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1. Introduction

Angles measured with respect to a zero direction, either clockwise or anticlockwise in a rotational
sense, are typically used to describe two-dimensional directions. Circular data [1,2] refers to such two-
dimensional directed measurements with a circular representation, namely points on the circumference
of a unit circle centered at the origin.

Consequently, a probability distribution of a random angle with its whole probability concentrated
on a unit circle’s circumference is called a circular distribution. By using the “wrapping” technique,
any univariate probability distribution can be converted to a circular distribution; such distributions are
known as wrapped probability distributions.

In many natural and physical sciences, including biology, medicine, ecology, geology, and others,
directional data in two dimensions can be modeled using circular distributions. For instance, studies
of bird migrations display the flight paths of recently released birds as they vanish over the horizon;
the angle of knee flexion is measured to evaluate orthopedic patients’ recuperation, paleocurrents are
studied in geology to determine the historical direction of river flow; and wind direction at a specific
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location during a time period are examined. Additionally, any periodic phenomena with a known
period, such as, a day, a month, or a year, can be depicted on a circle whose radius matches this period
for a certain individual.

The author in [3] introduced wrapped distributions by applying this method to the Cauchy
distribution, thereby proposing the wrapped Cauchy distribution. Since then, a substantial amount of
research has been conducted in this area. To name a few, authors in [4] introduced new families of
wrapped distributions for modeling skewed circular data, they proposed wrapped exponential and
wrapped Laplace distributions; authors in [5, 6] introduced the wrapped weighted exponential and the
generalized Gompertz distributions; the work [7] proposed the wrapped variance gamma distribution
and applied it to wind direction data; authors in [8] introduced the wrapped Lindley distribution; and
authors in [9] presented the wrapped version of xgamma distribution and applied it on directional
data.

Wrapping univariate probability distribution is a very useful and effective approach for obtaining a
circular representation of an underlying density.

The work [10] proposed a new generalization of the exponential (Ex) distribution, named the
Lindley-exponential (LE) distribution. They studied its properties as a special case of the alpha power
transformed Ex distribution and examined its suitability for modeling lifetime data sets.

In consideration of the LE distribution’s growing significance and popularity, the objective of this
article is to introduce the wrapped version of this distribution, investigate its various characteristics,
discuss the distribution parameters estimation process, and demonstrate its applicability in modeling
circular data. The wrapped version of the LE distribution has one more shape parameter. Compared
with the wrapped versions of the Lindley and exponential distributions, the wrapped LE distribution
includes an additional shape parameter. This extra parameter allows the wrapped version of the LE
distribution more flexibility to model a wide range of directional data sets.

This is how the remainder of the article is structured. Section 2 presents the wrapped version of LE
distribution. Section 3 examines several distributional features, including the distribution function,
limit behavior, first and second derivatives, modality behavior, characteristic function, and
trigonometric moments with related measures. Parameter estimates and a simulation study are
covered in Section 4. In Section 5, an application is demonstrated using geological data. Finally,
Section 6 concludes significant discoveries and with some directions for future research.

2. The wrapped LE distribution

This section outlines a synthesis procedure for the circular LE distribution based on the wrapping
of univariate probability density methodology. The probability density function (PDF) of the LE
distribution is provided as follows: If X has the parameters a(> 0) and S(> 0) and follows the LE
distribution [10],

(1’2

(1+a)

) = (B+Bx)e ™ for x>0. 2.1)

We denoted it by X ~ LE(¢), where
¢ =(.p).
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The corresponding cumulative distribution function (CDF) is given by

ap

+

F(x;¢p):1—(1+l x)e‘“ﬁx for x> 0. 2.2)

With the definition of the circular (wrapped) random variable as 6 = X (mod 2r), the wrapped LE
PDF can be obtained as follows:

2(6:9) = ) f(0+2km)
k=0
o2 3 o~ B0

_ 2ne "B
(1 +a) (1 — e 2mp)

1+,36+1

(2.3)

— e 2map |’

for 6 € [0, 27), where
¢ =(p)".

The wrapped LE distribution is defined as follows.

Definition 2.1. A circular random variable 6; that is defined on [0, 27), is said to have a wrapped LE
(WRLE) distribution with parameters (o > 0,8 > 0) if its PDF can be written as

22,—afB0 2 —2nop
ape 1 +60+ Tpe
(1 +a) (1 — e2mp) 1

80, 9) = 1= o | (2.4)

It is denoted by 6 ~ WRLE(¢p), where
¢ =(a,p)".
Definition 2.2. Following [1,2], the CDF of WRLE(6; ¢) can be obtained as follows.

