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1. Introduction

Angles measured with respect to a zero direction, either clockwise or anticlockwise in a rotational
sense, are typically used to describe two-dimensional directions. Circular data [1,2] refers to such two-
dimensional directed measurements with a circular representation, namely points on the circumference
of a unit circle centered at the origin.

Consequently, a probability distribution of a random angle with its whole probability concentrated
on a unit circle’s circumference is called a circular distribution. By using the “wrapping” technique,
any univariate probability distribution can be converted to a circular distribution; such distributions are
known as wrapped probability distributions.

In many natural and physical sciences, including biology, medicine, ecology, geology, and others,
directional data in two dimensions can be modeled using circular distributions. For instance, studies
of bird migrations display the flight paths of recently released birds as they vanish over the horizon;
the angle of knee flexion is measured to evaluate orthopedic patients’ recuperation, paleocurrents are
studied in geology to determine the historical direction of river flow; and wind direction at a specific
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location during a time period are examined. Additionally, any periodic phenomena with a known
period, such as, a day, a month, or a year, can be depicted on a circle whose radius matches this period
for a certain individual.

The author in [3] introduced wrapped distributions by applying this method to the Cauchy
distribution, thereby proposing the wrapped Cauchy distribution. Since then, a substantial amount of
research has been conducted in this area. To name a few, authors in [4] introduced new families of
wrapped distributions for modeling skewed circular data, they proposed wrapped exponential and
wrapped Laplace distributions; authors in [5, 6] introduced the wrapped weighted exponential and the
generalized Gompertz distributions; the work [7] proposed the wrapped variance gamma distribution
and applied it to wind direction data; authors in [8] introduced the wrapped Lindley distribution; and
authors in [9] presented the wrapped version of xgamma distribution and applied it on directional
data.

Wrapping univariate probability distribution is a very useful and effective approach for obtaining a
circular representation of an underlying density.

The work [10] proposed a new generalization of the exponential (Ex) distribution, named the
Lindley-exponential (LE) distribution. They studied its properties as a special case of the alpha power
transformed Ex distribution and examined its suitability for modeling lifetime data sets.

In consideration of the LE distribution’s growing significance and popularity, the objective of this
article is to introduce the wrapped version of this distribution, investigate its various characteristics,
discuss the distribution parameters estimation process, and demonstrate its applicability in modeling
circular data. The wrapped version of the LE distribution has one more shape parameter. Compared
with the wrapped versions of the Lindley and exponential distributions, the wrapped LE distribution
includes an additional shape parameter. This extra parameter allows the wrapped version of the LE
distribution more flexibility to model a wide range of directional data sets.

This is how the remainder of the article is structured. Section 2 presents the wrapped version of LE
distribution. Section 3 examines several distributional features, including the distribution function,
limit behavior, first and second derivatives, modality behavior, characteristic function, and
trigonometric moments with related measures. Parameter estimates and a simulation study are
covered in Section 4. In Section 5, an application is demonstrated using geological data. Finally,
Section 6 concludes significant discoveries and with some directions for future research.

2. The wrapped LE distribution

This section outlines a synthesis procedure for the circular LE distribution based on the wrapping
of univariate probability density methodology. The probability density function (PDF) of the LE
distribution is provided as follows: If X has the parameters α(> 0) and β(> 0) and follows the LE
distribution [10],

f (x;φφφ) =
α2

(1 + α)

(
β + β2x

)
e−αβx for x > 0. (2.1)

We denoted it by X ∼ LE(φφφ), where

φφφ = (α, β)⊺.
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The corresponding cumulative distribution function (CDF) is given by

F(x;φφφ) = 1 −
(
1 +

αβ

1 + α
x
)

e−αβx for x > 0. (2.2)

With the definition of the circular (wrapped) random variable as θ ≡ X (mod 2π), the wrapped LE
PDF can be obtained as follows:

g(θ;φφφ) =
∞∑

k=0

f (θ + 2kπ)

=
α2βe−αβθ

(1 + α)
(
1 − e−2παβ) [

1 + βθ +
2πβe−2παβ

1 − e−2παβ

]
, (2.3)

for θ ∈ [0, 2π), where

φφφ = (α, β)⊺.

The wrapped LE distribution is defined as follows.

Definition 2.1. A circular random variable θ; that is defined on [0, 2π), is said to have a wrapped LE
(WRLE) distribution with parameters (α > 0, β > 0) if its PDF can be written as

g(θ;φφφ) =
α2βe−αβθ

(1 + α)
(
1 − e−2παβ) [

1 + βθ +
2πβe−2παβ

1 − e−2παβ

]
. (2.4)

It is denoted by θ ∼ WRLE(φφφ), where

φφφ = (α, β)⊺.

Definition 2.2. Following [1, 2], the CDF of WRLE(θ;φφφ) can be obtained as follows.

G(θ;φφφ) =
∞∑

k=0

[F(θ + 2πk) − F(2πk)]

=
1

1 − e−2παβ

[
1 −

(
1 +
αβθ

1 + α

)
e−αβθ

]
+

2παβ e−2παβ

(1 + α)
(
1 − e−2παβ)2

[
1 − e−αβθ

]
, (2.5)

where θ ∈ [0, 2π) and

φφφ = (α, β)⊺.

Plots of the unwrapped PDF and CDF of the WRLE distribution are displayed in Figure 1, and its
wrapped (circular) PDF and CDF are displayed in Figures 2 to 3, for various values of the vector of
parameters φφφ, respectively. These plots show the WRLE distribution is uni-modal and right skewed,
also it can be decreasing or increasing-decreasing shapes.
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Figure 1. Plots of unwrapped PDF and CDF of the WRLE(θ;φφφ) for selected values of the
vector of parameters φφφ.
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Figure 2. Plots of wrapped (circular) PDF WRLE(θ;φφφ) for different values of the vector of
parameters φφφ.
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Figure 3. Plots of wrapped (circular) CDF of the WRLE(θ;φφφ) for different values of the
vector of parameters φφφ.
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The WRLE density function’s survival function (sf), S (·), and hazard rate function (hrf), h(·), for a
lifetime random variable t are, respectively, provided by

S (t;φφφ) = 1 −G(t;φφφ)

= 1 −
1

1 − e−2παβ

[
1 −

(
1 +

αβt
1 + α

)
e−αβt

]
−

2παβ e−2παβ

(1 + α)
(
1 − e−2παβ)2

[
1 − e−αβt

]
,

and

h(t;φφφ) =
g(t;φφφ)
S (t;φφφ)

=
α2βe−αβt

[
1 + βt + 2πβe−2παβ

1−e−2παβ

]
[
1 + α(1 + βt)

]
e−αβt − 2παβ e−2παβ

1−e−2παβ (1 − e−αβt) − (1 + α)e−2παβ
, (2.6)

where

t ∈ [0, 2π).

The cumulative hazard rate function (chrf), H(·), is given by

H(t;φφφ) = − log(S (t;φφφ))

= − log
1 − 1

1 − e−2παβ

[
1 −

(
1 +

αβt
1 + α

)
e−αβt

]
−

2παβ e−2παβ

(1 + α)
(
1 − e−2παβ)2

[
1 − e−αβt

] ,
where

t ∈ [0, 2π).

Figure 4 shows hrf plots of the WRLE distribution for different values of the vector of parameters
φφφ. Since the hazard function of a wrapped distribution shows the instantaneous rate of occurrence at a
specific angle provided that no event occurred before that angle.

The plots in Figure 4 show how the parameters α and β affect the patterns of hazard rates, with
increased value of one of the parameters with fixed value of the other, thus denoting higher
instantaneous rates at particular angular locations.
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Figure 4. The hrf of the WRLE(θ;φφφ) for different values of the vector of parameters φφφ.
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3. Distributional and mathematical properties

This section examines several aspects of WRLE distribution, including the limit behavior, the first
and the second derivatives, the modality, characteristic function, and trigonometric moments.

3.1. The limit behavior and the first and the second derivatives

The limits of PDF (2.3) of the WRLE distribution as θ approaches 0+ and 2π− are, respectively,

α2β

(α + 1)
(
1 − e−2παβ)2

(
1 − (1 − 2πβ)e−2παβ

)
and

α2β

(α + 1)
(
1 − e−2παβ)2 e−2παβ

(
1 + 2πβ − e−2παβ

)
.

The limit of hrf (2.6) of the WRLE distribution as t approaches 2π− is +∞, while its limit as t
approaches 0+ is

α2β

(α + 1)
(
1 − e−2παβ)2

(
1 − (1 − 2πβ)e−2παβ

)
.

The first and the second derivatives of the PDF of the WRLE distribution with respect to θ are,
respectively, given as

g′(θ) =
d
dθ

(g(θ;φφφ)) =
α2β2e−αβθ

(α + 1)
(
1 − e−2παβ) [

1 − α
(
1 + βθ +

2πβe−2παβ

1 − e−2παβ

)]
(3.1)

and

g′′(θ) =
d2

dθ2
(g(θ;φφφ)) = −

α3β3e−αβθ

(α + 1)
(
1 − e−2παβ) [

2 − α
(

2πβe−2παβ

1 − e−2παβ + βθ + 1
)]
. (3.2)

3.2. Modality behavior

The WRLE distribution is a uni-modal distribution. By putting the first derivative (3.1) of the WRLE
distribution to 0 and solve it to θ, the critical value (unique value) of WRLE distribution is obtained
and given as

θ0 =
1 − α
αβ
−

2πe−2παβ

1 − e−2παβ . (3.3)

Now, by substituting θ0 into the second derivative (3.2), the result is given as

g′′(θ0) = −
α3β3

(α + 1)
(
e2παβ − 1

)e
e2παβ(2παβ+α−1)−α+1

e2παβ−1 ,

which is negative for any value of α and β. Thus, the value θ0 in (3.3) is considered the mode of the
WRLE distribution.
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3.3. Characteristic function

According to [2], the trigonometric moments of order p for a wrapped circular distribution, say
ϕ∗θ(p), are equal to the value of the characteristic function of the unwrapped random variable X, say
ϕX(t), at the integer value p, i.e.,

ϕ∗θ(p) = ϕX(p).

