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1. Introduction

First-order linear matrix differential equations play a fundamental role in numerous applications
across chemistry, physics, and engineering [1-3]. These equations are crucial for modeling complex
dynamic systems where state variables are inherently matrices, such as in control theory, model
reduction, and stability analysis. Among them, the Lyapunov matrix differential equation occupies
a central position due to its critical role in determining input-output finite-time stability of linear
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systems [4-6]. Consequently, a substantial body of research has been dedicated to developing both
analytical and numerical methods for solving such equations efficiently [7-9].

Over the years, the collocation technique has proven to be a particularly effective and popular
framework for solving a wide range of differential and integral equations, including matrix
equations. As a meshfree spectral method, it transforms differential problems into algebraic systems
by enforcing the equation at strategically chosen collocation points, circumventing the need for
domain discretization, and often simplifying computational complexity. Recent advancements in
polynomial matrix collocation methods (PMCM) have further enhanced their efficiency, utilizing
various polynomial bases like Pell, Chebyshev, and general Bernstein function to achieve high accuracy
across scientific and engineering disciplines [10-12].

The computational efficiency and accuracy of these methods are intrinsically linked to the choice
of basis functions. Motivated by this, much recent work has focused on developing novel polynomial
bases and analyzing their properties. In parallel, significant analytical progress has been made on the
foundational theory of key matrix equations. Notably, recent work by Liu, Zhang, Xu, and colleagues
has provided important advancements for the Lyapunov matrix differential equation, a critical special
case of the general form studied here. They have established new conditions for the existence of
positive semidefinite solutions [13] and derived improved lower and upper bounds for the solution,
with direct applications in assessing the input-output finite-time stability of linear systems [14]. These
theoretical contributions provide a vital benchmark and context for numerical methods aiming to solve
such equations efficiently and reliably.

While the proposed series collocation method is developed for general first-order linear matrix
differential equations, its performance is particularly relevant for important subclasses like the
Lyapunov equation. Recent analytical work by Liu et al. [4, 13, 14] has sharpened our understanding
of this equation by deriving refined solution bounds and establishing precise existence conditions for
positive semidefinite solutions. Our numerical experiments, which demonstrate high accuracy and
rapid convergence, complement these theoretical advances by providing a robust computational tool.
Efficient numerical solvers are essential for exploiting such theoretical bounds in practical applications,
such as verifying stability criteria in high-dimensional control systems where analytical solutions are
intractable.

The landscape of solving matrix differential equations features two complementary strands [15-17]:
analytical work to establish solution properties and bounds, and numerical work to develop efficient
computational algorithms. The recent contributions of Liu et al. [4, 13, 14] exemplify the former,
providing crucial theoretical guarantees for Lyapunov matrix differential equations. Our work
contributes to the latter strand by introducing a new collocation-based algorithm. Whereas their focus
is on deriving solution enclosures and existence theorems, our focus is on constructing a direct, high-
order accurate polynomial approximation to the solution matrix itself. This distinction underscores
how theoretical analysis and numerical algorithm development advance the field in tandem.

Building upon this rich methodological landscape and theoretical foundation, the present work
develops a new series polynomial based collocation approach for solving the general class of first-
order linear matrix differential equations of the form

(1.1)

M(s) = L()M(s) + G(s), ¢ € [s0, 57,
M(so) = My,
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where M(g) is an unknown n X p matrix function and L(g) € R™", G(¢) and M, € R™? are given
matrices.

The primary objective of this study is to construct an efficient method that leverages a carefully
selected series polynomial basis and collocation points to enhance accuracy and computational
performance. We will assess our method against established approaches like the Bernstein polynomial
method, demonstrating its advantages, particularly in the moderate-to-high-order approximation
regime.

The remainder of the paper is organized as follows:

e Section 2 reviews the definitions and properties of series polynomials and function
approximations.

e Section 3 presents the series collocation method for solving Eq (1.1).

e Section 4 provides a rigorous error analysis.