(o8]

G(0:9) = Y [F(O+2mk) - F(2k)]

k=0

1 0 2 —2raf

_ _[1 ~(1+ ﬁ) e-aﬂ6]+ rap e [1-c®], @5
1 - e—27mﬁ 1+« (1 + a,) (1 _ e—27mﬂ)2

where 0 € [0, 27) and
¢=(@p".
Plots of the unwrapped PDF and CDF of the WRLE distribution are displayed in Figure 1, and its
wrapped (circular) PDF and CDF are displayed in Figures 2 to 3, for various values of the vector of

parameters ¢, respectively. These plots show the WRLE distribution is uni-modal and right skewed,
also it can be decreasing or increasing-decreasing shapes.
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Figure 1. Plots of unwrapped PDF and CDF of the WRLE(0; ¢) for selected values of the

vector of parameters ¢.
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parameters ¢.
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Figure 3. Plots of wrapped (circular) CDF of the WRLE(6;¢) for different values of the

vector of parameters .
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The WRLE density function’s survival function (sf), S (-), and hazard rate function (hrf), A(-), for a
lifetime random variable ¢ are, respectively, provided by

St9)=1-Gt;9)
1 afit
|- ) ]
1 — e~2mop +1+a ¢
__ Zmefe [1 —e ’],
(1 + @) (1 — e-2mp)?

and
;)
ni,p) = 2%
S(t; )
: o1 opre ] "

[1+a(l +B1)] e - 27ra,81f;2_—”;fw (1 — e~y — (1 + @)e-2mB’ :

where
t € [0,2n).

The cumulative hazard rate function (chrf), H(-), is given by

H(t; ) = — log(S (1, 9))

1 t 2 —2naf
=-log|l - ———— [1 - (1 + ap ) e—aﬁt] _ naf e [1 _ e—aﬂt] ’
1 — e72maB l+a (1+ @) (1 — e-2mB)?

where

t € [0, 2nm).

Figure 4 shows hrf plots of the WRLE distribution for different values of the vector of parameters
. Since the hazard function of a wrapped distribution shows the instantaneous rate of occurrence at a
specific angle provided that no event occurred before that angle.

The plots in Figure 4 show how the parameters a and f affect the patterns of hazard rates, with
increased value of one of the parameters with fixed value of the other, thus denoting higher
instantaneous rates at particular angular locations.
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Figure 4. The hrf of the WRLE(6; ¢) for different values of the vector of parameters ¢.
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3. Distributional and mathematical properties

This section examines several aspects of WRLE distribution, including the limit behavior, the first
and the second derivatives, the modality, characteristic function, and trigonometric moments.
3.1. The limit behavior and the first and the second derivatives

The limits of PDF (2.3) of the WRLE distribution as § approaches 0" and 2z~ are, respectively,

o*B
(@ +1)(1 — e=2mB)?

(1= (1 - 27)e™™F)

and

a*B
(@+ 1) (1 — e=2map)?

e~ b ( 1 +2n8 - e_z”“ﬁ) .

The limit of hrf (2.6) of the WRLE distribution as ¢ approaches 2z~ is +oco, while its limit as ¢
approaches 0* is
a’p
(@ + 1) (1 — e~2map)?

(1= (1 = 27B)e™*).

The first and the second derivatives of the PDF of the WRLE distribution with respect to 6 are,
respectively, given as

, B d . B aZﬁZe—aﬁH 27r,8e‘2”“5
§O = o) = T [1 - a(l +B0+ m)] 3.1)
and
, B d2 . _ a3ﬁ3e—aﬂ9 2ﬂ.ﬁe—27rarﬂ
§O = Tl = [ - a(m 50+ 1) . (3.2)

3.2. Modality behavior

The WRLE distribution is a uni-modal distribution. By putting the first derivative (3.1) of the WRLE
distribution to 0 and solve it to 6, the critical value (unique value) of WRLE distribution is obtained
and given as

1-« 2e2nopB

a,ﬂ - 1 — g 2maB’

6, = (3.3)

Now, by substituting 6, into the second derivative (3.2), the result is given as

a’3ﬁ3 ezmw(Zmr,B-*—a— D—-a+1
e2maf_|

&%) = “at ) (eF—1)° ’

which is negative for any value of @ and 8. Thus, the value 6, in (3.3) is considered the mode of the
WRLE distribution.

AIMS Mathematics Volume 11, Issue 1, 1287-1310.
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3.3. Characteristic function

According to [2], the trigonometric moments of order p for a wrapped circular distribution, say
¢,(p), are equal to the value of the characteristic function of the unwrapped random variable X, say
¢x(1), at the integer value p, i.e.,

Pu(p) = dx(p).

The LE distribution’s characteristic function is given by

itxX azﬁ . D
ox(1) = E (™) = ——(aB + B —itNaf —in2, i= V-1,

a+1

where 7 € R is the argument of the characteristic function.
The wrapped LE distribution’s characteristic function is given by

* ipo a/zﬁ . )
$i(p) = E (") = ——=(aB +B - ip)ap - ip) >,

a+1

where
p==x1,£2,---.