The LE distribution’s characteristic function is given by

ϕX(t) = E
(
eitX

)
=
α2β

α + 1
(αβ + β − it)(αβ − it)−2, i =

√
−1,

where t ∈ R is the argument of the characteristic function.
The wrapped LE distribution’s characteristic function is given by

ϕ∗θ(p) = E
(
eipθ

)
=
α2β

α + 1
(αβ + β − ip)(αβ − ip)−2,

where
p = ±1,±2, · · · .

By DeMoivre’s formula, any complex number to the power r, say (a − ib)r for a, b, r ∈ R, can be
written as

(√
a2 + b2

)r
eir tan−1(b/a), so (αβ − ip)−2 and ((αβ + β) − ip) can be written as

(αβ − ip)−2 =

(√
(αβ)2 + p2

)−2

ei2 tan−1(p/(αβ)),

((αβ + β) − ip) =
√

(αβ + β)2 + p2 e−i tan−1(p/(αβ+β)).

Therefore, φ(p) becomes

ϕ∗θ(p) =
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) ei(2 tan−1(p/(αβ))−tan−1(p/(αβ+β))). (3.4)

3.4. Trigonometric moments and related measures

According to [2], we have
ϕ∗θ(p) = ρp eiµp .

We can now draw the following conclusion by comparing the right side of Eq (3.4) with ρp eiµp

ρp =
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) (3.5)

and

µp = 2 tan−1
(

p
αβ

)
− tan−1

(
p

αβ + β

)
. (3.6)
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The mean direction, the resultant length, the circular variance, and the circular standard deviation,
respectively, are given by

µ = µ1 = 2 tan−1
(

1
αβ

)
− tan−1

(
1

αβ + β

)
, (3.7)

ρ = ρ1 =
α2β

√
(αβ + β)2 + 1

(α + 1)
(
α2β2 + 1

) , (3.8)

V0 = 1 − ρ1 = 1 −
α2β

√
(αβ + β)2 + 1

(α + 1)
(
α2β2 + 1

) (3.9)

and

σ0 =
√
−2 log(1 − V0) =

√√
−2 log

α2β
√

(αβ + β)2 + 1
(α + 1)

(
α2β2 + 1

) . (3.10)

Since each complex number can be expressed as αp + iβp according to the definition of trigonometric
moments, so the ϕ∗θ(p) in (3.4) can be rewritten as

ϕ∗θ(p) = αp + iβp,

where

αp = ρp cos(µp)

=
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) cos

{
2 tan−1

(
p
αβ

)
− tan−1

(
p

αβ + β

)}
(3.11)

and

βp =
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) sin

{
2 tan−1

(
p
αβ

)
− tan−1

(
p

αβ + β

)}
, (3.12)

where
p = 0,±1,±2, · · · .

The distribution’s non-central trigonometric moments are denoted by αp and βp. The formula to
define the central trigonometric moments is

ᾱp = ρp cos(µp − pµ1),

as well as
β̄p = ρp sin(µp − pµ1).

Therefore, the corresponding distribution’s central trigonometric moments are are given by

ᾱp =
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) cos

(
κα,β,p

)
(3.13)
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and

β̄p =
α2β

√
(αβ + β)2 + p2

(α + 1)
(
α2β2 + p2) sin

(
κα,β,p

)
, (3.14)

where

κα,β,p = 2
{

tan−1
(

p
αβ

)
− p tan−1

(
1
αβ

)}
− tan−1

(
p

αβ + β

)
+ p tan−1

(
1

αβ + β

)
.

The coefficient of skewness,

ζ0
1 =

β̄2

V3/2
0

,

and the coefficient of kurtosis,

ζ0
2 =
ᾱ2 − (1 − V0)4

V2
0

,

respectively, are given by

ζ0
1 =

α2β
√

(αβ+β)2+4

(α+1)(α2β2+4) sin
(
κα,β,2

)
(
1 − α

2β
√

(αβ+β)2+1

(α+1)(α2β2+1)

)3/2 (3.15)

and

ζ0
2 =

α2β
√

(αβ+β)2+4

(α+1)(α2β2+4) cos
(
κα,β,2

)
−

(
α2β
√

(αβ+β)2+1

(α+1)(α2β2+1)

)4

(
1 − α

2β
√

(αβ+β)2+1

(α+1)(α2β2+1)

)2 , (3.16)

where

κα,β,2 = 2
{

tan−1
(

2
αβ

)
− 2 tan−1

(
1
αβ

)}
− tan−1

(
2

αβ + β

)
+ 2 tan−1

(
1

αβ + β

)
.

Table 1 displays the values of these WRLE distribution characteristics for different α and β values. It
can be concluded from Table 1 that for a fixed α value, ρ increases when β increases, and V0 decreases
when β increases. For a fixed β value, µ, V0 and σ0 decrease when α increases, while the ρ increases
when α increases.
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Table 1. Values of different characteristics of WRLE distribution for varying values of α and
β.

