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Abstract: In this study, we addressed a higher-order iterative Volterra integro-delay differential
equation (HOIVIDDE) involving two variable time delays. Our primary focus was on establishing the
uniqueness of solutions and analyzing Ulam-type stability properties of the considered HOIVIDDE.
We presented three novel results concerning Ulam—Hyers—Rassias (U-H-R), o-semi-Ulam-Hyers (o -
semi-U-H), and Ulam—Hyers (U-H) stability for HOIVIDDE, along with uniqueness results for the
associated initial value problem (IVP). The analysis was conducted using the properties of iterative
functions, the Banach fixed point theorem, and the Bielecki metric. Notably, this was the first study
that extended and enhanced these qualitative properties to an nth-order HOIVIDDE. To illustrate the
applicability of the results obtained here, we provided an example verifying the requirements of the
new theorems.
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1. Introduction

It is well known that a Volterra integral equation (IE) or integro-differential equation (IDE) is said to
possess Ulam-type stability if every approximate solution of the equation lies close to an exact solution.
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This concept originated from a question posed by S.M. Ulam [30], which subsequently led to the
development of various generalized notions of stability, including Ulam—Hyers stability, generalized
Ulam—Hyers stability, Ulam—Hyers—Rassias stability, generalized Ulam—Hyers—Rassias stability, and
o-semi-Ulam—Hyers stability, etc.

Following Ulam’s foundational work of Ulam [30], substantial works have addressed Ulam-type
stability of ODEs, functional differential equations (FDEs), Volterra IEs, and Volterra IDEs, etc. Some
notable contributions in this direction include the works of Abbas and Benchohra [1], Akkouchi [2],
Cidariu et al. [3], Castro and Guerra [4], Castro and Ramos ([5,6]), Castro and Simoes [7], Chauhan
et al. [9], Gavruta [12], Graef et al. [13], Janfada and Sadeghi [14], Jung ([15-17]), Morosanu and
Petrusel [18], Ogrekgi et al. [19], Petrusel et al. [20], Rassias [21], Shah and Zada [22], Tun¢ and
Tung [25], Tung et al. ([27-29]), and their various extensions. In addition to these works, available
literature indicates that the Ulam-type stability of first-order iterative FDEs was first investigated by
Egri [11]. This line of study was later extended to first-order iterative IDEs by Tun¢ and Tung [24],
and subsequently by Tung et al. [26]. In addition, among recent studies on Volterra integral equations,
Aourir and Laeli Dastjerd [31] proposed an approximate mesh free algorithm based on radial basis
function collocation for solving third kind Volterra integral equations with nonlinear vanishing delays.
In a subsequent work, Aourir and Laeli Dastjerd [32] investigated a radial basis function based
collocation method for the numerical solution of delayed third kind Volterra integral equations, which
arise in the modeling of epidemics, biological systems, and other physical phenomena.

Despite considerable progress in studying Ulam-type stability for various classes of equations,
including ODEs, FDEs, Volterra IEs, and Volterra IDEs, only a limited number of works have
investigated these concepts for higher-order integro-differential equations (HOIDEs). To the best of
our knowledge, only two recent studies have addressed this topic: Those by Castro and Simoes [8] and
Simoes et al. [23]. A brief overview of these contributions is provided below.

In 2018, Castro and Simoes [8] investigated the Ulam-type stability of HOIDE as follows:

. (1.1)

Y = f [x, y(x), f k (x, 7, y(7), y(e(7))) d7

Castro and Simoes [8] derived sufficient requirements under which HOIDE (1.1) admits the Ulam-type
stability.

Later, in 2021, Simoes et al. [23] studied the Ulam-type stability of a Volterra HOIDE, given as
follows:

¢"(x) = F

X, (), f G (x. 1,00, ¢/ (1), ... 6" (1)) dz] . (1.2)

Simoes et al. [23] established sufficient requirements under which HOIDE (1.2) possesses the Ulam-
type stability.

In this paper, motivated by the works of Castro and Simoes [8], Simoes et al. [23], and the related
results in the aforementioned literature, we study the following higher-order iterative Volterra integro-
delay differential equation involving two variable time delays:

U () = H (x, u"(0), " (p(0)), ..., u™ (), "™ (p()),
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X

f Z (.1, u" (@), " (®)), .o ™), " (r(2))) it | (1.3)

with
l/l(l)(a) = 0, I = O, 1’ Y 1’ (14)

where x € [a,b], a, b € R,n € N, u € C"([a, b)), p, r : [a,b] — (0,00) with p(x) < x, r(t) < t,
H :[a,b] xC*xC — Cand Z : [a,b] X [a,b] x C* — C are continuous functions, u!""!(t) denotes
m™ iterate of the function u having the property that

ulN(E) = (), ..., u™ @) = u (u(..u(u()))). (1.5)
N’

m—times

We note that HOIVIDDE (1.3) includes variable but finite delays and the notation C represents the
complex numbers.

This study establishes three new and improved outcomes on the Ulam-type stability as well as
the uniqueness of solutions of a new mathematical model as described by HOIVIDDE (1.3) with
requirements (1.4). To the best of our knowledge, no existing studies have addressed Ulam-type
stability and uniqueness of solutions for HOIVIDDEs including multiple delays and m" iterative
arguments. Therefore, this study presents the first and novel contributions to these important
qualitative properties in this context. It is also observed that HOIDE (1.1), which involves a
variable delay without iterative arguments, constitutes a special case of HOIVIDDE (1.3), where
more general nonlinear functions, two variable delays, and iterative arguments are incorporated. In
particular, the right-hand side of HOIDE (1.1) can be viewed as a specific form of the right-hand
side of HOIVIDDE (1.3). Consequently, HOIVIDDE (1.3) generalizes and extends HOIDE (1.1).
Moreover, both HOIVIDDE (1.3) and HOIDE (1.2) are of nth-order. However, the right-hand sides of
HOIDE (1.2) and HOIVIDDE (1.3) have the following different expressions, respectively:

H

x, " (x), ul(p(x)), ..., u"™ (), W™ (p(x)), f Z (.1, @), " (0)), .o ™ (), " (1)) dt] :

and

F [x, $(x), f G (x.1,¢(0,4/(1), ... 6" (1)) dt] .

As observed, the right-hand side of HOIVIDDE (1.3) contains two variable delays, whereas the right-
hand side of HOIDE (1.2) involves no delay terms. In addition, the functional structures appearing
on the right-hand sides of HOIVIDDE (1.3) and HOIDE (1.2) are substantially different. These
distinctions clarify the differences between the present model and that studied by Simoes et al. [23].
The presence of variable delays together with iterative terms leads to additional analytical difficulties.
As a result, the analysis of uniqueness of solutions and Ulam-type stability for HOIVIDDE (1.3)
provides a new perspective relative to existing results. The results of this paper extend and complement
those of Castro and Simoes [8], and go beyond the setting considered in Simoes et al. [23], and they
also constitute original contributions to the existing literature.
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Next, in practical applications, it is both necessary and valuable to investigate approximate solutions
of mathematical models and to determine whether the approximate solutions remain close to their
exact counterparts. This fact motivates the investigation of Ulam-type stability and uniqueness for
HOIVIDDESs, which have significant scientific relevance. Therefore, the results obtained herein
are original and contribute meaningfully to the qualitative theory of iterative functional-integro-
differential equations. Additionally, we provide a specific example to illustrate the verification of
the requirements associated with the main results. These observations underscore the novelty and
theoretical significance of the present work.

The paper proceeds as follows: Section 2 formulates essential background definitions and a basic
fixed point theorem. In Section 3, we present a result on stability in the sense of U-H-R, along with
the uniqueness of solutions to HOIVIDDE (1.3). Section 4 contains two results concerning stability
in the sense of o-semi-U-H and U-H, as well as the uniqueness of solutions to HOIVIDDE (1.3). In
Section 5, an illustrative example is provided to highlight the main contributions of the paper. To
conclude, Section 6 provides a summary of the paper and discusses possible directions for future work
and open problems.

2. Preliminaries

In what follows, we introduce the basic definitions of Ulam-type stability that are essential for the
subsequent analysis. We also introduce a fundamental fixed point result, the Bielecki metric and two
remarks, which play a central role in establishing both the Ulam-type stability as well as uniqueness of

solutions for the class of HOIVIDDE:s considered in this work.
Throughout the paper, let

H| x, .o ™ (p(x)), f Z(x.ty s u™ (1)) dt

denote

H|x, u(x), ..., ™ (p(x)), f Z (.t u"V (@), oo (1)) ) dt |
Definition 2.1. Ifu € C" ([a,b]), n € N, satisfying
u(x) — H| x, ..., u™(p(x)), f z(x, t,...,u[’"](r(t)))dt <pB, 2.1)

with x € [a,b], B > 0, HOIVIDDE (1.3) has a solution uy and there exists a real number C > 0,
independent of uy and u, satisfying

|uto(x) — u(x)| < CB,
for each x € |a, b, then HOIVIDDE (1.3) is said to be U-H stable.
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Definition 2.2. Let o > 0 be a non-decreasing continuous function described in [a,b]. If u €
C"(la,b]), n € N, satisfying

u®(x) - H < o(x), (2.2)

X, ooy t?(p(x)), f Z (x, ..., u[’"](r(t))) dt]

with x € [a, b], HOIVIDDE (1.3) has a solution uy and there exists a real number C > 0, independent
of uy and u, satisfying
luo(x) — u(x)| < Co(x),

for each x € |a, b], then HOIVIDDE (1.3) is said to be U-H-R stable.

Definition 2.3. Let o > 0 be a non-decreasing continuous function described in [a,b]. If u €
C"(la,b]), n € N, satisfying

u™(x) - H <p, (2.3)

X, oo t"(p(x)), f Z(x.t, e u™(r(1))) dt]

with x € la,b], B > 0, HOIVIDDE (1.3) has a solution uy and there exists a real number C > 0,
independent of uy and u, having the property that

luo(x) — u(x)| < Co(x),

for each x € [a, b, then HOIVIDDE (1.3) is said to be o-semi U-H stable.

Remark 2.1. Throughout this paper we assume that C" ([a,b]) denotes the space of n-times
continuously differentiable functions on [a,b). Next, the initial data u”(a) = 0, i = 0,1,..,n — 1,
are consistent with the assumption u € C" ([a, b]).

Remark 2.2. In the space C" ([a, b]), the generalization of the Bielecki metric is described by

dp (u,v) = sup M, 2.4)

x€la,b] O'(X)

with the requirement that o is a nondecreasing function and o € C" ([a, b], (0, )), and (C" ([a, b]) , dp)
is a complete metric space (Cddariu et al. [3], Castro and Simoes [8]).

Theorem 2.1. ( [10]) Let (3, d) be a generalized complete metric space andlet P : 3 — 3 be a strictly
contractive operator with a Lipschitz constant L¢ < 1. If there exist a nonnegative integer k having the
property that d(P**'¢, P€) < oo for some € € J, then the following propositions hold true:

(C-1) the sequence (P"{),cy converges to a fixed point {* of P;
(C-2) * is the unique fixed point of P in 3* = {y SN d(P"f, y) < oo};
(C-3) if y € 3% then

d(y,t") <

I~ Lo d(Py,v). (2.5
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3. Stability in the sense of U-H-R

The next theorem establishes sufficient requirements for the U-H-R stability of HOIVIDDE (1.3)

and the uniqueness of solutions of IVP (1.3), (1.4). The initial new result of the present study is stated
in Theorem 3.1.

Theorem 3.1. Assume that there exist constants Ly, > 0, Ly, >0, k = 1,2,...m, Ly > 0and K > 0
such that the following requirements are satisfied:

(A-1) H : [a,b] X C*" x C — C is a continuous function having the property that

[ (x,16), 4P (), oy ™ (1)), 60) = H (3, 00), (P oy " (), (0

< > L ([0 = o) + [ (p(0) = v (p(0)]) + L 1000) = ¥l
k=1
(A-2) Z : [a,b] X [a,b] x C*" — C is a continuous function having the property that

12 (1, 1 4e), up(@), oy ™ (0)) = Z (15,8, 000, 0O, . (D))

)

(A-3) o : [a,b] — (0, ) is a positive, non-decreasing, continuous function having the property that

< > Ly (ju0) =) + w0 = )
k=1

X

fd(t)dt <{lox), >0, LeR,

for each x € |a,b].