By DeMoivre’s formula, any complex number to the power r, say (a — ib)" for a,b,r € R, can be
written as (Va2 + b2)r el 10 50 (a8 — ip)~? and ((af8 + ) — ip) can be written as

)
(@B-ip)? = (\/ (aB)* + pz) g (pled),
(@B +B) = ip) = V@B + ) + p? e/ WIePD,

Therefore, ¢(p) becomes

2 2 2
aBN@B+p) +p St (p/ (@) —tan (p/ (@ +5))

o(p) = 34
3.4. Trigonometric moments and related measures
According to [2], we have
(]5;([9) =Pp e,
We can now draw the following conclusion by comparing the right side of Eq (3.4) with p,, e
BB +p)* + p*
Pp = o (3.5
(@ +1) (2B + p?)
and
-1 P -1 P
=2tan”' [ = |-t : 3.6
“p an (aﬁ) an (aﬁ+ﬁ) (3.6)
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The mean direction, the resultant length, the circular variance, and the circular standard deviation,
respectively, are given by

. B N 1
U =p; =2tan (a/ﬁ) tan (a,B +,3)’ (3.7)
a*B+l(af+B) + 1 3.8)

T~ @+ D@F+ 1)’

B (aB +p)* + 1

(@+1)(a?B2+1)

VO 1—p1—1—

(3.9)

and

oo = V—2log(1 = Vo) = J—zl g[a2ﬁ V(@ +py + J (3.10)

(@+ 1D (a*B>+1)

Since each complex number can be expressed as @, + i, according to the definition of trigonometric
moments, so the ¢;(p) in (3.4) can be rewritten as

$o(P) = @p + B,

where
@, = p,cos(u,)
_ ifjm cos {Ztan_l (fﬁ)_m—l(a L ﬁ)} G.11)
and
where

p=0,%=1,£2,---
The distribution’s non-central trigonometric moments are denoted by @, and ,. The formula to

define the central trigonometric moments is

ap = pp cos(u, = piur),
as well as
By =pp Sin(:up - PH1)-
Therefore, the corresponding distribution’s central trigonometric moments are are given by

’B(ep +B)* + p*

T @ D@ )

005 (Kap.p) (3.13)
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and

. _aBN@B+B?+p

T Y (kwsr). (3.14)
where

1 1
S o e o R e R e |

The coeflicient of skewness,

&=L
3/2°
Vo
and the coefficient of kurtosis,
2= a - (1-Vy*
2 = 2 ’
Vo
respectively, are given by
2B\ (@B+B)>+4 .
o (a+D(a?p2+4) Sin (K”’/iz)
(= 372 (3.15)
| — @B Neppre
"~ a+D(a2p2+1)
and
4
2B\ (ap+p)>+4 oS (K ) [ @BV (@41
. (a+1)(a2B2+4) @p2 (a+1)(a?B2+1)
= 3 , (3.16)
| — @BV @Bzl
© a+D(a2p2+1)
where

Kapr =2 {tan_l (1) —2tan”! (i)} —tan”! ( 2 ) +2tan”! ( ! )
op ap af + 8 aB + 8

Table 1 displays the values of these WRLE distribution characteristics for different @ and g values. It
can be concluded from Table 1 that for a fixed « value, p increases when S increases, and V|, decreases
when S increases. For a fixed B value, u, V) and oy decrease when « increases, while the p increases
when « increases.
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Table 1. Values of different characteristics of WRLE distribution for varying values of o and

B.