Characteristics of WREL distribution
β

α ↓ 0.1 0.7 1 2.5 4 8

Mean direction µ

0.1 1.66036 2.08720 2.20444 2.30286 2.15710 1.67896
0.5 1.61977 1.70723 1.62629 1.08888 0.76215 0.40682
1 1.56885 1.29989 1.10715 0.56362 0.36560 0.18629
3 1.36839 0.54581 0.39852 0.16543 0.10386 0.05205

Resultant length ρ

0.1 0.00092 0.00799 0.01338 0.06259 0.14145 0.39276
0.5 0.01681 0.15071 0.24037 0.63106 0.81104 0.94444
1 0.05049 0.40414 0.55902 0.87914 0.94850 0.98654
3 0.22232 0.86558 0.92770 0.98743 0.99504 0.99875

Circular variance V0

0.1 0.99909 0.99201 0.98662 0.93741 0.85855 0.60725
0.5 0.98319 0.84930 0.75963 0.36894 0.18897 0.05556
1 0.94952 0.59586 0.44098 0.12086 0.05150 0.01346
3 0.77768 0.13442 0.07230 0.01257 0.00496 0.00125

Circular standard deviation σ0

0.1 3.74090 3.10782 2.93732 2.35420 1.97779 1.36716
0.5 1.68854 1.94547 1.68854 0.95953 0.64722 0.33813
1 1.07850 1.34611 1.07850 0.50756 0.32518 0.16465
3 0.38742 0.53731 0.38742 0.15904 0.09971 0.04993

Non-central trigonometric moments

α1

0.1 -0.00008 -0.00395 -0.00792 -0.04184 -0.07826 -0.04240
0.5 -0.00082 -0.02050 -0.01333 0.29249 0.58667 0.86736
1 0.00010 0.10815 0.25000 0.74316 0.88581 0.96947
3 0.04469 0.73982 0.85500 0.97395 0.98968 0.99740

α2

0.1 -0.00002 -0.00100 -0.00203 -0.01216 -0.02878 -0.07826
0.5 -0.00021 -0.00873 -0.01499 0.01157 0.16667 0.58667
1 0.00001 0.01191 0.04000 0.37180 0.64000 0.88581
3 0.01125 0.39967 0.58580 0.90262 0.95982 0.98968

β1

0.1 0.00091 0.00695 0.01078 0.04656 0.11783 0.39046
0.5 0.24000 0.14931 0.24000 0.55919 0.56000 0.37370
1 0.05049 0.38940 0.50000 0.46968 0.33910 0.18272
3 0.21779 0.44934 0.36000 0.16261 0.10316 0.05196

β2

0.1 0.00046 0.00326 0.00476 0.01463 0.03093 0.11783
0.5 0.00835 0.06333 0.09689 0.31814 0.50000 0.56000
1 0.02506 0.18993 0.28000 0.54134 0.52000 0.33910
3 0.11164 0.50549 0.50592 0.30294 0.20051 0.10316

Central trigonometric moments

ᾱ1

0.1 0.00091 0.00799 0.01338 0.06259 0.14145 0.39276
0.5 0.01681 0.15071 0.24037 0.63106 0.81104 0.94444
1 0.05049 0.40414 0.55902 0.87914 0.94850 0.98654
3 0.22232 0.86558 0.92770 0.98743 0.99504 0.99875

ᾱ2

0.1 -0.00006 -0.00228 0.00394 -0.01325 -0.01735 0.05115
0.5 -0.00061 -0.00866 0.00417 0.25472 0.50721 0.80996
1 0.00009 0.08774 0.20000 0.64852 0.82364 0.94848
3 0.03363 0.63283 0.77125 0.95208 0.98054 0.99504

β̄1

0.1 0 0 0 0 0 0
0.5 0 0 0 0 0 0
1 0 0 0 0 0 0
3 0 0 0 0 0 0

β̄2

0.1 -0.00045 -0.00253 -0.00336 0.01365 -0.03852 -0.13188
0.5 -0.00833 -0.06334 -0.09795 -0.19097 -0.14324 -0.04174
1 -0.02506 -0.16887 -0.20000 -0.10350 -0.04030 -0.00662
3 -0.10704 -0.12161 -0.06547 -0.00672 -0.00175 -0.00023

Coefficient of skewness ζ0
1

0.1 -0.00045 -0.00256 -0.00343 -0.01504 -0.04842 -0.27869
0.5 -0.00854 -0.08092 -0.14795 -0.85218 -1.74382 -3.18696
1 -0.02709 -0.36714 -0.68296 -2.46333 -3.44810 -4.23800
3 -0.15609 -2.46769 -3.36770 -4.77113 -5.01220 -5.13680

Coefficient of kurtosis ζ0
2

0.1 -0.00006 -0.00232 -0.00404 -0.01510 -0.02408 0.07418
0.5 -0.00063 -0.01272 0.00144 0.70617 2.08738 4.65150
1 0.00010 0.17199 0.52628 3.50263 5.37620 6.91590
3 0.05157 3.95590 5.84880 8.88363 9.41040 9.68300
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4. Parameter estimation

This section examines the estimating of the unknown parameter of the WRLE distribution using
the maximum likelihood approach. Let θ1, θ2, · · · , θn be a random sample of size n from the WRLE(φφφ)
distribution. The log-likelihood function for φφφ can be written as

ℓ(φφφ) = n log
(
α2β

α + 1

)
− αβ

n∑
i=1

θi − n log
(
1 − e−2παβ

)
+

n∑
i=1

log
(
1 + βθi +

2πβe−2παβ

1 − e−2παβ

)
, (4.1)

where φφφ = (α, β)⊺.
The following equations are obtained by partially differentiating Eq (4.1) with respect to α and β,

respectively

∂ℓ(φφφ)
∂α

=
n(α + 2)
α(α + 1)

−
2nπβ

e2παβ − 1
− nβθ̄ − 4π2β2

n∑
i=1

 1 + 1
e2παβ−1

2πβ + (βθi + 1)(e2παβ − 1)


and

∂ℓ(φφφ)
∂β
=

n
β
−

2παn
e2παβ − 1

− nαθ̄ − 2πe−2παβ
n∑

i=1

2παβ −
(
e2παβ − 1

)
θi − 1 + 2παβ

e2παβ−1

2πβe−2παβ +
(
1 − e−2παβ) (βθi + 1)

.