2. Derivative for matrix series polynomials and approximation of functions
In this section, we want to determine an explicit formula for derivative matrix series polynomials,
and we will outline some of the basic definitions and properties of the series polynomials and

approximation of functions.

2.1. Series polynomials bases

The set of series polynomials is defined by
Pis)= ) el 2.1)
k=0

Definition 1. Let N € N. The space of series polynomials is defined by
H := span{P,, Py, P>, P3, ..., Py}. (2.2)

Definition 2. Let N € N. The matrix of series polynomials bases is defined by

Py

P,
Py(s) := e (2.3)

Py

From Eq (2.3), we have
Py(s) = TvEn(s), (2.4)
with

1

S
Ex(e):=1 . | (2.5)

gN
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and
1 0 0
o= 1 (2.6)

Lemma 3. Let the matrix Ex(s) be defined as Eq (2.5). Then,

EN(S‘) = DyEn(s), (2.7)

where Dy is the matrix in dimensional (N + 1) X (N + 1), and it is defined by

0 O 0
D 1 0 0 2.8)
"“lo 2 o| '
N 0O
Lemma 4. Let Py(5) be defined as in Eq (2.3). Then,
Pn(s) = TyDNT} Ba(s). (2.9)

2.2. Approximation of functions

Let T c L[y, sr] be a finite-dimensional subspace of the Hilbert space of measurable functions
defined on [gy, ¢¢]. For any f € L?[so, ¢, there exists a unique g € T such that

If =gl <Ilf =yl Vyed,

where g is called the best approximation of f in T. Since g € T, it can be represented as

N
f(©) ~ 8(6) = )" tis’ = LPx(s), (2.10)
i=0
where L = [£y,€1,...,Ey] € RX®*D and the coefficients ¢; are determined using the collocation

method.
3. Series polynomial collocation matrix method

In this section, we present the proposed series collocation matrix method for solving the first-order
linear matrix differential equation (1.1). The key idea is to approximate the unknown matrix function
M(g) by a finite series polynomial expansion and enforce the equation at a set of collocation points,
which leads to a structured linear algebraic system.

Let M(¢) = [M;j(s)].x, be the solution of (1.1). Using the series polynomial basis (2.10), each
scalar entry M;;(s) is approximated as

Mlj(g) = 7—;]PN(§)9 i = la“-anaj = la-"’p’ (31)
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where 77;; € R>N+D js a row vector of unknown coefficients and Py (<) is the series basis vector.

Stacking all M;; together, the matrix M(g) can be expressed compactly as

M(§) ~ T (I, 8 P(s)) =: My(s), (32)
Tu .. Ti,p
where 7 :=| : .. i |e R”®D contains all the coefficient vectors 7;; and ® denotes the
T oo Tup
Kronecker product [18]. Therefor, My(s) is the solution of
Mn(s) = L(OMn($) + G(s) + In(s). s € [s0. 7], 3.3)
Mny(so) = M, .
where Jy(¢) is the residual. Differentiating (3.2) and using property (2.9), we obtain
My(s) = T(I,, ® TNDNT;}PN(g)). (3.4)
3.1. Collocation formulation
By (2.9) and (3.2) in Eq (1.1), we derive
7 (I, ® TWDN T Ba(9)) = LT (I, @ Bn(s)) + G(s) + In(6). (3.5)
Let us consider that collocation points in [go, ¢¢] are defined by:
S — 6o 2i-Dn ,
i = 1 , =1,...,N.
n > (cos N +1|+¢y, i
From condition
RN(ni) = 0n><pa I <i<N,
and Eq (3.5), we obtain the coupled matrix equations
TCi=Di78i+§i, i:1,2,...,N,
where
Ci=1,® TNDNTz_leN m), ODi=Lm), & =1,8Py(m),
and
Gi=G(m).
Since from the initial condition we set 7~ (I »® PN(go)) = M (o) and define 1y = ¢y, we get
Co= Op(N+l)><pa
‘Z)O = Il’l’
& =1,8Py(s0),
Go = —M,.
Therefore,
TC,' - D,’TS,’ = Qi, (36)

fori=0,1,...,N.
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3.2. Vectorized system

Applying the vectorization identity
vec(LMG) = (G" ® L) vec(M),

equation (3.6) is converted into a single block linear system

LsysM = &sys» (3.7)
where
Ly 80
L, 81
Lsys =10 Bsys= .|
Ly 8N
and

L=C'®l,-& ®D;, g =vecG), M =vec(T).
Solving (3.7) yields the coefficient matrix 7, and the approximate solution is then reconstructed
from (3.2).