Characteristics of WREL distribution

el 01 0.7 1 25 4 8
0.1 1.66036 2.08720 2.20444 2.30286 2.15710 1.67896
Mean direction p 0.5 1.61977 1.70723 1.62629 1.08888 0.76215 0.40682
1 1.56885 1.29989 1.10715 0.56362 0.36560 0.18629
3 1.36839 0.54581 0.39852 0.16543 0.10386 0.05205
0.1 0.00092 0.00799 0.01338 0.06259 0.14145 0.39276
Resultant length , 0.5 0.01681 0.15071 0.24037 0.63106 0.81104 0.94444
1 0.05049 0.40414 0.55902 0.87914 0.94850 0.98654
3 0.22232 0.86558 0.92770 0.98743 0.99504 0.99875
0.1 0.99909 0.99201 0.98662 0.93741 0.85855 0.60725
Circular variance Ve 0.5 0.98319 0.84930 0.75963 0.36894 0.18897 0.05556
1 0.94952 0.59586 0.44098 0.12086 0.05150 0.01346
3 0.77768 0.13442 0.07230 0.01257 0.00496 0.00125
0.1 3.74090 3.10782 2.93732 2.35420 1.97779 1.36716
Circular standard deviation o0 0.5 1.68854 1.94547 1.68854 0.95953 0.64722 0.33813
1 1.07850 1.34611 1.07850 0.50756 0.32518 0.16465
3 0.38742 0.53731 0.38742 0.15904 0.09971 0.04993
0.1 -0.00008  -0.00395  -0.00792  -0.04184  -0.07826  -0.04240
o 0.5 -0.00082  -0.02050  -0.01333 0.29249 0.58667 0.86736
1 0.00010 0.10815 0.25000 0.74316 0.88581 0.96947
3 0.04469 0.73982 0.85500 0.97395 0.98968 0.99740
0.1 -0.00002  -0.00100  -0.00203  -0.01216  -0.02878  -0.07826
N 0.5 -0.00021  -0.00873  -0.01499 0.01157 0.16667 0.58667
2 1 0.00001 0.01191 0.04000 0.37180 0.64000 0.88581
Non-central trigonometric moments 3 0.01125 0.39967 0.58580 0.90262 0.95982 0.98968
0.1 0.00091 0.00695 0.01078 0.04656 0.11783 0.39046
0.5 0.24000 0.14931 0.24000 0.55919 0.56000 0.37370
P 1 0.05049 0.38940 0.50000 0.46968 0.33910 0.18272
3 0.21779 0.44934 0.36000 0.16261 0.10316 0.05196
0.1 0.00046 0.00326 0.00476 0.01463 0.03093 0.11783
0.5 0.00835 0.06333 0.09689 031814 0.50000 0.56000
P 1 0.02506 0.18993 0.28000 0.54134 0.52000 0.33910
3 0.11164 0.50549 0.50592 0.30294 0.20051 0.10316
0.1 0.00091 0.00799 0.01338 0.06259 0.14145 0.39276
. 0.5 0.01681 0.15071 0.24037 0.63106 0.81104 0.94444
! 1 0.05049 0.40414 0.55902 0.87914 0.94850 0.98654
3 0.22232 0.86558 0.92770 0.98743 0.99504 0.99875
0.1 -0.00006  -0.00228 0.00394  -0.01325  -0.01735 0.05115
_ 0.5 -0.00061 -0.00866 0.00417 0.25472 0.50721 0.80996
@2 1 0.00009 0.08774 0.20000 0.64852 0.82364 0.94848
Central trigonometric moments 3 0.03363 0.63283 0.77125 0.95208 0.98054 0.99504
0.1 0 0 0 0 0 0
- 0.5 0 0 0 0 0 0
P 1 0 0 0 0 0 0
3 0 0 0 0 0 0
0.1 20.00045  -0.00253  -0.00336  0.01365 20.03852  -0.13188
- 0.5 -0.00833  -0.06334  -0.09795  -0.19097  -0.14324  -0.04174
P 1 20.02506  -0.16887  -0.20000  -0.10350  -0.04030  -0.00662
3 -0.10704  -0.12161  -0.06547  -0.00672  -0.00175  -0.00023
0.1 -0.00045  -0.00256  -0.00343  -0.01504  -0.04842  -0.27869
Coefficient of skewness o 0.5 -0.00854  -0.08092  -0.14795  -0.85218  -1.74382  -3.18696
! 1 -0.02709  -0.36714  -0.68296  -2.46333  -3.44810  -4.23800
3 0.15609 246769  -3.36770  -4.77113  -5.01220  -5.13680
0.1 -0.00006  -0.00232  -0.00404  -0.01510  -0.02408 0.07418
Coefficient of kurtosis o 0.5 -0.00063  -0.01272 0.00144 0.70617 2.08738 4.65150
>2 1 0.00010 0.17199 0.52628 3.50263 537620 6.91590
3 0.05157 3.95590 5.84880 8.88363 9.41040 9.68300
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4. Parameter estimation

This section examines the estimating of the unknown parameter of the WRLE distribution using
the maximum likelihood approach. Let 6, 6,, - - - , 6, be a random sample of size n from the WRLE(¢p)
distribution. The log-likelihood function for ¢ can be written as

2

n 2 2raf
(@) = nlog (aafl) —aB Y. 6~ nlog(1 - e Z log (1 +p; + 2P e_zmﬁ) @.1)
i=1

where ¢ = (a,B)7.
The following equations are obtained by partially differentiating Eq (4.1) with respect to @ and g,
respectively

o) _n@+2) 2nnf o 55 a 1+ oy
oo - a/(a, + 1) e2rap _ 1 nﬁe 4 ﬁ Z:Z] 27Tﬁ + (ﬂel + 1)(627mﬁ _ 1)

and

n nQ, 2nq
ollp) n 2ran 5 — 2 pp-2n0P Z 2maf3 ~ ( e — 1)9 -1+ eZnaﬁﬂl
— == - me .

B B e 2nBe~2mb + (1 — e=2mF) (86; + 1)

By setting the nonlinear system of Eq (4.1) as
0l(p)/0a =0 and 0l(p)/0B = 0.