If u € C" ([a, b]) and this function satisfies the inequality

u”(x)- H < o(x), (3.1)

X, ooy " (p(x)), f Z(x.t, s u™ (1)) dt]

for each x € a, b], and

23 Ly (1 + Ly 0) kK" < 1,
=1
then HOIVIDDE (1.3) with u’(a) = 0, i = 0,1, ...,n — 1, has a unique solution uy € C" ([a, b]) and

fn
luto(x) — u(x)| <

o(x), (3.2)

m

1 -2 Ly, (1 + Lyt rkKm*
k=1
for each x € [a, b].
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Proof. Employing the initial conditions u’(a) = 0, j = 0,1,...,n — 1, and standard properties of
integration, we observe that HOIVIDDE (1.3) coincides with the following IE:

X Tn Tp-1

m>fffkﬁhmew@m) u™ (p(r)),

r

f Z (rl, t, u @), (D), ..., u“’”(r(t))) dz] dridry..dr,.

a

We now describe an operator 7' : C" ([a, b]) — C" ([a, b]) by

(Tu) (x) = fff anu%uw@m» (),
f Z (rl @), (), o u[m](r(t))) dt] drdry..dr,, (3.3)

for each u € C" ([a, b]) and x € [a, b].
Assume that u is a continuous function. Taking into consideration the definition of the operator 7'
in (3.3), we arrive at

|(Tu)(x) = (Tu)(xo)|

fff f {rl uti(r)), ... ’"](p(rl)),fZ(rl,t, u“](t),...,u[m](r(t))) dt] dry..dr,

X0 Tn Tn-1

SIS

T'n Tn-1

A

Based on the requirement (A-3) of Theorem 3.1, it also follows that

r, ut @), o u™(p(r)), f rl,tum(t) ..,u[m](r(t)))dt]drl...drn

ri,ul'l(ry), .. ["”(p(rl))f rl,tu“](;) ’"](r(t)))dt]drldrz...drn

— 0 when x — Xx.

'n Tn-1

fff ffa(t)dtdrldrz dr, < fff f&f(rl)drldrz .dr,

X In In-1

fff f{’ o(r)dr,...dr,

AIMS Mathematics Volume 11, Issue 1, 1219-1238.
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X

< ff”a(rn)drn

a

< "o (x). (3.4)

We now show that the operator T is strictly contractive with respect to the Bielecki metric described
by (2.4). Indeed, employing the requirements (A-1), (A-2) and the Bielecki metric, for each u,v €
C" ([a, b]), we obtain the following outcome:

dp(Tu. Tv) = sup 1L = TV
x€la,b] O'(x)

X Ip In-1

f f f f H (e, (), ™ (1),

fZ(rl,t,u”(t),...,u (r(t)))dt}drldrz...drn

xe[a b] O'(X)

X n Tn-1

fff fH r, [](’”1) [m](P(l”l))

fZ (rl, 1, @), ..., v[’”](r(t))) dt] dridr,..dr,

X Iy I'y—1
fff IZLH |u[k](r1)—v[k](r1)|dr1dr2 .dr,
xe[ab] O_(X)
X In In-1
+sup —— f f f f ZLH W p(r)) = I p(ry)|drydrs..dr,
x€la,b] O'(X)
Ly Ly [u™(0) — VM (0)|dtdr dr,...dr,
i [ - ff; i ) = 0 e
X Iy Ip—1
Ly, Ly [u™(r(2)) = VM (0))|dtdr dr»...dr,
oty | [T ] st
X n Tn-1 |M[k](r])_v[k](r1)|
= su Ly, o(r1) dridr,...dr,
xe[ag]a(x)fff f; A o(ry) e

X Tn Tp—l

[ (p(r1)) = VI8 (p(r)|
e N B e

AIMS Mathematics Volume 11, Issue 1, 1219-1238.
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'n Tp-1

W(n) - v
+ sup (x)fff fka;LHkLZk ()|u ()V |ddr1dr2...dr,,

x€la,b] O

'n Tn-1

[l @) = W)
+ng}z]%fff fka;LHkLZkO'() o0 dtdridr,...dr,

'n Tn-1

u®(ry) = vI(r x
Ly, sup e ( 1)| f f f f o(r)dridrs...dr,
rielab] o(r1) xE[a b] o(x)

T'n Tn-1

¥ (p(r1)) = vV (p(ry >>|
+ L dridr,...dr,
Z Hkrleab] o(ry) xe[ab] O'(X)fff fO'(Y‘]) rraAr
|u[k](t) _ v[k](l‘)| 1 Fn Tn-1 r o r
+ Ly Ly su su fff...ffa(t)dr dry...dr,
; e Zkte[al:l:] o(1) xe[ag;] o(x) 1

n Tn-1 rnor

m W (2)) — v (¢ 17
+ZLHkLZk sup | @) ( ())| sup fff...ffa(t)drldrz...drn. 3.5
=1 t€la,b] O-(t) x€la,b] O_(X)