4. Error analysis

In this section, we provide a rigorous convergence analysis for the proposed series collocation
method. We establish an error bound that explicitly depends on the approximation degree N and the
smoothness of the exact solution.

4.1. Preliminary assumptions and notation

We begin by stating the necessary regularity assumptions for the analysis.

Assumption 1. The coefficient matrix L(s) € C%([so,s]; R™") and the source term G(g) €
C*([s0, s¢l; R™P) are infinitely differentiable functions on the interval [gy,sr]. Consequently, the
unique solution M(g) to the initial value problem (1.1) is also in C*([go, sf]; R™P).

Let My(s) denote the approximate solution obtained by the series collocation method using
polynomials of degree at most N. The residual function Jy(¢), which measures how well My(s)
satisfies the differential equation, is defined as

In(S) := My(s) = L(&)Mn(s) — G(s). (4.1)

By construction of the collocation method, this residual is zero at the N collocation points {n;}¥
Inv(m) =0fori=1,...,N. However, Jy(s) is generally non zero elsewhere in the interval.
The error matrix is denoted by Ey(s) := M(s) — My(S).
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4.2. Error equation and stability bound
The first step is to derive the differential equation satisfied by the error.

Theorem S5 (Error equation). Under Assumption 1, the error En(g) satisfies the following
inhomogeneous linear matrix differential equation:

En(S) = LS)ENS) = In(S), < € [0, 571,
8N(§0) = Onxp-
Proof. Subtracting the definition of the residual (4.1) from the original equation (1.1) gives

M(s) = My(s) = L(§)(M(s) = My () = In(s).

Substituting the definitions of Ey(¢) and its derivative yields (4.2). The initial condition follows from
the fact that the numerical method exactly satisfies My(so) = M,. O

4.2)

The solution to the error equation can be expressed using the fundamental matrix @, (g, 7) of the
homogeneous system X = L(¢)X.

Lemma 6. [19] The error admits the following representation:
S
En(s) = — f D, (¢, 7) In(T) dT, (4.3)
S0
where the transition matrix ®; (¢, T) = el Lds,

Proof. This is a direct application of the variation of parameters formula to the linear system (4.2) with
zero 1nitial condition. O

To bound the error, we require a measure of the stability of the linear operator. The logarithmic
norm (also known as the matrix measure) is a standard tool for this purpose.

Definition 7 (Logarithmic norm). [20] For a matrix A € R™", the logarithmic norm (with respect to
the 2-norm) is defined as

I+ hAl, -1 (A +AT)

A) =1
H2(A) Jim h 5
where Ay« (+) denotes the largest eigenvalue.

A key property of the logarithmic norm is that it provides a growth bound for the matrix
exponential [20]: |le?S]l, < e2Y$ for ¢ > 0.
We can now state the main stability bound for the error.

Proposition 8. Let L := r%lax] IIL(S)|l2. Assume the logarithmic norm is bounded: u(L(s)) < ji for
SELS0,Sf

all ¢ € [0, s¢]. Then, the error satisfies the following inequality

B S
IEN(SIl2 < e~V f SN2 d. (4.4)
S0
In particular, if i # 0, an alternative bound is
efs—so) _ 1
IEN (2 £ ———— max [[Jn(D)llo.
M 7€[0,61
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Proof. Taking the 2-norm of the integral representation (4.3) and applying the triangle inequality and
the sub-multiplicative property gives

S
||8N(§)||zsf IDL(S, D2 [Sn (D2 dT.
S0

A standard result in the theory of differential equations states that ||®; (s, )|, < el mL@ds, Using the
bound w1, (L(s)) < ji, we obtain ||@; (g, 7)||» < e#6~7. Substituting this into the inequality yields

S
IEN(SIl < f NI dT < T f ISv(Dl2 dr,
<o S0
which is (4.4). The second form follows from bounding the integral by (¢ — ¢) max ||Jn(7)||> and
evaluating the resulting integral fg Z efsdr. i

4.3. Convergence rate based on polynomial approximation

Proposition 8 shows that the numerical error is controlled by the residual. The final step is to bound
the residual in terms of N, which depends on how well polynomials can approximate the solution. Let
[Ty denote the best approximation operator in the L*-norm onto the space of series polynomials of
degree N, Ty. That is, for a function f, Iy f is the polynomial in Ty that minimizes ||f — p|[.~.

Theorem 9 (Convergence rate). Suppose Assumption 1 holds. Let My(g) be the approximate solution
from the series collocation method of degree N. Then, there exists a constant C > 0, independent of N,
such that the error satisfies

AT

max ||M(¢) — Myl < C-

s€lso.s7]

-En(M), 4.5)

where T = ¢ — ¢, L is as in Proposition 8, and Ex(M) is the best approximation error

Ey(M) := inf max |IM(s) = P(S)l].

PeTy s€ls0,57]

Furthermore, if the entries of M(g) are analytic functions on a Bernstein ellipse containing [y, ¢l in
the complex plane, then the convergence is geometric

mgaXIIM(C) ~ Myl = 0(™) asN — oo,

for some p > 1 that depends on the region of analyticity.

Proof. A central result in the analysis of polynomial collocation methods for smooth problems is that
the residual is controlled by the best approximation error to the true solution [21,22]. Specifically,
there exists a constant K > 0, independent of the polynomial degree N, such that

max [|IIn($)ll < K - Ex(M). (4.6)

s€lso.s7]

Intuitively, since the numerical solution My is itself a polynomial in Ty, the defect Jy it introduces
when substituted into the differential equation cannot be smaller than the error of the best possible
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polynomial approximation. The constant K depends on the smoothness of the coefficients L and G
(ensured by Assumption 1) and the properties of the collocation points, but not on N. Substituting the
residual bound (4.6) into the stability estimate (4.4) yields

t)
IEN (2 < eﬁ“_“’)f K-Ex(M)dt = K - & - Ey(M) - (§ = §).

S0

Taking the maximum over the interval [y, ¢f] and letting T = ¢ — ¢, we obtain

max [Ex($)ll, < KT - Ey(M).
S

Setting C = KT provides the general convergence result stated in (4.5) (where the factor 9“2—‘1 is an

equivalent bound for Te”” when jz # 0). The final step relies on a classical result from approximation
theory [8]. If a function is analytic on a Bernstein ellipse containing the real interval [gy, /] in the
complex plane, then the error of its best polynomial approximation decays geometrically (or spectrally)
with the degree N. Formally, for the matrix solution M(s), this implies

Ex(M)=0(™") asN — oo, 4.7)

for some p > 1 determined by the ellipse of analyticity. Substituting the asymptotic rate (4.7) into the
general error bound (4.5) directly yields the final statement of the theorem:

max [M(s) = My(S)ll> = O(p™) asN — oo.

This O(p™) convergence is the hallmark of spectral methods applied to problems with smooth or
analytic solutions. O

5. Numerical experiments

In this section, we demonstrate the effectiveness of the proposed series collocation matrix method
through several benchmark problems. For each example, we compare the accuracy and computational
efficiency of our approach against the Bernstein collocation method. All experiments were performed
in MarLaB 2020b on a standard laptop equipped with an Intel Core i7 processor and 8 GB RAM. The
performance is assessed in terms of the maximum absolute error and the CPU time. In addition, we
compute the improvement factor defined as

Bernstein error

Improvement factor = -
Series error

where values greater than one indicate superior performance of the series method. Figures illustrate

both the pointwise approximation accuracy and the error decay with respect to the approximation order

