/j.spl.2011.08.023
|
| [7] | M. A. S. Adnan, S. Roy, Wrapped variance gamma distribution with an application to wind direction, J. Environ. Stat., 6 (2014), 1–10. |
| [8] | S. Joshi, K. K. Jose, Wrapped Lindley distribution, Commun. Stat., 47 (2018), 1013–1021. https://doi.org/10.1080/03610926.2017.1280168 |
| [9] | H. Al-Mofleh, S. Sen, M. Zannon, The wrapped version of Xgamma distribution: properties and application with directional data, J. Appl. Probab. Stat., 19 (2024), 83–98. |
| [10] |
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, S. Cakmakyapan, G. Ozel, The Lindley Weibull distribution: properties and applications, Proc. Natl. Acad. Sci. Brazil, 90 (2018), 2579–2598. https://doi.org/10.1590/0001-3765201820170635 doi: 10.1590/0001-3765201820170635
|
| [11] | R Core Team, The R project for statistical computing, R foundation for statistical computing, 2025. Available from: https://www.R-project.org/. |
| [12] | C. J. Vörösmarty, R. B. Lammers, D. H. Bromwich, Arctic RIMS: NCEP reanalysis wind direction, Arctic Data Center, 2016. Available from: https://doi.org/10.5065/D6R49NXH. |
| [13] |
A. Yilmaz, C. Biçer, A new wrapped exponential distribution, Math. Sci., 12 (2018), 285–293. https://doi.org/10.1007/s40096-018-0268-y doi: 10.1007/s40096-018-0268-y
|
| [14] |
S. Joshi, K. K. Jose, D. Bhati, Estimation of a change-point in the hazard rate of the Lindley model under right censoring, Commun. Stat. Simul. Comput., 46 (2017), 3563–3574. https://doi.org/10.1080/03610918.2015.1096381 doi: 10.1080/03610918.2015.1096381
|