The maximum likelihood estimators (MLEs) of the unknown parameters @ and § of the WRLE
distribution can be found by solving them simultaneously; this can be accomplished by using various
programs, such as R, SAS, and Python. This system of nonlinear equations cannot be solved
analytically, but it can be solved numerically using iterative methods like the Newton-Raphson
algorithm by mathematical or statistical software.

4.1. A simulation study

In order to examine the behavior of the maximum likelihood estimators and the performance of the
WRLE distribution, 10,000 samples from the WRLE distribution with sample sizes of
n = {30, 50, 80,100, 120,200} were created for each parameter’s combination from
a ={0.5,0.7,0.8,1.0,2.5,8.0} and 8 = {0.7, 1.0, 2.5, 4.0}. For each parameter’s combination and each
sample, the following measures have been calculated: The average of absolute value of biases

(1Bias@))):
1 N
Bi :—§ — .
|Bias(p)| N2 o — ol

the mean square error of the estimates (MS E(p)),

-

1 N
MSE@) =+ ) @~
i=1
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and the mean relative estimates (MRE(¢))
|
MRE = — - .
@ =5 ; o —¢l/e

R software (version 4.5.1) [11] is used for the simulation study’s computations. The MLEs’ |Bias(p)|,
MS E(p), and MRE(p) are shown in Tables 2—4.

Table 2. Result of simulation study showing |Bias(p)|, MS E, and MRE for varying ¢ and n.

@ B n |Bias@)| |Bias(B)| MSE®@) MSE) MRE(@) MRE@)
30 0.06678 0.04728 0.01358 0.00677 0.13355 0.06755

50 0.05229 0.03711 0.00833 0.00418 0.10459 0.05302

07 80 0.04376 0.03109 0.00573 0.00288 0.08752 0.04441
100 0.03987 0.02834 0.00472 0.00238 0.07973 0.04048

120 0.03692 0.02625 0.00405 0.00204 0.07384 0.03750

200 0.02814 0.02003 0.00250 0.00126 0.05627 0.02861

30 0.05805 0.02876 0.01081 0.00264 0.11610 0.02876

50 0.04668 0.02318 0.00671 0.00165 0.09337 0.02318

L0 80 0.03676 0.01828 0.00427 0.00105 0.07352 0.01828
100 0.03291 0.01638 0.00342 0.00085 0.06583 0.01638

120 0.02910 0.01449 0.00281 0.00069 0.05821 0.01449

05 200 0.02353 0.01173 0.00172 0.00043 0.04706 0.01173
30 0.04650 0.00925 0.00749 0.00030 0.09299 0.00370

50 0.03486 0.00695 0.00418 0.00017 0.06972 0.00278

5s 80 0.02633 0.00525 0.00231 0.00009 0.05266 0.00210
: 100 0.02338 0.00466 0.00181 0.00007 0.04675 0.00187
120 0.02123 0.00424 0.00151 0.00006 0.04246 0.00169

200 0.01578 0.00315 0.00083 0.00003 0.03156 0.00126

30 0.04835 0.00602 0.00826 0.00013 0.09670 0.00151

50 0.03471 0.00433 0.00417 0.00006 0.06941 0.00108

10 80 0.02646 0.00330 0.00237 0.00004 0.05292 0.00083
100 0.02353 0.00294 0.00190 0.00003 0.04707 0.00073

120 0.02113 0.00264 0.00151 0.00002 0.04225 0.00066

200 0.01557 0.00194 0.00082 0.00001 0.03115 0.00049

30 0.05287 0.05232 0.00879 0.00856 0.07553 0.07474

50 0.04205 0.04172 0.00547 0.00536 0.06008 0.05960

07 80 0.03262 0.03242 0.00334 0.00329 0.04660 0.04631
100 0.03013 0.02996 0.00282 0.00278 0.04304 0.04280

120 0.02739 0.02725 0.00239 0.00236 0.03912 0.03892

200 0.02142 0.02133 0.00147 0.00145 0.03059 0.03047

30 0.05316 0.03690 0.00940 0.00450 0.07595 0.03690

50 0.04222 0.02936 0.00562 0.00271 0.06032 0.02936

10 80 0.03221 0.02243 0.00331 0.00160 0.04602 0.02243
100 0.02959 0.02061 0.00285 0.00138 0.04227 0.02061

120 0.02664 0.01857 0.00224 0.00109 0.03806 0.01857

0.7 200 0.02050 0.01430 0.00135 0.00066 0.02929 0.01430
30 0.06345 0.01769 0.01381 0.00107 0.09064 0.00708

50 0.04642 0.01296 0.00721 0.00056 0.06631 0.00518

5s 80 0.03464 0.00968 0.00410 0.00032 0.04948 0.00387
: 100 0.03140 0.00877 0.00329 0.00026 0.04485 0.00351
120 0.02807 0.00784 0.00263 0.00021 0.04010 0.00314

200 0.02107 0.00589 0.00149 0.00012 0.03010 0.00236

30 0.06591 0.01151 0.01550 0.00047 0.09416 0.00288

50 0.04972 0.00868 0.00834 0.00025 0.07102 0.00217

40 80 0.03646 0.00637 0.00452 0.00014 0.05208 0.00159
100 0.03205 0.00560 0.00347 0.00011 0.04579 0.00140

120 0.02955 0.00516 0.00292 0.00009 0.04221 0.00129

200 0.02202 0.00385 0.00163 0.00005 0.03146 0.00096
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Table 3. Result of simulation study showing |Bias(gp)|, MS E, and MRE for varying ¢ and n.