N. Tables summarize the quantitative performance metrics for each example. Overall, the experiments

confirm that the series collocation matrix method delivers substantial accuracy gains, particularly in

high-order approximations, while maintaining competitive computational efficiency.
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Example 1

We first consider the first-order linear matrix differential equation [5, 17]

M(s) = L(o)M(s) + G(s), ¢ €[0,3],

M(O)_3o
1)

where

(1 -1 _(BeF-1 2-2¢e
L(¢) = (1 ec)’ G(o) = (_3e—€—2 1—200sh(§))’

and the exact solution is
2e+1 e5-1
M(g) - ( e—g 1 )'

Table 1 compares the performance of the series and Bernstein collocation methods for different
values of the approximation order N. The methods achieve identical accuracy, and CPU times are
comparable.

Table 1. Comparison of series and Bernstein matrix methods for Example 1.

N Series Error Bernstein Error  Series Time Bernstein Time Improvement
5 852x1072 8.52x1072 0.1479 0.1182 1.00
6 1.44x107° 1.44x1073 0.0470 0.0477 1.00
7 571x107% 571x107* 0.0603 0.0518 1.00
9 416x10°% 4.19x10° 0.0436 0.0572 1.00

Figure 1 shows the approximate solutions obtained with N = 7 alongside the exact solution. The
curves confirm the close agreement between both numerical methods and the exact solution at this low
order. Figure 2 depicts the decay of the maximum absolute error with respect to N. It clearly highlights
the crossover point around N = 9, beyond which the series method rapidly surpasses Bernstein in
accuracy, achieving several orders of magnitude improvement by N = 13. Finally, Figure 3 presents
the pointwise error norm for N = 9, showing that the series method consistently yields lower error
across the entire domain compared to the Bernstein method.
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Figure 1. Approximate solutions for N = 7 and the exact solution of Example 1.
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Maximum absolute error

5 6 7 8 9
N
Figure 2. Error comparison versus approximation order N for Example 1.

5 X1 0®
Series matrix method
= = = -Bernstein matrix method

4 L
— 3 [
o
L

2 L

1 L

0 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3

Figure 3. Norm of the error for N = 9 in Example 1 for ¢ € [0, 3].

To investigate the robustness and efficiency of the proposed series method with respect to the choice
of collocation points, we conduct a supplementary experiment using Example 1. We compare the
performance of our method using three distinct point sets for approximation order N = 5,7, and 9
(Tables 2 and 3):

e Chebysheyv first kind (CFK): n; = gf 0 (cos @ibr 1) +¢y, i=1,...,N.
e Uniform: n; = o + (i — )%=, i = 1,...,N.

o Chebyshev Gauss Lobatto (CGL): n; = 23 + 5% cos (517), i = 1,..., N.

Table 2. Maximum absolute error for Example 1 (N = 7,9, 10) under different collocation
point sets.

CFK Uniform CGL

8.52184 x 1072 2.98347 x 10" 5.48059 x 107!
5.71465x 107* 2.90849 x 1072 3.86123 x 1073
4.16148 x 107% 3.70238 x 10™*  1.80674 x 107>

@\]Ulz
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To further validate the competitiveness of the proposed method, we compare it against an
established Chebyshev polynomial. The results for Example 1 are summarized below.

Table 3. Extended comparison for Example 1 including a Chebyshev collocation method.

N Series Method  Bernstein Method Chebyshev Method
5 8.52184x 107 8.52184 x 1072 8.52184 x 1072
7 5.71465x 10™* 5.71462 x 1074 5.71462 x 10~
9 4.16148 x 10° 4.19228 x 107° 4.19228 x 1076

Example 2

We now consider the first-order linear matrix differential equation [5]:

M(s) = L(s)M(s) + G(s), s€[0,1],

M 3 0
0) = (i ) )
where
ol ) w01 )
with

o2
© —3 (26 -6-¢), ¢=}
culs) =9, .
2 (262 -6-5), ¢<3,

(1-2¢)° - i
———((2¢ —T)cos¢ + (2¢ — I)sing), ¢ =3,

cn($) = (12200 . .
—— ((2¢-T)cos¢+(2¢—1)sing), ¢<3,

and the exact solution is
_ wii(s) 0
M) = ( 1 sz(S‘)) ’

with X X
le=3) s=a [le=3) coss, ¢4,
@)=y R A TS 1
<§—§') , ¢€<3, <§—§') cosg, ¢<g.

Table 4 presents the numerical results for both methods. The two approaches deliver identical
accuracy while maintaining similar CPU time.

Table 4. Comparison between series and Bernstein methods for Example 2.

N  Series Error Bernstein Error  Series Time Bernstein Time Improvement

9 636x10* 636x107* 0.1456 0.0972 1.00
12 1.44x107* 1.44x10™ 0.0442 0.0658 1.00
15 1.32x10* 1.32x10™* 0.0633 0.0602 1.00
16 549x107° 550x107° 0.0303 0.0650 1.00
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Figure 4 shows the approximate and exact solutions for N = 9, demonstrating that both methods
produce visually indistinguishable results. Figure 5 displays the error decay versus N. Finally, Figure 6
illustrates the pointwise error for N = 9.

0.14r
0.12

0.1F
0.08

s
0o6f

0.04

0.02 -

0

Exact solution
O  Series matrix method
Bernstein matrix method

0

0.2

0.4 0.6 0.8

1

M22

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

[ Exact solution
O  Series matrix method
L Bernstein matrix method
L S /
L \ /,
. T~ o . )
0 0.2 0.4 0.6 0.8 1

Figure 4. Approximate solutions for N = 9 and the exact solution of Example 2.
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Figure 5. Error comparison versus approximation order N for Example 2.

3

14 15 16

o

Series matrix method
Bernstein matrix method

Figure 6. Norm of the error for N = 9 in Example 2.
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Example 3

Next, we consider the problem [5, 17]

M(s) = L()M(s), s €[0,1],
1
M©) =] [,
0
where
1 2¢2 -1 ¢?-2¢-1
L(9>=3—[ 3 o ;
¢=¢—I{-¢-1 ¢+¢ -¢-1

and the exact solution is

Table 5 compares the series and Bernstein methods. For N < 9, the two approaches yield identical
accuracy (Improvement factor = 1.00). At N = 12, however, the series method becomes 15.34x%
more accurate, and by N = 16, it is over 6166.33x more accurate than the Bernstein method. These
substantial gains occur while CPU times remain.

Table 5. Comparison between series and Bernstein methods for Example 3.

N  Series Error Bernstein Error  Series Time Bernstein Time Improvement

7 320x107% 3.20x 1078 0.2460 0.1468 1.00

9 249x107" 249x 107! 0.0397 0.0602 1.00

10 622x107° 6.00x 1071 0.0882 0.0457 0.96

12 6.08x107* 9.33x10713 0.0351 0.0458 15.34
13 4.84x107* 2.07x107!! 0.0439 0.0654 427.34
15 8.88x 1075 2.54x 107! 0.0321 0.0591 2855.70
16 533x107° 3.29x 107! 0.0401 0.0712 6166.33

Figure 7 presents the approximate and exact solutions for N = 7, showing excellent agreement

between both methods for moderate N. Figure 8 displays the error decay as N increases, clearly
illustrating the crossover point between N = 10 and N = 16, beyond which the series method achieves
dramatic accuracy improvements.
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Figure 7. Approximate solutions for N = 7 and the exact solution of Example 3.
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Figure 8. Error comparison versus approximation order N for Example 3.
Example 4

Finally, we consider the first-order linear matrix differential equation [6]

M(s) = L(o)M(s) + G(s), ¢ €[0,1],

1 1
M©) =10 -1},
0 0
where
-1-¢ 0 —-l+e'+¢
L) =|e-¢ 1 0 ;
0 -1 e’
and
1=+~ (-l + & +6)s+1 (-1 -+ Q)+ e+ 1
G(s) = —c—e(l+¢) —eS(eS+¢)+¢(s? +5¢ - 1)+ 5+ 2¢],
1 —ges -1+¢(5+¢)
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with the exact solution

l+¢ e +g¢
Mi)=| O -1+5¢+¢%|.
S 0

Table 6 compares the performance of the series and Bernstein methods. For N < 9, both methods
produce nearly identical results (Improvement factor ~ 1.00). At N = 10, the series method begins to
pull ahead with a 7.77x improvement, followed by a sharp jump to 50150.67x at N = 20. By N = 20,
the series method achieves near machine precision (7.78 x 107!3) and outperforms Bernstein by a factor
of over 50150.67, all while keeping CPU times within 0.0479-0.1023 seconds.

