In this paper, we investigate a class of $ \psi $-Caputo fractional differential hemivariational inequalities with history-dependent operators. By employing the Rothe method in conjunction with surjectivity results for multivalued pseudomonotone operators, the solvability of weak solutions to $ \psi $-Caputo fractional differential hemivariational inequalities is obtained. As an application, a class of history-dependent viscoelastic friction contact problems that account for adhesion phenomena is investigated. In this contact model, the friction and contact conditions are described by Clarke generalized gradient of two nonconvex and nonsmooth function involving adhesion. Finally, the solvability of the solution for this friction contact model is established.
Citation: Furi Guo. History-dependent generalized fractional differential hemivariational inequalities with application to contact mechanics[J]. AIMS Mathematics, 2026, 11(1): 1239-1265. doi: 10.3934/math.2026053
In this paper, we investigate a class of $ \psi $-Caputo fractional differential hemivariational inequalities with history-dependent operators. By employing the Rothe method in conjunction with surjectivity results for multivalued pseudomonotone operators, the solvability of weak solutions to $ \psi $-Caputo fractional differential hemivariational inequalities is obtained. As an application, a class of history-dependent viscoelastic friction contact problems that account for adhesion phenomena is investigated. In this contact model, the friction and contact conditions are described by Clarke generalized gradient of two nonconvex and nonsmooth function involving adhesion. Finally, the solvability of the solution for this friction contact model is established.
| [1] |
G. W. S. Blair, The role of psychophysics in rheology, J. Colloid Sci., 2 (1947), 21–32. https://doi.org/10.1016/0095-8522(47)90007-X doi: 10.1016/0095-8522(47)90007-X
|
| [2] |
P. D. Panagiotopoulos, Nonconvex energy functions. Hemivariational inequalities and substationarity principles, Acta. Mechanica, 48 (1983), 111–130. https://doi.org/10.1007/BF01170410 doi: 10.1007/BF01170410
|
| [3] | S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-4232-5 |
| [4] |
Z. H. Liu, S. D. Zeng, D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Anal., 7 (2018), 571–586. https://doi.org/10.1515/anona-2016-0102 doi: 10.1515/anona-2016-0102
|
| [5] | Z. H. Liu. Existence results for quasilinear parabolic hemivariational inequalities, J. Diff. Equ., 244 (2008), 1395–1409. https://doi.org/10.1016/j.jde.2007.09.001 |
| [6] |
S. D. Zeng, S. Migórski, Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim., 31 (2021), 2829–2862. https://doi.org/10.1137/20M1351436 doi: 10.1137/20M1351436
|
| [7] |
Y. Liu, Z. H. Liu, N. S. Papageorgiou, Sensitivity analysis of optimal control problems driven by dynamic history-dependent variational-hemivariational inequalities, J. Diff. Equ., 342 (2023), 559–595. https://doi.org/10.1016/j.jde.2022.10.009 doi: 10.1016/j.jde.2022.10.009
|
| [8] |
L. Lu, Z. H. Liu, Existence and controllability results for stochastic fractional evolution hemivariational inequalities, Appl. Math. Comput., 268 (2015), 1164–1176. https://doi.org/10.1016/j.amc.2015.07.023 doi: 10.1016/j.amc.2015.07.023
|
| [9] |
J. F. Han, S. Migórski, H. D. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Appl. Math. Comput., 303 (2017), 1–18. https://doi.org/10.1016/j.amc.2017.01.009 doi: 10.1016/j.amc.2017.01.009
|
| [10] |
J. W. Hao, J. R. Wang, L. Lu, Coupled system of fractional hemivariational inequalities with applications, Optimization, 73 (2024), 969–994. https://doi.org/10.1080/02331934.2022.2133544 doi: 10.1080/02331934.2022.2133544
|
| [11] |