@ B n |Bias@)| |Bias(B)| MSE@) MSEQ®) MRE(@) MRE)
30 0.04795 0.05426 0.00729 0.00928 0.05994 0.07751

50 0.03755 0.04258 0.00443 0.00567 0.04693 0.06083

07 80 0.02902 0.03297 0.00269 0.00346 0.03628 0.04710
100 0.02629 0.02988 0.00224 0.00288 0.03286 0.04269

120 0.02420 0.02752 0.00186 0.00240 0.03024 0.03931

200 0.01901 0.02165 0.00115 0.00149 0.02377 0.03093

30 0.05304 0.04209 0.00926 0.00580 0.06629 0.04209

50 0.04126 0.03280 0.00548 0.00345 0.05157 0.03280

0 80 0.03117 0.02482 0.00317 0.00200 0.03896 0.02482
100 0.02834 0.02257 0.00263 0.00166 0.03543 0.02257

120 0.02524 0.02011 0.00211 0.00134 0.03155 0.02011

08 200 0.01938 0.01546 0.00122 0.00078 0.02422 0.01546
30 0.07297 0.02327 0.01815 0.00184 0.09121 0.00931

50 0.05169 0.01650 0.00914 0.00093 0.06461 0.00660

)5 80 0.03973 0.01269 0.00533 0.00054 0.04966 0.00507
: 100 0.03557 0.01136 0.00430 0.00044 0.04446 0.00454
120 0.03174 0.01014 0.00342 0.00035 0.03967 0.00406

200 0.02339 0.00747 0.00187 0.00019 0.02924 0.00299

30 0.07581 0.01513 0.02013 0.00080 0.09476 0.00378

50 0.05616 0.01121 0.01086 0.00043 0.07020 0.00280

0 80 0.04251 0.00849 0.00619 0.00025 0.05314 0.00212
: 100 0.03687 0.00736 0.00466 0.00019 0.04608 0.00184
120 0.03334 0.00666 0.00388 0.00015 0.04168 0.00167

200 0.02494 0.00498 0.00211 0.00008 0.03118 0.00125

30 0.04118 0.05832 0.00548 0.01093 0.04118 0.08331

50 0.03163 0.04487 0.00323 0.00648 0.03163 0.06410

07 80 0.02467 0.03505 0.00196 0.00395 0.02467 0.05007
100 0.02217 0.03152 0.00161 0.00324 0.02217 0.04503

120 0.01993 0.02835 0.00128 0.00259 0.01993 0.04049

200 0.01566 0.02229 0.00079 0.00159 0.01566 0.03185

30 0.05153 0.05118 0.00890 0.00874 0.05153 0.05118

50 0.03889 0.03869 0.00502 0.00495 0.03889 0.03869

o 80 0.03037 0.03024 0.00306 0.00303 0.03037 0.03024
100 0.02813 0.02803 0.00257 0.00254 0.02813 0.02803

120 0.02508 0.02499 0.00206 0.00204 0.02508 0.02499

o 200 0.01857 0.01852 0.00114 0.00113 0.01857 0.01852
' 30 0.08353 0.03332 0.02500 0.00397 0.08353 0.01333
50 0.06513 0.02599 0.01432 0.00228 0.06513 0.01040

)s 80 0.04846 0.01935 0.00786 0.00125 0.04846 0.00774
: 100 0.03987 0.01593 0.00544 0.00087 0.03987 0.00637
120 0.03775 0.01508 0.00492 0.00078 0.03775 0.00603

200 0.02958 0.01182 0.00289 0.00046 0.02958 0.00473

30 0.09608 0.02398 0.03258 0.00203 0.09608 0.00599

50 0.06745 0.01684 0.01622 0.00101 0.06745 0.00421

0 80 0.05019 0.01254 0.00869 0.00054 0.05019 0.00313
: 100 0.04527 0.01131 0.00715 0.00045 0.04527 0.00283
120 0.04242 0.01059 0.00603 0.00038 0.04242 0.00265

200 0.03138 0.00784 0.00338 0.00021 0.03138 0.00196
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Table 4. Result of simulation study showing |Bias(gp)|, MS E, and MRE for varying ¢ and n.