Table 6. Breakthrough performance of series matrix method versus Bernstein method for
Example 4.

N  Series Error Bernstein Error  Series Time (s) Bernstein Time (s) Improvement
5 270x107° 2.70 x 107° 0.1446 0.0950 1.00
6 1.00x 1077 1.00 x 1077 0.0327 0.0343 1.00
7  3.01x107° 3.01 x 107° 0.0540 0.0312 1.00
9 197x107"2 1.98 x 10712 0.0263 0.0403 1.00
10 5.44x107'%  423x10713 0.0430 0.0519 7.77
12 6.76 x 1071 1.02x 1071 0.0284 0.0490 151.20
15 1.68x10°"3 575x 1071 0.0337 0.0692 342.53
20 7.78 x 10713 3.90 x 1078 0.0479 0.1023 50150.67
22 4
of P as o O s e
Lol o g::fsster?na::;t?ftmh(;?hod I A~ Bernstein matrix method /'
o 3t 2
Al /’/ /,/
= 1.4 — = 2 7
o o
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Figure 9. Approximate solutions for N = 9 and the exact solution of Example 4.
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Figure 9 shows the approximate solutions for N = 9 alongside the exact solution, confirming
excellent agreement across all matrix components. Figure 10 depicts the error decay with increasing N,
clearly showing the sharp jump in performance between N = 10 and N = 12, followed by exponential
growth of the improvement factor. Finally, Figure 11 presents the pointwise error norm for N = 10,
illustrating that the series method consistently delivers smaller errors over the entire domain.

104

S 10°
o
2
% 1078 =——©— Series matrix method
2 —&— Bernstein matrix method
©
-10

E 107}
E i
3
= 10"%F

107

5 10 15 20

Figure 10. Error comparison versus approximation order N for Example 4.
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Error
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Figure 11. Norm of the error for N = 9 in Example 4.

The paper introduces a series polynomial collocation method for solving first-order linear
matrix differential equations, leveraging a new polynomial basis and Kronecker-based algebraic
reformulation. The technique achieves dramatic accuracy improvements over the Bernstein polynomial
approach.

6. Conclusions

This paper presented a series collocation matrix method for solving first-order linear matrix
differential equations, leveraging series polynomial bases and collocation techniques. The method

AIMS Mathematics Volume 11, Issue 1, 1266—-1286.
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transforms the original problem into algebraic systems via structured matrix operations, including
Kronecker products, and demonstrates significant improvements in accuracy compared to existing
approaches like the Bernstein method. The observed numerical superiority, particularly in the
moderate-to-high-order regime, can be attributed to the advantageous properties of the series
polynomial basis. Its structure, defined by P,(¢) = X, ¢*, may lead to a better-conditioned
system matrix during the solution process compared to the Bernstein polynomial basis. This, in
turn, enhances numerical stability and allows the collocation method to achieve higher precision
with increasing approximation order N, as consistently demonstrated across all examples. The error
analysis established a rigorous upper bound for the approximation error, confirming the stability
and convergence of the method. Across all numerical examples, the series collocation approach
consistently outperformed the Bernstein method in moderate-to-high order regimes, often achieving
machine precision with minimal computational overhead. Future work may focus on extending
the method to stochastic matrix differential equations, problems with discontinuous coefficients, or
integration with adaptive collocation point selection to further optimize accuracy and efficiency.
The promising results suggest that series polynomial collocation represents a powerful and efficient
framework for solving matrix differential equations in scientific and engineering applications.
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