B. Zeng, S. H. Wang, Existence for fractional evolutionary inclusions involving nonlinear weakly continuous operators with applications, Chaos Solitons Fract., 185 (2024), 115178. https://doi.org/10.1016/j.chaos.2024.115178 doi: 10.1016/j.chaos.2024.115178
|
| [12] |
C. P. Li, Z. Q. Li, The finite-time blow-up for semilinear fractional diffusion equations with time $\psi$-Caputo derivative, J. Nonlinear Sci., 32 (2022), 82. https://doi.org/10.1007/s00332-022-09841-6 doi: 10.1007/s00332-022-09841-6
|
| [13] |
C. P. Li, Z. Q. Li, Stability and $\psi$-algebraic decay of the solution to $\psi$-fractional differential system, Int. J. Nonlinear. Sci., 24 (2023), 695–733. https://doi.org/10.1515/ijnsns-2021-0189 doi: 10.1515/ijnsns-2021-0189
|
| [14] |
N. N'Gbo, C. P. Li, M. Cai, Chaos detection in generalized $\psi$-fractional differential systems, J. Comput. Nonlinear. Dynam., 20 (2025), 031002. https://doi.org/10.1115/1.4067471 doi: 10.1115/1.4067471
|
| [15] |
S. D. Zeng, S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 34–48. https://doi.org/10.1016/j.cnsns.2017.07.016 doi: 10.1016/j.cnsns.2017.07.016
|
| [16] |
J. X. Cen, Y. J. Liu, V. T. Nguen, S. D. Zeng, Existence of solutions for fractional evolution inclusion with application to mechanical contact problems, Fractals, 2021 (2021), 2140036. https://doi.org/10.1142/S0218348X21400363 doi: 10.1142/S0218348X21400363
|
| [17] |
J. F. Han, C. P. Li, S. D. Zeng, Applications of generalized fractional hemivariational inequalities in solid viscoelastic contact mechanics, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106718. https://doi.org/10.1016/j.cnsns.2022.106718 doi: 10.1016/j.cnsns.2022.106718
|
| [18] |
M. Raous, L. Canǵemi, M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods. Appl. Mech. Eng., 177 (1999), 383–399. https://doi.org/10.1016/S0045-7825(98)00389-2 doi: 10.1016/S0045-7825(98)00389-2
|
| [19] |
J. F. Han, Y. Li, S. Migórski, Analysis of an adhesive contact problem for viscoelastic materials with long memory, J. Math. Anal. Appl., 427 (2015), 646–668. https://doi.org/10.1016/j.jmaa.2015.02.055 doi: 10.1016/j.jmaa.2015.02.055
|
| [20] |
D. Paczka, Adhesive contact problem for viscoplastic materials, Nonlinear Anal. Real World Appl., 51 (2020), 102982. https://doi.org/10.1016/j.nonrwa.2019.102982 doi: 10.1016/j.nonrwa.2019.102982
|
| [21] |
S. Migórski, S. D. Zeng, Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model, Nonlinear Anal. Real World Appl., 43 (2018), 121–143. https://doi.org/10.1016/j.nonrwa.2018.02.008 doi: 10.1016/j.nonrwa.2018.02.008
|
| [22] | Z. Denkowski, S. Migórski, N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, New York: Kluwer Academic/Plenum Publishers, 2003. |
| [23] |
S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861–10870. https://doi.org/10.1016/j.amc.2012.04.047 doi: 10.1016/j.amc.2012.04.047
|
| [24] |
C. Carstensen, J. Gwinner, A theory of discretization for nonlinear evolution inequalities applied to parabolic signorini problems, Ann. Mat. Pura. Appl., 177 (1999), 363–394. https://doi.org/10.1007/BF02505918 doi: 10.1007/BF02505918
|
| [25] | H. T. Banks, G. A. Pinter, L. K. Potter, J. M. Gaitens, L. C. Yanyo, Modeling of quasistatic and dynamic load responses of fflled viscoelastic materials, In: Mathematical Modeling: Case Studies from Industry, E. Cumberbatch and A. Fitt, Eds., Cambridge University Press, 2011,229–252. |
| [26] | H. T. Banks, G. A. Pinter, L. K. Potter, B. C. Munoz, L. C. Yanyo, Estimation and control related issues in smart material structure and ffuids, In: Optimization Techniques and Applications, L. Caccetta et al., Eds., Curtain University Press, 1998, 19–34. |
| [27] |
J. T. Oden, J. A. C. Martins, Models and computational methods for dynamic friction phenomena, Comput. Methods Appl. Mech. Eng., 52 (1985), 527–634. https://doi.org/10.1016/0045-7825(85)90009-X doi: 10.1016/0045-7825(85)90009-X
|