@ B n |Bias@)| |Bias(B)| MSE@) MSEQ®) MRE(@) MRE)
30 0.02341 0.08329 0.00196 0.02470 0.00936 0.11899

50 0.01690 0.06020 0.00100 0.01261 0.00676 0.08599

07 80 0.01288 0.04592 0.00056 0.00712 0.00515 0.06560
100 0.01137 0.04053 0.00044 0.00561 0.00455 0.05790

120 0.00987 0.03520 0.00034 0.00426 0.00395 0.05028

200 0.00758 0.02704 0.00019 0.00247 0.00303 0.03863

30 0.04189 0.10446 0.00608 0.03774 0.01675 0.10446

50 0.03087 0.07704 0.00320 0.01991 0.01235 0.07704

0 80 0.02366 0.05906 0.00188 0.01171 0.00946 0.05906
100 0.02043 0.05100 0.00142 0.00882 0.00817 0.05100

120 0.01862 0.04649 0.00116 0.00720 0.00745 0.04649

)s 200 0.01419 0.03543 0.00068 0.00423 0.00567 0.03543
' 30 0.13738 0.13725 0.05939 0.05925 0.05495 0.05490
50 0.09762 0.09755 0.03206 0.03200 0.03905 0.03902

)5 80 0.07508 0.07503 0.01925 0.01922 0.03003 0.03001
: 100 0.06622 0.06618 0.01511 0.01509 0.02649 0.02647
120 0.06075 0.06072 0.01230 0.01229 0.02430 0.02429

200 0.04537 0.04535 0.00719 0.00718 0.01815 0.01814

30 0.18607 0.11641 0.10965 0.04304 0.07443 0.02910

50 0.13828 0.08639 0.06446 0.02516 0.05531 0.02160

0 80 0.10382 0.06487 0.03704 0.01445 0.04153 0.01622
: 100 0.09263 0.05788 0.03022 0.01179 0.03705 0.01447
120 0.08409 0.05254 0.02419 0.00944 0.03363 0.01314

200 0.06318 0.03948 0.01383 0.00540 0.02527 0.00987

30 0.00851 0.09718 0.00026 0.03409 0.00106 0.13883

50 0.00611 0.06975 0.00013 0.01712 0.00076 0.09965

07 80 0.00456 0.05210 0.00007 0.00948 0.00057 0.07443
100 0.00395 0.04508 0.00005 0.00714 0.00049 0.06440

120 0.00351 0.04005 0.00004 0.00552 0.00044 0.05721

200 0.00266 0.03038 0.00002 0.00317 0.00033 0.04341

30 0.01699 0.13575 0.00103 0.06569 0.00212 0.13575

50 0.01207 0.09654 0.00052 0.03337 0.00151 0.09654

0 80 0.00910 0.07275 0.00029 0.01876 0.00114 0.07275
: 100 0.00759 0.06073 0.00021 0.01326 0.00095 0.06073
120 0.00691 0.05527 0.00017 0.01108 0.00086 0.05527

- 200 0.00509 0.04075 0.00009 0.00600 0.00064 0.04075
30 0.07986 0.25271 0.01988 0.19512 0.00998 0.10108

50 0.06219 0.19832 0.01263 0.12765 0.00777 0.07933

)5 80 0.04632 0.14810 0.00748 0.07642 0.00579 0.05924
: 100 0.04028 0.12878 0.00579 0.05918 0.00503 0.05151
120 0.03710 0.11861 0.00490 0.05006 0.00464 0.04745

200 0.02574 0.08227 0.00241 0.02461 0.00322 0.03291

30 0.15492 0.30401 0.07330 0.27585 0.01937 0.07600

50 0.12102 0.24014 0.04592 0.17879 0.01513 0.06004

0 80 0.09422 0.18788 0.02903 0.11508 0.01178 0.04697
: 100 0.08224 0.16411 0.02335 0.09284 0.01028 0.04103
120 0.07258 0.14493 0.01827 0.07286 0.00907 0.03623

200 0.05536 0.11054 0.01088 0.04343 0.00692 0.02764

It is evident that as sample size increases, the values of |Bias(g)|, MS E(p), and MRE(p) decrease.
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We can conclude from the results in Tables 2—4 that the consistency property is maintained for all

parameter combinations by the ML estimation method. In addition, Figures 5-7 illustrate the heat
maps associated with each parameter.
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Figure 5. The heatmaps of the simulated biases and MSE of the MLE simulation method for
various true values a and .
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Figure 6. The heatmaps of the simulated biases and MSE of the MLE simulation method for
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5. Application

This section covers the use of the WRLE model to demonstrate how the model behaves on a real
dataset. Wind direction data [12] has been analyzed to demonstrate how the WRLE distribution can
be utilized with real datasets. This dataset is available within the website: https://arcticdata.
io/catalog/view/doi:10.5065/D6R49NXH with name *“seabasin200301. This data represents the
daily-mean unit vector of NNR daily wind direction at 10 meters (recorded in degrees) from the period
January 2003 at Bering Strait between the Pacific and Arctic oceans.

