Research article Special Issues

On the Ulam-type stability of higher-order iterative Volterra integro-delay differential equations

  • Published: 16 January 2026
  • MSC : 34K05, 45D05, 45J05, 47H10

  • In this study, we addressed a higher-order iterative Volterra integro-delay differential equation (HOIVIDDE) involving two variable time delays. Our primary focus was on establishing the uniqueness of solutions and analyzing Ulam-type stability properties of the considered HOIVIDDE. We presented three novel results concerning Ulam–Hyers–Rassias (U-H-R), $ \sigma $-semi-Ulam–Hyers ($ \sigma $-semi-U-H), and Ulam–Hyers (U-H) stability for HOIVIDDE, along with uniqueness results for the associated initial value problem (IVP). The analysis was conducted using the properties of iterative functions, the Banach fixed point theorem, and the Bielecki metric. Notably, this was the first study that extended and enhanced these qualitative properties to an $ n $th-order HOIVIDDE. To illustrate the applicability of the results obtained here, we provided an example verifying the requirements of the new theorems.

    Citation: Sandra Pinelas, Cemil Tunç, Osman Tunç, Merve Şengün Oğuz. On the Ulam-type stability of higher-order iterative Volterra integro-delay differential equations[J]. AIMS Mathematics, 2026, 11(1): 1219-1238. doi: 10.3934/math.2026052

    Related Papers:

  • In this study, we addressed a higher-order iterative Volterra integro-delay differential equation (HOIVIDDE) involving two variable time delays. Our primary focus was on establishing the uniqueness of solutions and analyzing Ulam-type stability properties of the considered HOIVIDDE. We presented three novel results concerning Ulam–Hyers–Rassias (U-H-R), $ \sigma $-semi-Ulam–Hyers ($ \sigma $-semi-U-H), and Ulam–Hyers (U-H) stability for HOIVIDDE, along with uniqueness results for the associated initial value problem (IVP). The analysis was conducted using the properties of iterative functions, the Banach fixed point theorem, and the Bielecki metric. Notably, this was the first study that extended and enhanced these qualitative properties to an $ n $th-order HOIVIDDE. To illustrate the applicability of the results obtained here, we provided an example verifying the requirements of the new theorems.