Subsequently, from (3.4) and (3.5), we derive

IA
s

dg(Tu. Tv) = sup 1) = TV
x€la,b] O'(x)

Z Ln

ul(r) = V()| @) = W)
+ 0N Ly Ly | su | + su .
kz; 2 te[aIZ] o(1) te[a,IZ] o (1) ]

Indeed, let u € C"([a,b],[a,b]) with |u(t)) — u(t;)| < K|t —t, t1,t; € [a,b], K > 0, K € R.
Thereafter, the coming step of the calculations requires the following relations:

) —w(t
Ay, 1) = sup Ju(® — vl _ dp (1, v),

refa)  O(1)
lu(p(2)) — v(p(D)|
R )
= dp (u(p(®)), v(p(1))),
Iu(u(t)) —v(v(?))|
te[a b] o (1)
Iu(u(t)) — u(v(1)) + u(v(t)) — v(v(1))|

rela, b] o(1)

¥y = VR G| | (p(ri)) = VM (p(r))|
sup + sup
relab] o(ry) rielab] o(r)

(3.6)

g (p(0), v (p(0))) =

dp(u, V) =

AIMS Mathematics Volume 11, Issue 1, 1219-1238.
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(t) — (o) () — u (D))
K /Y A
AP T SR T

1
S(1+K)d3(u,v):ZdeB(u,v), K>0, KeR,
k=0

U ) 1) = sup MLEPON P
tela,b] o (1)

<K lu(p(2)) — v(p()l lu(u(p(2))) — u(v(p()))|
< K sup + sup
rela,b] o(1) refa,b] o(1)

1
<1+ K)dgwv) = Y Krdy(u,v),

k=0

u(u (1)) = v (2
dp® V) = sup (1)) = vV (2))|
tela,b] o(1)
|u?() = 12 (2)| @) — u(v2 (@)
< Ksup + sup
tela,b] o(1) tela,b] o)

2
<(1+K+K?)ds(u,v) = ;deg(u,v),

u((p(0))) = v (p(1)))
P (p(0)), VW (p(1)))) = Sup | oy |

2 (p() = v (p(0))| @ (p(1)) — u((p(t)))|
< K sup + sup

T telab] o(1) refa,b] o()

2
< (1 +K+K2)d3(u,v) = ZdeB(u’V)a

k=0

dp™ V™) = sup jutu™ @) — v )
’ tefa,b] 0'([)

m—1

<(1+K+K+ .+ K" dg (u,v) = ZK"dB (u,v),
k=0

@™ (p(1))) = v (p(2)))
(™ ()" (p(0) = sup e B |

—_

m—

S(1+K+K2+...+K’"‘1):;des(u,v)-

AIMS Mathematics Volume 11, Issue 1, 1219-1238.
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Similar calculations can be carried out for the remaining terms; for brevity, the details are omitted.
Hence, summing up the corresponding relations, we obtain

" ; Ly,

|u¥I(ry) =8 ()| ¥ (p(r1)) = vV (p(r))|
sup + sup
ri€la.b] o(r) ri€la.b] o(r)

<20 Y Ly kK" *dg (u,v),

k=1
and | [k] [k] | | [k] [k] |
¢ u™(r) — vii(e) u(r(2)) — viui(r(2))
'y Ly Ly | su + su
; 2 IG[a,pb] o(1) te[ag] () }

<20 Ly Ly kK" dy (u,v).
k=1

Thereby, by substituting the above results into (3.6), we obtain

dp(Tu, Tv) <2 )" Ly, (1 + Lz, ) kK" d (u,v)
k=1

On the account of the requirement

2 Z Ly, (1 + L, 0) CkK"* < 1,
k=1

it follows that the operator 7 is strictly contractive. Thereafter, according to Theorem 2.1, we conclude
that IVP (1.3), (1.4) has a unique solution and HOIVIDDE (1.3) possesses the U-H-R stability.

We now provide the remaining part of the proof of Theorem 3.1. Indeed, from the inequality (2.2),
it follows that

—o(x) < u”(x) - H[x, s U™ (p(x)), f z(x, f .., u[m](r(t))) dt] < o(x), (3.7)

for each x € [a, b]. Hence, adopting integration techniques, we see that

X Tn Tp-1 r

fff...fH[r],u[l](rl),u[Z](h),...,u[’"](l’]),

f Z (rl, £, ut @), u® (@), ..., u[’"](t))] dtdrdr,...dr, — u(x)

a

T'n Tn-1 r

Sfff...fﬁo'(rl)drldrz...drn

AIMS Mathematics Volume 11, Issue 1, 1219-1238.
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< l"o(x). (3.8)

Next, employing relations (3.3) and (3.8), we obtain
[(Tu)(x) — u(x)| < "o (x). (3.9)

In view of the above results and relation (2.5), we deduce that

dp(ug, u) < ! dp(Tu, u). (3.10)

1-23 Ly (1 + Ly, ) kK
k=1

Utilizing the definition adopted for the metric dp, inequalities (3.9) and (3.10), we infer that

luo(x) — u(x)| < "
xelab] o (x) 1-2 f Ly, (1 + Lz €) (kK™ *
k=1

(3.11)

Thus, the inequality (3.2) is satisfied. These results mean that, depending upon the requirements (A-1)-
(A-3) of Theorem 3.1, HOIVIDDE (1.3) admits the U-H-R stability and IVP (1.3), (1.4) has a unique
solution. O

4. Stability in the sense of o-semi U-H and U-H

In the next two theorems, we establish sufficient requirements for the o-semi U-H and U-H stability
of HOIVIDDE (1.3) and the uniqueness of solutions of IVP (1.3), (1.4). The second and third results
of the present study are given in Theorems 4.1 and 4.2, respectively.

Theorem 4.1. Assume that the requirements (A-1)—(A-3) of Theorem 3.1 are satisfied. If u € C" ([a, b])
and this function satisfies the inequality

u”(x) - H <B. (4.1)

X, o ™ (p(x)), fZ (x, ty.., u[’"](r(t))) dt]

for each x € [a, b], where 3 > 0, B € R, and

m

2 Z Ly, (1 + Ly, 0) CkK"* < 1,
k=1

then HOIVIDDE (1.3) with u®(a) =0, i = 0, 1,...,n — 1, has a unique solution uy € C" ([a, b)) having
the property that

luo(x) — u(x)| <

_ (b-ayp o (x), (4.2)

1 =23 Ly, (14 Lz0) kK™ *
k=1
for each x € [a, b].
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Proof. We describe an operator T : C" ([a, b]) — C" ([a, b]) by

X Fn I'n-1 r

(Tu)(x):fff...fH(rl,u[”(rl),u[”(p(rl)),...,u[m](p(rl)),

a
n

f z (rl, t, ut @), (@), ..., u[m](r(t))) dt|dr,dr,...dr,, (4.3)

a

for each x € [a, b] and u € C" ([a, b]).
Using the same reasoning as in the proof of Theorem 3.1, it follows that the operator T is strictly
contractive with respect to the Bielecki metric, owing to the requirement

23 L, (1+ Ly 0) kK" < 1.
k=1

Thereby , we can utilize Theorem 2.1, which guarantees that HOIVIDDE (1.3) possesses the o-semi
U-H stability. Next, requirement (4.1), together with integration, leads to

X Tn Tn-1 r

fff...fH[rl,u“](rl),u[z](rl),...,u[’"](rl),

r

f Z (rl, £, ut @), u® (@), ..., u[’"](t))] dtdrdr,...dr, — u(x)

a

Sfff---fﬂU(l”l)dhdi’z---d?’n
<B(b - a)", “4.4)

for each x € [a, b].
Subsequently, using relations (4.3) and (4.4), we obtain

I(Tuw)(x) — u(x)| < b - a), 4.5)
From the definition adopted for the metric dp, inequalities (4.4) and (4.5), we infer that

juo(x) —u(x)l _ 1 sup pb-ay

xela,b] o(x) 1-23 Ly, (1 + Ly £) CkKm* xelab]  O(X)
k=1

(4.6)

Thus, the inequality (2.5) is satisfied. These results mean that, depending upon the requirements (A-
1)-(A-3) of Theorem 4.1, IVP (1.3), (1.4) possesses a unique solution and HOIVIDDE (1.3) admits
the o-semi U-H stability. O
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Theorem 4.2. We assume that the requirements (A-1)—(A-3) of Theorem 3.1 are satisfied. If u €
C" ([a, b)) and this function satisfies the inequality

u™(x) - H (x, e W(p(x)), f Z(x,t, .ot (r (1)) a’t] <pB, 4.7
for each x € [a,b], where 8 >0, B € R, and
23 Ly (1+ Lz 0) C'kK" ™ < 1, (4.8)

k=1

then HOIVIDDE (1.3) with u”(a) = 0, i = 0, 1,...,n — 1, has a unique solution uy € C" ([a, b)) having

the property that

() — () < —— L= T?) , 49)

1-23 Ly, (1 + Ly, £) C"kK™*
k=1

for each x € [a,b].

Proof. By applying Theorem 4.1, the uniqueness of solutions to IVP (1.3), (1.4) and the U-H stability
of HOIVIDDE (1.3) are established. For the sake of brevity, the proof is omitted. m|

Remark 4.1. It should be noted that the proofs of Theorems 3.1, 4.1 and 4.2 rely on the Banach
contraction mapping principle, the definitions of U-H-R, o-semi U-H, and U-H stability of
HOIVIDDE (1.3), the Bielecki metric, and the properties of iterative functions. These fundamental
tools necessitate the sufficient conditions (A-1), (A-2) and (A-3) imposed in Theorems 3.1, 4.1 and 4.2.

5. Application of results

We illustrate the application of the results through the following specific example.

Example 5.1. Let x € [0,0.5]. We now focus on the following HOIVIDDE, considered as a specific
case of the nonlinear HOIVIDDE (1.3), incorporating a variable time delay:

’” 15 16 , [1](x) 2
= —X - )+ 12
u”’(x) SOOxu (x) SOOxu > + 12x
1 ( 2 [1] 2 (1] (~-1
+%f[tu (t) + 1622u (2 t)]dt, (5.1)
0
with
u?0)=0,i=0,1. (5.2)

In the next step, we perform a comparison between HOIVIDDE (1.3) with (1.4) and HOIVIDDE (5.1)
with (5.2), which reveals the following outcomes, respectively: ,

H (1, 1), "N (p(x)), .., ™), ™ (p(0))
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=H (x, ut(x), ut!! (2_1x)) =H (x, u(x),u (2_1x))

16 [ _
- _ [1] _ 3 1
= SOOx u'(x) 500x u (2 x)

1 16 5 /.
—%xu(x)—%xu(Z x),

Z (x, £, " (@), ..o ™ (1), u (r(1)))

-7 (x, t, ut"(r), u" (2‘1t)) -7 (x, t,u(t), u (2‘1t))

1 16
by 16 0y
= o0 + 55 (277)

500 00

1 16 , /.,
= %tu(t) + %l‘ u(2 f) ,
H :[0,0.5] xR*> > R,
Z:10,0.5]1 x[0,0.5] x R> > R,

n=2m=1,[a,b] =[0,0.5],u”0)=0, i=0,1,
1
p(x) = g,r(t) =5

p(x) = = < x, foreach x € [0,0.5],

N =

and ;
r(t) = 3 < tforeachte€[0,0.5].

By virtue of the requirements (A-1) and (A-2) Theorems 3.1, 4.1 and 4.2, it follows that the following
inequalities hold:

|H (x, u(x), u(p(x))) — H (x, v(x), v(p(x)))|
= ‘H (x, u(x),u (Z_IX)) -H (x, v(x), v (2_1x))‘

L3 16 5 L 5 16 5
—'ﬁx u(x)—%x u(2 x)—%x v(x)+%x (2 x)

< ﬁf lu(x) — v(x)| + %f ‘u (2_1x) —-v (2_1x)|

< 40100 lu(x) — v(x)| + ﬁ u (Z_Ix) - v(2_1x)|

< ﬁ (Iu(x) —v(x)| + 'u (2_1x) - U(2_1x)

where
1

Ly, = 53
250
\Z (x, 1, u(t), u(p(1)) = Z (x, 1, v(1), v(r(D)))|

= ‘Z (x, t,u(t), u (2_1t)) -7 (x, t,u(t),v (2_11‘))‘
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fu(r) + 16£°u (27'1) - tw(r) - 168y (2‘%)‘

=500
< ﬁ lu(t) — v(t)| + % u(2_1t) — v(2_1t)‘
< oo () = v + % u(27) - U(Z_lt)|
< é (Iu(t) — ()| + 'u (2‘%) - v(z-lz) )
where .
Lz = 1oz

Hence, the requirements (A-1) and (A-2) of Theorems 3.1, 4.1 and 4.2 are satisfied.
We also consider a continuous function o : [0,0.5] — (0, 00) described by

o =0.1exp(2.2x),

which satisfies the following inequality:

X

fO.l exp(2.2¢)dt < 0.1¢ exp(2.2x),
0

for each € € [0.4545, c0). Thus, the requirement (A-3) of Theorems 3.1, 4.1 and 4.2 is also satisfied.
For the subsequent step, depending on the values

1

1
k:]’ m = 1’ n= 23LH1 = —ClndLZ| = E’

250
if € € [0.4545,9.699), then it follows that

1
2> Ly (1+ Ly, 0) kK" = 2Ly, (1 + Ly, 0)

k=1
1 ¢
<2X — |1+ —=| £
= ><250( +125)€
_(EJr 15625){) <l

We choose u(x) = %x3 as an approximate solution of HOIVIDDEs (5.1), where x € [0,0.5]. Then,
in the light (3.1) and (5.1), it follows that

X

’7 1 3 [1] 16 3 [1] X 2 1 2 [1] 2 1] -1
(@) + 2o i) + o (5)—12x - o [Py + 1602 (2711)]

0

1
3x— —x%— 1247

< 0. . = Jl.
200 < 0.1exp(2.2x) = o(x), x € [0,0.5]
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Next, it can be provided that uy(x) = x* is exact solution of HOIVIDDE (5.1), Moreover, based on
the current data accordingly, it follows that

1
—x = x4,

ju(x) = up(0) = |5

and
52

1- 2LH1 (1 + Lzlf) {2
(0.4545)* x 0.1

12 ok (14 4885 5 (0.4545)?

0.02066
0.9983
= (0.02070 exp(2.2x).

o(x)

exp(2.2x)

IR

exp(2.2x)

Consequently, we observe that

< 0.0207 exp(2.2x), foreach x € [0,0.5].

1
—x - x*
2

|u(x) = uo(x)| =

Then, the inequality of (3.2) Theorem 3.1 is fulfilled. Moreover, it can be shown that the
inequalities (4.2) and (4.9) of Theorems 4.1 and 4.2 are also fulfilled, respectively. Hence, as a result
we conclude that HOIVIDDE (5.1) possesses U-H-R, o-semi-U-H, and U-H stability, along with a
unique solution for the associated initial condition (5.2).

Remark 5.1. From the above discussion, it is clear that the functions involved in HOIVIDDE (5.1)
satisfy the conditions (A-1) and (A-2) of Theorems 3.1, 4.1 and 4.2. Moreover, the function ug(x) = x*
is an exact solution of HOIVIDDE (5.1) and fulfills the initial condition u”(0) = 0, i = 0,1. We also
chose the function u(x) = —x3 as an approximate solution of HOIVIDDE (5.1). In addition, the function
o(x) = 0.1exp(2.2x) satzsfymg the condition (A-3) of Theorems 3.1, 4.1 and 4.2 has been identified.
Under the remaining assumptions, we have shown that both the functions u(x) = %x3 and uy(x) = x*
also satisfy the inequality (3.2). These observations confirm the applicability of the conditions of
Theorem 3.1. The verification of the remaining requirements of Theorems 4.1 and 4.2 can be carried
out in a similar manner and is therefore omitted for brevity.

6. Conclusions

In this work, we have investigated a class of nonlinear HOIVIDDEs involving variable time delays.
Our focus was on establishing sufficient requirements that guarantee various types of Ulam-type
stability, including U-H-R, o-semi-U-H and U-H stability. In addition, we proved the uniqueness
of solutions for the associated initial value problem. The analytical approach was based on a
combination of tools, including the properties of iterative functions, the Banach fixed point theorem,
the Bielecki metric, and other relevant techniques from functional analysis. These tools enabled us
to derive rigorous results under general requirements, extending the theory of Ulam-type stability
to a broader class of integro-delay differential equations. The findings of this study are novel and
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contribute significantly to the ongoing development of the qualitative theory of differential equations,
IEs and Volterra HOIDE with and without delays. One of the main contributions is the generalization
and improvement of Ulam-type stability results to nth-order HOIVIDDEs, which, to the best of
our knowledge, has not been previously addressed in the literature. For future work, it would be
worthwhile to extend the methods and results of this study to fractional-order integro-delay differential
equations. In particular, investigating similar stability properties for equations involving Caputo,
Riemann-Liouville, and Hilfer fractional derivatives could open up new avenues in the analysis the
qualitative properties of differential equations.
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