For WRLE(0;¢) and four distribution, namely: wrapped Lindley distribution WL(6;«) [8],
wrapped xgamma distribution WRXG(0; @) [9], new wrapped Ex distribution NWE(6;¢) [13] and
wrapped Ex distribution WE(8; @) [4], the ML estimation and corresponding standard error of the
parameters are obtained for the seabasin200301 data, these results are given in Table 5. Table 6 shows
the seabasin200301 data resultant length and mean direction, and the resultant length when the dataset
is modeled with the aforementioned distributions. From Table 6 it can be concluded that the resultant
length and mean direction with WRLE model are close to the sample resultant length and sample
mean direction of the seabasin200301 data.

Table 5. MLEs and their standard errors (in parentheses) for seabasin200301 dataset.

~

The model a B

WRLE 0.01137 118.05191
(0.01102) (115.23805)

NWRE 0.99326 -0.99999
(0.37037) (1.60973)

WRL 0.98876 —
(0.14686) —

WRE 0.62567 —
(0.13582) —

WRXG 1.29020 —
0.18016 —

Table 6. Mean direction and Resultant length for seabasin200301 data and the given models.

Resultant length Mean direction
seabasin200301 data 0.77121 1.18505 (~ 67.89860°)
WRLE Model 0.64310 1.27222 (~ 72.89256°)
NWRE Model 0.62946 2.34390 (~ 134.29550°)
WRL Model 0.55333 1.11619 (~ 63.95307°)
WRE Model 0.53041 1.01172 (~ 57.96721°)
WRXG Model 0.54096 1.05560 (~ 60.48138°)

Figures 8 and 9 provide the plots of the circular data, rose diagram, fitted PDF, estimated densities
and estimated cumulative of the fitted WRLE, WRL, WRE, WRXG and NWRE models for the given
dataset.

The dashed arrow in Figure 8 indicates the mean direction vector of the fitted WRLE distribution,
whereas the solid arrow indicates the sample mean resultant vector.
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The PDF
WRLE = = - NWRE WRL -=-= WRE -— — WRXG

Figure 8. Plots for seabasin200301 data. Circular data plot, fitted circular PDF and rose
diagram of WRLE(6;¢), NWRE(6;¢), WRL(0; a), WRE(6; @) and WRXG(0; @).
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Figure 9. The linear (unwrapped) histogram, fitted PDF and empirical CDF of NWRE(6; ¢),
WRE0; a), WRL(0; «), WRLE(0;¢) and WRXG(6; @), for seabasin200301 data.

The summary results of several measures, including —2 log-likelihood (-2¢), Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC),
Hannan information criterion (HQIC), Watson’s U? test (WT), Kuiper’s test (KT), Rayleigh’s test (RT)
and Rao’s spacing test (RST), for the models are provided in Table 7 for comparison.

The WRLE distribution provides the best fit to the data set when compared to the WRL, WRE,
WRXG and NWRE distributions. This is evident from the smallest values of —2?, AIC, CAIC, BIC,
HQIC, WT statistic, KT statistic, RT statistic and RST statistic which all clearly show superiority for

the WRLE distribution. The fitted WRLE distribution seems to offer a sufficient fit to the
seabasin 200301 dataset.
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Table 7. ML estimates for seabasin200301 data.

The Model -2¢ AIC CAIC BIC HQIC KT(Stat) WT(Stat) RT(Stat) RST(Stat)
WRLE 69.95691 73.95691 74.38548 76.82488 74.89180 5.05407  2.20086  0.98299  305.69280
NWRE 70.15385 74.15385 74.58242 77.02183 75.08874 5.06232  2.20793  0.98356  305.76630
WRL 80.77774 8277774 8291567 84.21172 83.24518 5.15487 2.27424  0.98765 310.23860
WRE 84.96779 86.96779 87.10572 88.40177 87.43523 5.19024 229939  0.98930  312.44660
WRXG 86.25484  88.25484  88.39277 89.68883  88.72228 5.18198  2.29387  0.98867 311.93110

6. Concluding remarks

In this paper, we investigated and studied various mathematical, distributional and circular
properties of the LE distribution [10] using the method of “wrapping”, including the distribution
function, limit behavior, first and second derivatives, modality behavior, characteristic function, and
trigonometric moments with related measures. We discussed maximum likelihood estimation of the
model parameters and provided simulation results to assess the performance of the proposed
distribution. An application to real wind directions data set illustrates that the new distribution
provides consistently better fits than other nested and non-nested models.

In their next work, the authors plan to conduct a change-point investigation about the wrapped LE
distribution (the change-point model in Lindley distribution in linear setup may be found in [14]), as
well as Bayesian analysis for this distribution.
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