By setting the nonlinear system of Eq (4.1) as

∂ℓ(φφφ)/∂α = 0 and ∂ℓ(φφφ)/∂β = 0.

The maximum likelihood estimators (MLEs) of the unknown parameters α and β of the WRLE
distribution can be found by solving them simultaneously; this can be accomplished by using various
programs, such as R, SAS, and Python. This system of nonlinear equations cannot be solved
analytically, but it can be solved numerically using iterative methods like the Newton-Raphson
algorithm by mathematical or statistical software.

4.1. A simulation study

In order to examine the behavior of the maximum likelihood estimators and the performance of the
WRLE distribution, 10,000 samples from the WRLE distribution with sample sizes of
n = {30, 50, 80, 100, 120, 200} were created for each parameter’s combination from
α = {0.5, 0.7, 0.8, 1.0, 2.5, 8.0} and β = {0.7, 1.0, 2.5, 4.0}. For each parameter’s combination and each
sample, the following measures have been calculated: The average of absolute value of biases
(|Bias(̂φφφ)|):

|Bias(̂φφφ)| =
1
N

N∑
i=1

|̂φφφ − φφφ|,

the mean square error of the estimates (MS E(̂φφφ)),

MS E(̂φφφ) =
1
N

N∑
i=1

(̂φφφ − φφφ)2,
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and the mean relative estimates (MRE(̂φφφ))

MRE(̂φφφ) =
1
N

N∑
i=1

|̂φφφ − φφφ|/φφφ.

R software (version 4.5.1) [11] is used for the simulation study’s computations. The MLEs’ |Bias(̂φφφ)|,
MS E(̂φφφ), and MRE(̂φφφ) are shown in Tables 2–4.

Table 2. Result of simulation study showing |Bias(̂φφφ)|, MS E, and MRE for varying φφφ and n.

α β n |Bias(α̂)| |Bias(̂β)| MS E(α̂) MS E(̂β) MRE(α̂) MRE(̂β)

0.5

0.7

30 0.06678 0.04728 0.01358 0.00677 0.13355 0.06755
50 0.05229 0.03711 0.00833 0.00418 0.10459 0.05302
80 0.04376 0.03109 0.00573 0.00288 0.08752 0.04441
100 0.03987 0.02834 0.00472 0.00238 0.07973 0.04048
120 0.03692 0.02625 0.00405 0.00204 0.07384 0.03750
200 0.02814 0.02003 0.00250 0.00126 0.05627 0.02861

1.0

30 0.05805 0.02876 0.01081 0.00264 0.11610 0.02876
50 0.04668 0.02318 0.00671 0.00165 0.09337 0.02318
80 0.03676 0.01828 0.00427 0.00105 0.07352 0.01828
100 0.03291 0.01638 0.00342 0.00085 0.06583 0.01638
120 0.02910 0.01449 0.00281 0.00069 0.05821 0.01449
200 0.02353 0.01173 0.00172 0.00043 0.04706 0.01173

2.5

30 0.04650 0.00925 0.00749 0.00030 0.09299 0.00370
50 0.03486 0.00695 0.00418 0.00017 0.06972 0.00278
80 0.02633 0.00525 0.00231 0.00009 0.05266 0.00210
100 0.02338 0.00466 0.00181 0.00007 0.04675 0.00187
120 0.02123 0.00424 0.00151 0.00006 0.04246 0.00169
200 0.01578 0.00315 0.00083 0.00003 0.03156 0.00126

4.0

30 0.04835 0.00602 0.00826 0.00013 0.09670 0.00151
50 0.03471 0.00433 0.00417 0.00006 0.06941 0.00108
80 0.02646 0.00330 0.00237 0.00004 0.05292 0.00083
100 0.02353 0.00294 0.00190 0.00003 0.04707 0.00073
120 0.02113 0.00264 0.00151 0.00002 0.04225 0.00066
200 0.01557 0.00194 0.00082 0.00001 0.03115 0.00049

0.7

0.7

30 0.05287 0.05232 0.00879 0.00856 0.07553 0.07474
50 0.04205 0.04172 0.00547 0.00536 0.06008 0.05960
80 0.03262 0.03242 0.00334 0.00329 0.04660 0.04631
100 0.03013 0.02996 0.00282 0.00278 0.04304 0.04280
120 0.02739 0.02725 0.00239 0.00236 0.03912 0.03892
200 0.02142 0.02133 0.00147 0.00145 0.03059 0.03047