    加载中


    [1] S. Abbas, M. Benchohra, Existence and Ulam stability results for quadratic integral equations, Lib. Math., 35 (2015), 83–93.
    [2] M. Akkouchi, On the Hyers-Ulam-Rassias stability of a nonlinear integral equation, Appl. Sci., 21 (2019), 1–10.
    [3] L. Cădariu, L. Găvruţa, P. Găvruţa, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discr. Math., 6 (2012), 126–139. https://doi.org/10.2298/AADM120309007C doi: 10.2298/AADM120309007C
    [4] L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equations within weighted spaces, Lib. Math., 33 (2013), 21–35. https://doi.org/10.14510/lm-ns.v33i2.50 doi: 10.14510/lm-ns.v33i2.50
    [5] L. P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 3 (2009), 36–43. https://doi.org/10.15352/bjma/1240336421 doi: 10.15352/bjma/1240336421
    [6] L. P. Castro, A. Ramos, Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with delay, Integral methods in science and engineering, Birkhäuser Boston, Ltd., Boston, MA, 1 (2010), 85–94. https://doi.org/10.1007/978-0-8176-4899-2_9
    [7] L. P. Castro, A. M. Simões, Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Method. Appl. Sci., 41 (2018), 7367–7383. https://doi.org/10.1002/mma.4857 doi: 10.1002/mma.4857
    [8] L. P. Castro, A. M. Simões, Stabilities for a class of higher order integro-differential equations, AIP Conf. Proc., 2046 (2018), 1–8. https://doi.org/10.1063/1.5081532 doi: 10.1063/1.5081532
    [9] H. V. S. Chauhan, B. Singh, C. Tunç, O. Tunç, On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space, RACSAM Rev. R. Acad. A, 116 (2022), 101. https://doi.org/10.1007/s13398-022-01246-0 doi: 10.1007/s13398-022-01246-0
    [10] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Am. Math. Soc., 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0 doi: 10.1090/S0002-9904-1968-11933-0
    [11] E. Egri, Ulam stabilities of a first order iterative functional-differential equation, Fixed Point Theor., 12 (2011), 321–328.
    [12] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211
    [13] J. R. Graef, C. Tunç, M. Şengün, O. Tunç, The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam, Nonauton. Dyn. Syst., 10 (2023), 20220169. https://doi.org/10.1515/msds-2022-0169 doi: 10.1515/msds-2022-0169
    [14] M. Janfada, G. Sadeghi, Stability of the Volterra integro-differential equation, Folia Math., 18 (2013), 11–20.
    [15] S. M. Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory A., 2007. https://doi.org/10.1155/2007/57064
    [16] S. M. Jung, A fixed point approach to the stability of an integral equation related to the wave equation, Abstr. Appl. Anal., 2013. https://doi.org/10.1155/2013/612576
    [17] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, Springer, New York, 2011.
    [18] G. Moroşanu, A. Petruşel, On a delay integro-differential equation in Banach space, Discrete Cont. Dyn.-S, 16 (2023), 1596–1609. https://doi.org/10.3934/dcdss.2022150 doi: 10.3934/dcdss.2022150
    [19] S. Öğrekçi, Y. Başcı, A. Mısır, A fixed point method for stability of nonlinear Volterra integral equations in the sense of Ulam, Math. Method. Appl. Sci., 46 (2023), 8437–8444. https://doi.org/10.1002/mma.8988 doi: 10.1002/mma.8988
    [20] A. Petruşel, G. Petruşel, J. C. Yao, Existence and stability results for a system of operator equations via fixed point theory for non-self orbital contractions, J. Fixed Point Theory A., 21 (2019). https://doi.org/10.1007/s11784-019-0711-1
    [21] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [22] R. Shah, A. Zada, A fixed point approach to the stability of a nonlinear Volterra integro-differential equation with delay, Hacet. J. Math. Stat., 47 (2018), 615–623.
    [23] A. M. Simões, F. Carapau, P. Correia, New sufficient conditions to Ulam stabilities for a class of higher order integro-differential equations, Symmetry, 13 (2021), 2068. https://doi.org/10.3390/sym13112068 doi: 10.3390/sym13112068
    [24] O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, RACSAM Rev. R. Acad. A, 117 (2023), 118. https://doi.org/10.1007/s13398-023-01450-6 doi: 10.1007/s13398-023-01450-6
    [25] O. Tunç, C. Tunç, On Ulam stabilities of delay Hammerstein integral equation, Symmetry, 15 (2023), 1736. https://doi.org/10.3390/sym15091736 doi: 10.3390/sym15091736
    [26] O. Tunç, D. R. Sahu, C. Tunç, On the Ulam type stabilities of a general iterative integro- differential equation including a variable delay, J. Nonlinear Convex A., 25 (2024), 399–417.
    [27] O. Tunç, C. Tunç, J. C. Yao, New results on Ulam stabilities of nonlinear integral equations, Mathematics, 12 (2024), 682. https://doi.org/10.3390/math12050682 doi: 10.3390/math12050682
    [28] O. Tunç, C. Tunç, G. Petruşel, J. C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Method. Appl. Sci., 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800 doi: 10.1002/mma.9800
    [29] C. Tunç, O. Tunç, C. F. Wen, J. C. Yao, On the qualitative analyses solutions of new mathematical models of integro-differential equations with infinite delay, Math. Method. Appl. Sci., 46 (2023), 14087–14103. https://doi.org/10.1002/mma.9306 doi: 10.1002/mma.9306
    [30] S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
    [31] E. Aourir, H. L. Dastjerdi, Numerical investigation of the mesh-free collocation approach for solving third kind VIEs with nonlinear vanishing delays, Int. J. Comput. Math., 102 (2025), 112–129. https://doi.org/10.1080/00207160.2024.2397659 doi: 10.1080/00207160.2024.2397659
    [32] E. Aourir, H. L. Dastjerdi, Meshfree collocation technique using RBFs for the numerical solution of third kind VIEs with proportional delays, Int. J. Comput. Math., 2025, 1–22. https://doi.org/10.1080/00207160.2025.2585460
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(150) PDF downloads(22) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog