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1. Introduction

Fractional calculus, as an extension of integer-order calculus, has held a significant position in the
field of mathematics since its inception. In materials science, particularly in the study of viscoelastic
materials, fractional calculus has demonstrated substantial potential and advantages. By introducing
fractional-order models, researchers can more accurately describe the dynamic behavior and memory
characteristics of materials. For example, in 1947, G. W. Scott Blair introduced a viscoelastic element
known as the Scott-Blair dashpot, whose dynamic behavior can be described by a time-fractional
differential equation [1].

In the early 1980s, Greek mathematician Panagiotopoulos [2] first introduced the hemivariational
inequality based on Clarke generalized gradient. As a generalization of variational inequality theory,
hemivariational inequality has also attracted great attention from scholars since its inception.
Considerable progress has been achieved regarding the solvability, numerical approximation,
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simulation of hemivariational inequalities, as well as their applications in nonsmooth contact
problems, see, e.g., [3–5]. At the same time, some progress has been made in the research on the
optimal control theory of hemivariational inequalities in contact mechanics problems see, e.g., [6–8].
The research results of fractional differential hemivariational inequality can be seen in [9–11].
Recently, research on ψ-fractional differential systems can be found in [12–14].

In [15, 16], the authors investigated two types of viscoelastic contact models within the framework
of Caputo derivatives, obtaining two fractional hemivariational inequalities. They also demonstrated
the solvability of these fractional hemivariational inequalities by applying the Rothe method in
combination with monotone operator theory. In [17], the author studied a class of viscoelastic contact
models within the framework of ψ-fractional calculus and established the existence of solutions.
However, the viscoelastic constitutive law in [17] does not incorporate a history-dependent operator.
Inspired by the aforementioned studies, this paper investigates viscoelastic contact problems with
history-dependent operators within the framework of ψ-fractional calculus. A new ψ-fractional
hemivariational inequality is derived, and the solvability of the contact model is established. Our
research model exhibits greater generality, serving as an extension of the models presented in [15–17].

The phenomenon of adhesion is the result of the interaction between the surface forces that are at
play when two separate bodies are in some form of contact. Adhesion can be demonstrated by friction
between two solid material bodies during relative sliding, aggregation and the sintering of solid powder,
etc. Therefore, adhesion processes often occur and have important applications in industrial settings.
In [18], the author introduced the concept of the bonding field . In this paper, we use θ to denote a
bonding field; this represents the intensity of adhesion, and θ ∈ [0, 1]. When θ = 1, this means that
all of the bonds are active and that the adhesion is complete. When θ = 0, there is no adhesion; that
is to say, all of the bonds are inactive and severed. When 0 < θ < 1, there is partial adhesion, and
only a fraction θ of the bonds are active. Various frictional contact problems with adhesion have been
introduced and considered for different conditions some of them can be found in [19–21]. This paper
uses a ψ-fractional differential equation to characterize the bonding field.

The current paper contains three main innovations. Firstly, we consider a viscoelastic frictional
contact model featuring a long-term memory constitutive law formulated within the framework of
ψ-Caputo fractional derivatives. This model is entirely new. Second, we account for the adhesion
phenomenon occurring during the contact process, where the adhesion field is characterized by a
differential equation based on ψ-Caputo fractional derivatives. The outcome of our study is a coupled
system comprising a ψ-Caputo fractional differential hemivariational inequality and a ψ-Caputo
fractional differential equation. Our results demonstrate enhanced generality and constitute an
extension of the findings in [17], which also represents the novel contribution of this paper.

The organization of the rest of this article is as follows: in Section 2, some preliminaries are
introduced. In Section 3, the unique solvability of ψ-Caputo fractional differential equations is
presented, and the existence of solutions for ψ-Caputo fractional differential hemivariational
inequalities with history-dependent operators is obtained. In Section 4, the theoretical results from
Sectional 3 are applied to a class of frictional contact model in witch adhesion is taken into account.
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2. Preliminaries

Let (E, ∥ · ∥E) be a Banach space and let E∗ represent the dual of E. Let V be a reflexive Banach
space and V∗ represent the dual of V . Let Y be a separable and reflexive Banach space. The dual space
of Y is denoted by Y∗.

Definition 2.1. ( [3]) Assume that j : E → R. Then, the Clarke directional derivative of j at the point
u ∈ E in the direction v ∈ E is defined by

j0(u; v) = lim sup
w→u,λ↓0

j(w + λv) − j(w)
λ

,

where j is a locally Lipschitz function and λ ∈ R+. The generalized gradient of j at u ∈ E is defined by
the set

∂ j(u) = {ξ ∈ E∗ | j0(u; v) ≥ ⟨ξ, v⟩ for all v ∈ E}.

Definition 2.2. ( [22]) A nonempty, bounded, closed and convex multivalued operator T : V → 2V∗ is
said to be pseudomonotone, if vn ⇀ v weakly in V and v∗n ⇀ v∗ weakly in V∗ with v∗n ∈ Tvn and
lim supn→∞⟨v

∗
n, vn − v⟩V∗×V ≤ 0, then v∗ ∈ Tv and ⟨v∗n, vn⟩V∗×V → ⟨v∗, v⟩V∗×V .

Theorem 2.3. ( [22]) Let the multivalued operator T : V → 2V∗ be pseudomonotone and coercive.
Then, T is surjective, i.e., for every π ∈ V∗, there is u ∈ V such that Tu ∋ π.

Lemma 2.4. ( [23]) Nonnegative sequences {an}, {bn} and {cn} satisfy

an ≤ bn +

n−1∑
k=1

ckak for n ≥ 1.

Then, we have

an ≤ bn +

n−1∑
k=1

ckbkexp
( n−1∑

j=k+1

c j

)
for n ≥ 1.

Moreover, if {an} and {cn} are such that

an ≤ m +
n−1∑
k=1

ckak for n ≥ 1,

where constant m > 0 . Then, for all n ≥ 1, it holds

an ≤ m exp
( n−1∑

k=1

ck

)
.

Definition 2.5. ( [12]) Let X be a reflexive and separable Banach space. Let α > 0, I = (0,T )(T >

0), x ∈ L1(I, X), and let ψ ∈ C1(I) be an increasing function such that ψ′(t) , 0 on I. The α > 0 order
ψ-fractional integral of x is defined by

Iα;ψ
0,t x(t) =

1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1x(s)ds, t ∈ I,

where Γ(·) is the Gamma function.
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Definition 2.6. ( [12]) Let α > 0, n ∈ N, x ∈ Cn(I) and let ψ ∈ Cn(I) be an increasing function such
that ψ′(t) , 0, for all t ∈ I, the ψ-Caputo fractional derivative of order α for x is defined by

CDα;ψ
0,t x(t) = In−α;ψ

0,t

( 1
ψ′(t)

d
dt

)n
x(t), t ∈ I,

where n = [α] + 1 for α , N, n = α for α ∈ N. In particular, if 0 < α ≤ 1, we have

CDα;ψ
0,t x(t) =


1

Γ(1−α)

∫ t

0
(ψ(t) − ψ(s))−αx′(s)ds, if α ∈ (0, 1),

x′(t)
ψ′(t) , if α = 1.

3. Main results

Problem 1. For a given ϕ ∈ L2(I,Y), find x : I → X such thatCDα;ψ
0,t x(t) = G(t, x(t), ϕ(s)) for a.e. t ∈ I,

x(0) = x0.
(3.1)

Taking the fractional integral of α-order to the Eq (3.1), we have

x(t) = Iα;ψ
0,t G(t, x(t), ϕ(t)) + c0, c0 ∈ R

=
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s), ϕ(s))ds + c0, t ∈ I. (3.2)

Let t = 0 in (3.2) and using x(0) = x0, it yields that c0 = x0. So, we obtain the integral equivalent form
of the boundary value problem (3.1) as follows

x(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s), ϕ(s))ds + x0, t ∈ I. (3.3)

According to [13, Lemma 2.1], we obtain that Problem 1 is equivalent to the following Problem 2.

Problem 2. Find x ∈ C(I; X) such that

x(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s), ϕ(s))ds + x0, t ∈ I. (3.4)

In what follows, we establish the solvability of Problem 2. To this end, we provide some necessary
assumptions. We denote K0= ∥̃θ∥

L
1
p̂ ([0,T ])

, where θ̃(s) = ∥G(s, x(s), ϕ(s))∥Y and 0 < α < p̂ < 1,

M0 = max
t∈I
{ψ′(t)} and q̂ = α−1

1− p̂ .
(HG): G : I × X × Y → Y is such that

(i) the mapping t 7→ G(t, x, η) is continuous for all x ∈ X, η ∈ Y;
(ii) there exists LG > 0, such that

∥G(t, x1, η1) −G(t, x2, η2)∥Y ≤ LG(∥x1 − x2∥X + (∥η1 − η2∥Y)
for all x1, x2 ∈ X, η1, η2 ∈ Y, t ∈ I;

(iii) t 7→ G(t, 0, 0) belongs to L2(I; Y).
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(H0) : There exists a constant M1 > 0, such that

M0LG

Γ(α)

(ψ(T )(q̂+1)

1 + q̂

)1−p̂( p̂
M1

) p̂
< 1.

Lemma 3.1. Assume that (H0) and (HG) hold. Then, for a given ϕ ∈ L2(I,Y), 0 < α ≤ 1, ψ(0) = 0, the
fractional integral equation

x(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s), ϕ(s))ds + x0, t ∈ I. (3.5)

has a unique solution x ∈ C(I, X).