1.0

30 0.05316 0.03690 0.00940 0.00450 0.07595 0.03690
50 0.04222 0.02936 0.00562 0.00271 0.06032 0.02936
80 0.03221 0.02243 0.00331 0.00160 0.04602 0.02243
100 0.02959 0.02061 0.00285 0.00138 0.04227 0.02061
120 0.02664 0.01857 0.00224 0.00109 0.03806 0.01857
200 0.02050 0.01430 0.00135 0.00066 0.02929 0.01430

2.5

30 0.06345 0.01769 0.01381 0.00107 0.09064 0.00708
50 0.04642 0.01296 0.00721 0.00056 0.06631 0.00518
80 0.03464 0.00968 0.00410 0.00032 0.04948 0.00387
100 0.03140 0.00877 0.00329 0.00026 0.04485 0.00351
120 0.02807 0.00784 0.00263 0.00021 0.04010 0.00314
200 0.02107 0.00589 0.00149 0.00012 0.03010 0.00236

4.0

30 0.06591 0.01151 0.01550 0.00047 0.09416 0.00288
50 0.04972 0.00868 0.00834 0.00025 0.07102 0.00217
80 0.03646 0.00637 0.00452 0.00014 0.05208 0.00159
100 0.03205 0.00560 0.00347 0.00011 0.04579 0.00140
120 0.02955 0.00516 0.00292 0.00009 0.04221 0.00129
200 0.02202 0.00385 0.00163 0.00005 0.03146 0.00096
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Table 3. Result of simulation study showing |Bias(̂φφφ)|, MS E, and MRE for varying φφφ and n.

α β n |Bias(α̂)| |Bias(̂β)| MS E(α̂) MS E(̂β) MRE(α̂) MRE(̂β)

0.8

0.7

30 0.04795 0.05426 0.00729 0.00928 0.05994 0.07751
50 0.03755 0.04258 0.00443 0.00567 0.04693 0.06083
80 0.02902 0.03297 0.00269 0.00346 0.03628 0.04710
100 0.02629 0.02988 0.00224 0.00288 0.03286 0.04269
120 0.02420 0.02752 0.00186 0.00240 0.03024 0.03931
200 0.01901 0.02165 0.00115 0.00149 0.02377 0.03093

1.0

30 0.05304 0.04209 0.00926 0.00580 0.06629 0.04209
50 0.04126 0.03280 0.00548 0.00345 0.05157 0.03280
80 0.03117 0.02482 0.00317 0.00200 0.03896 0.02482
100 0.02834 0.02257 0.00263 0.00166 0.03543 0.02257
120 0.02524 0.02011 0.00211 0.00134 0.03155 0.02011
200 0.01938 0.01546 0.00122 0.00078 0.02422 0.01546

2.5

30 0.07297 0.02327 0.01815 0.00184 0.09121 0.00931
50 0.05169 0.01650 0.00914 0.00093 0.06461 0.00660
80 0.03973 0.01269 0.00533 0.00054 0.04966 0.00507
100 0.03557 0.01136 0.00430 0.00044 0.04446 0.00454
120 0.03174 0.01014 0.00342 0.00035 0.03967 0.00406
200 0.02339 0.00747 0.00187 0.00019 0.02924 0.00299

4.0

30 0.07581 0.01513 0.02013 0.00080 0.09476 0.00378
50 0.05616 0.01121 0.01086 0.00043 0.07020 0.00280
80 0.04251 0.00849 0.00619 0.00025 0.05314 0.00212
100 0.03687 0.00736 0.00466 0.00019 0.04608 0.00184
120 0.03334 0.00666 0.00388 0.00015 0.04168 0.00167
200 0.02494 0.00498 0.00211 0.00008 0.03118 0.00125

1.0

0.7

30 0.04118 0.05832 0.00548 0.01093 0.04118 0.08331
50 0.03163 0.04487 0.00323 0.00648 0.03163 0.06410
80 0.02467 0.03505 0.00196 0.00395 0.02467 0.05007
100 0.02217 0.03152 0.00161 0.00324 0.02217 0.04503
120 0.01993 0.02835 0.00128 0.00259 0.01993 0.04049
200 0.01566 0.02229 0.00079 0.00159 0.01566 0.03185

1.0

30 0.05153 0.05118 0.00890 0.00874 0.05153 0.05118
50 0.03889 0.03869 0.00502 0.00495 0.03889 0.03869
80 0.03037 0.03024 0.00306 0.00303 0.03037 0.03024
100 0.02813 0.02803 0.00257 0.00254 0.02813 0.02803
120 0.02508 0.02499 0.00206 0.00204 0.02508 0.02499
200 0.01857 0.01852 0.00114 0.00113 0.01857 0.01852

2.5

30 0.08353 0.03332 0.02500 0.00397 0.08353 0.01333
50 0.06513 0.02599 0.01432 0.00228 0.06513 0.01040
80 0.04846 0.01935 0.00786 0.00125 0.04846 0.00774
100 0.03987 0.01593 0.00544 0.00087 0.03987 0.00637
120 0.03775 0.01508 0.00492 0.00078 0.03775 0.00603
200 0.02958 0.01182 0.00289 0.00046 0.02958 0.00473

4.0

30 0.09608 0.02398 0.03258 0.00203 0.09608 0.00599
50 0.06745 0.01684 0.01622 0.00101 0.06745 0.00421
80 0.05019 0.01254 0.00869 0.00054 0.05019 0.00313
100 0.04527 0.01131 0.00715 0.00045 0.04527 0.00283
120 0.04242 0.01059 0.00603 0.00038 0.04242 0.00265
200 0.03138 0.00784 0.00338 0.00021 0.03138 0.00196
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Table 4. Result of simulation study showing |Bias(̂φφφ)|, MS E, and MRE for varying φφφ and n.

α β n |Bias(α̂)| |Bias(̂β)| MS E(α̂) MS E(̂β) MRE(α̂) MRE(̂β)

2.5

0.7

30 0.02341 0.08329 0.00196 0.02470 0.00936 0.11899
50 0.01690 0.06020 0.00100 0.01261 0.00676 0.08599
80 0.01288 0.04592 0.00056 0.00712 0.00515 0.06560
100 0.01137 0.04053 0.00044 0.00561 0.00455 0.05790
120 0.00987 0.03520 0.00034 0.00426 0.00395 0.05028
200 0.00758 0.02704 0.00019 0.00247 0.00303 0.03863

1.0

30 0.04189 0.10446 0.00608 0.03774 0.01675 0.10446
50 0.03087 0.07704 0.00320 0.01991 0.01235 0.07704
80 0.02366 0.05906 0.00188 0.01171 0.00946 0.05906
100 0.02043 0.05100 0.00142 0.00882 0.00817 0.05100
120 0.01862 0.04649 0.00116 0.00720 0.00745 0.04649
200 0.01419 0.03543 0.00068 0.00423 0.00567 0.03543

2.5

30 0.13738 0.13725 0.05939 0.05925 0.05495 0.05490
50 0.09762 0.09755 0.03206 0.03200 0.03905 0.03902
80 0.07508 0.07503 0.01925 0.01922 0.03003 0.03001
100 0.06622 0.06618 0.01511 0.01509 0.02649 0.02647
120 0.06075 0.06072 0.01230 0.01229 0.02430 0.02429
200 0.04537 0.04535 0.00719 0.00718 0.01815 0.01814

4.0

30 0.18607 0.11641 0.10965 0.04304 0.07443 0.02910
50 0.13828 0.08639 0.06446 0.02516 0.05531 0.02160
80 0.10382 0.06487 0.03704 0.01445 0.04153 0.01622
100 0.09263 0.05788 0.03022 0.01179 0.03705 0.01447
120 0.08409 0.05254 0.02419 0.00944 0.03363 0.01314
200 0.06318 0.03948 0.01383 0.00540 0.02527 0.00987

8.0

0.7

30 0.00851 0.09718 0.00026 0.03409 0.00106 0.13883
50 0.00611 0.06975 0.00013 0.01712 0.00076 0.09965
80 0.00456 0.05210 0.00007 0.00948 0.00057 0.07443
100 0.00395 0.04508 0.00005 0.00714 0.00049 0.06440
120 0.00351 0.04005 0.00004 0.00552 0.00044 0.05721
200 0.00266 0.03038 0.00002 0.00317 0.00033 0.04341

1.0

30 0.01699 0.13575 0.00103 0.06569 0.00212 0.13575
50 0.01207 0.09654 0.00052 0.03337 0.00151 0.09654
80 0.00910 0.07275 0.00029 0.01876 0.00114 0.07275
100 0.00759 0.06073 0.00021 0.01326 0.00095 0.06073
120 0.00691 0.05527 0.00017 0.01108 0.00086 0.05527
200 0.00509 0.04075 0.00009 0.00600 0.00064 0.04075

2.5

30 0.07986 0.25271 0.01988 0.19512 0.00998 0.10108
50 0.06219 0.19832 0.01263 0.12765 0.00777 0.07933
80 0.04632 0.14810 0.00748 0.07642 0.00579 0.05924
100 0.04028 0.12878 0.00579 0.05918 0.00503 0.05151
120 0.03710 0.11861 0.00490 0.05006 0.00464 0.04745
200 0.02574 0.08227 0.00241 0.02461 0.00322 0.03291

4.0

30 0.15492 0.30401 0.07330 0.27585 0.01937 0.07600
50 0.12102 0.24014 0.04592 0.17879 0.01513 0.06004
80 0.09422 0.18788 0.02903 0.11508 0.01178 0.04697
100 0.08224 0.16411 0.02335 0.09284 0.01028 0.04103
120 0.07258 0.14493 0.01827 0.07286 0.00907 0.03623
200 0.05536 0.11054 0.01088 0.04343 0.00692 0.02764

It is evident that as sample size increases, the values of |Bias(̂φφφ)|, MS E(̂φφφ), and MRE(̂φφφ) decrease.
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We can conclude from the results in Tables 2–4 that the consistency property is maintained for all
parameter combinations by the ML estimation method. In addition, Figures 5–7 illustrate the heat
maps associated with each parameter.
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Figure 5. The heatmaps of the simulated biases and MSE of the MLE simulation method for
various true values α and β.
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Figure 6. The heatmaps of the simulated biases and MSE of the MLE simulation method for
various true values α and β.
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Figure 7. The heatmaps of the simulated biases and MSE of the MLE simulation method for
various true values α and β.
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5. Application

This section covers the use of the WRLE model to demonstrate how the model behaves on a real
dataset. Wind direction data [12] has been analyzed to demonstrate how the WRLE distribution can
be utilized with real datasets. This dataset is available within the website: https://arcticdata.
io/catalog/view/doi:10.5065/D6R49NXH with name “seabasin200301”. This data represents the
daily-mean unit vector of NNR daily wind direction at 10 meters (recorded in degrees) from the period
January 2003 at Bering Strait between the Pacific and Arctic oceans.

For WRLE(θ;φφφ) and four distribution, namely: wrapped Lindley distribution WL(θ;α) [8],
wrapped xgamma distribution WRXG(θ;α) [9], new wrapped Ex distribution NWE(θ;φφφ) [13] and
wrapped Ex distribution WE(θ;α) [4], the ML estimation and corresponding standard error of the
parameters are obtained for the seabasin200301 data, these results are given in Table 5. Table 6 shows
the seabasin200301 data resultant length and mean direction, and the resultant length when the dataset
is modeled with the aforementioned distributions. From Table 6 it can be concluded that the resultant
length and mean direction with WRLE model are close to the sample resultant length and sample
mean direction of the seabasin200301 data.

Table 5. MLEs and their standard errors (in parentheses) for seabasin200301 dataset.

The model α̂ β̂

WRLE 0.01137 118.05191
(0.01102) (115.23805)

NWRE 0.99326 -0.99999
(0.37037) (1.60973)

WRL 0.98876 —–
(0.14686) —–

WRE 0.62567 —–
(0.13582) —–

WRXG 1.29020 —–
0.18016 —–

Table 6. Mean direction and Resultant length for seabasin200301 data and the given models.
Resultant length Mean direction

seabasin200301 data 0.77121 1.18505 (∼ 67.89860◦)
WRLE Model 0.64310 1.27222 (∼ 72.89256◦)
NWRE Model 0.62946 2.34390 (∼ 134.29550◦)
WRL Model 0.55333 1.11619 (∼ 63.95307◦)
WRE Model 0.53041 1.01172 (∼ 57.96721◦)
WRXG Model 0.54096 1.05560 (∼ 60.48138◦)

Figures 8 and 9 provide the plots of the circular data, rose diagram, fitted PDF, estimated densities
and estimated cumulative of the fitted WRLE, WRL, WRE, WRXG and NWRE models for the given
dataset.

The dashed arrow in Figure 8 indicates the mean direction vector of the fitted WRLE distribution,
whereas the solid arrow indicates the sample mean resultant vector.
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Figure 8. Plots for seabasin200301 data. Circular data plot, fitted circular PDF and rose
diagram of WRLE(θ;φφφ), NWRE(θ;φφφ), WRL(θ;α), WRE(θ;α) and WRXG(θ;α).
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Figure 9. The linear (unwrapped) histogram, fitted PDF and empirical CDF of NWRE(θ;φφφ),
WRE(θ;α), WRL(θ;α), WRLE(θ;φφφ) and WRXG(θ;α), for seabasin200301 data.

The summary results of several measures, including −2 log-likelihood (−2ℓ), Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC),
Hannan information criterion (HQIC), Watson’s U2 test (WT), Kuiper’s test (KT), Rayleigh’s test (RT)
and Rao’s spacing test (RST), for the models are provided in Table 7 for comparison.

The WRLE distribution provides the best fit to the data set when compared to the WRL, WRE,
WRXG and NWRE distributions. This is evident from the smallest values of −2̂ℓ, AIC, CAIC, BIC,
HQIC, WT statistic, KT statistic, RT statistic and RST statistic which all clearly show superiority for
the WRLE distribution. The fitted WRLE distribution seems to offer a sufficient fit to the
seabasin 200301 dataset.
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Table 7. ML estimates for seabasin200301 data.

The Model -2̂ℓ AIC CAIC BIC HQIC KT(Stat) WT(Stat) RT(Stat) RST(Stat)
WRLE 69.95691 73.95691 74.38548 76.82488 74.89180 5.05407 2.20086 0.98299 305.69280
NWRE 70.15385 74.15385 74.58242 77.02183 75.08874 5.06232 2.20793 0.98356 305.76630
WRL 80.77774 82.77774 82.91567 84.21172 83.24518 5.15487 2.27424 0.98765 310.23860
WRE 84.96779 86.96779 87.10572 88.40177 87.43523 5.19024 2.29939 0.98930 312.44660
WRXG 86.25484 88.25484 88.39277 89.68883 88.72228 5.18198 2.29387 0.98867 311.93110

6. Concluding remarks

In this paper, we investigated and studied various mathematical, distributional and circular
properties of the LE distribution [10] using the method of “wrapping”, including the distribution
function, limit behavior, first and second derivatives, modality behavior, characteristic function, and
trigonometric moments with related measures. We discussed maximum likelihood estimation of the
model parameters and provided simulation results to assess the performance of the proposed
distribution. An application to real wind directions data set illustrates that the new distribution
provides consistently better fits than other nested and non-nested models.

In their next work, the authors plan to conduct a change-point investigation about the wrapped LE
distribution (the change-point model in Lindley distribution in linear setup may be found in [14]), as
well as Bayesian analysis for this distribution.
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