Proof. We prove that Eq (3.5) admits a unique solution x. To this end, we consider an equivalent norm
of C(I; X), which defined by ∥x∥∗ = sup

t∈I
e−M1t∥x(t)∥ for all x ∈ C(I; X). We define the operator T by

T x(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s), ϕ(s))ds + x0, t ∈ I. (3.6)

Next, we show that operator T admits a unique fixed point in C(I; X). The proof process is divided
into two steps.
Step1. For any x ∈ C(I; X), T x ∈ C(I, X). In fact, for any δ > 0 and x ∈ C(I; X). By using the
condition (HG) and Holder inequality, we have

∥(T x)(t + δ) − (T x)(t)∥X

≤
1
Γ(α)

∫ t

0
ψ′(s)[(ψ(t) − ψ(s))α−1 − (ψ(t + δ) − ψ(s))α−1]∥G(s, x(s), ϕ(s))∥Yds

+
1
Γ(α)

∫ t+δ

t
ψ′(s)(ψ(t + δ) − ψ(s))α−1∥G(s, x(s), ϕ(s))∥Yds

≤
M0

Γ(α)

∫ t

0

(
(ψ(t) − ψ(s))α−1 − (ψ(t + δ) − ψ(s))α−1

)̃
θ(s)ds

+
M0

Γ(α)

∫ t+δ

t
(ψ(t + δ) − ψ(s))α−1θ̃(s)ds

≤
M0

Γ(α)

( ∫ t

0

(
(ψ(t) − ψ(s))α−1 − (ψ(t + δ) − ψ(s))α−1

) 1
1−p̂ ds

)1− p̂( ∫ t

0
(̃θ(s))

1
p̂ ds

) p̂

+
M0

Γ(α)

( ∫ t+δ

t
(ψ(t + δ) − ψ(s))

α−1
1−p̂ ds

)1− p̂( ∫ t+δ

t
(̃θ(s))

1
p̂ ds

)p̂

≤
M0K0

Γ(α)

( ∫ t

0

(
(ψ(t) − ψ(s))q̂ − (ψ(t + δ) − ψ(s))q̂

)
ds

)1− p̂

+
M0K0

Γ(α)

( ∫ t+δ

t
(ψ(t + δ) − ψ(s))q̂ds

)1− p̂

≤
M0K0

Γ(α)(1 + q̂)1− p̂

(
ψ(t)1+q̂ + (ψ(t + δ) − ψ(t))1+q̂ − ψ(t + δ)1+q̂

)1−p̂

+
M0K0

Γ(α)(1 + q̂)1− p̂

(
ψ(t + δ) − ψ(t)

)(1+q̂)(1− p̂)
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≤
M0K0

Γ(α)(1 + q̂)1− p̂

(
(ψ′(ζ)δ)1+q̂

)1− p̂
+

M0K0

Γ(α)(1 + q̂)1− p̂

(
ψ′(ζ)δ

)(1+q̂)(1− p̂)

≤
2M(1+q̂)(1− p̂)+1

0 K0

Γ(α)(1 + q̂)1−p̂ δ
(1+q̂)(1− p̂).

Thus, we have 2M(1+q̂)(1−p)+1
0 K0

Γ(α)(1+q̂)1−p̂ δ(1+q̂)(1− p̂) → 0, as δ→ 0. Similarly, when δ < 0, we have

∥(T x)(t + δ) − (T x)(t)∥X → 0 as δ→ 0.

So, we know that T x ∈ C(I; X).
Step2. We will check T is a contractive map. For any x1, x2 ∈ C(I; X), using (HG) and Holder
inequation, we have

∥(T x1)(t) − (T x2)(t)∥X

≤
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1∥G(s, x1(s), ϕ(s)) −G(s, x2(s), ϕ(s))∥Yds

≤
M0LG

Γ(α)

∫ t

0
(ψ(t) − ψ(s))α−1∥x1(s) − x2(s)∥Xds

=
M0LG

Γ(α)

∫ t

0
(ψ(t) − ψ(s))α−1(∥x1(s) − x2(s)∥Xe−M1 s)eM1 sds

≤
M0LG

Γ(α)
∥x1 − x2∥∗

∫ t

0
(ψ(t) − ψ(s))α−1eM1 sds

≤
M0LG

Γ(α)
∥x1 − x2∥∗

( ∫ t

0
(ψ(t) − ψ(s))

α−1
1−p̂ ds

)1− p̂( ∫ t

0
(eM1 s)

1
p̂ ds

) p̂

≤
M0LG

Γ(α)
∥x1 − x2∥∗

( 1
1 + q̂

)1− p̂
(ψ(T ))(q̂+1)(1−p̂)

( p̂
M1

) p̂
eM1t.

According to the above inequality, we have

∥(T x1)(t) − (T x2)(t)∥Xe−M1t ≤
M0LG

Γ(α)

(ψ(T )(q̂+1)

1 + q̂

)1−p̂( p̂
M1

) p̂
∥x1 − x2∥∗ for all t ∈ I,

which implies that

∥(T x1) − (T x2)∥∗ ≤
M0LG

Γ(α)

(ψ(T )(q̂+1)

1 + q̂

)1− p̂( p̂
M1

) p̂
∥x1 − x2∥∗.

Based on the assumptions (H0) and Banach fixed point theorem, we get T has a unique solution
x ∈ C(I; X). □

Let W be separable and reflexive Banach spaces. W∗ andW∗ represent the dual spaces of W and
W, respectively. Define the following function spaces

W = Lp(I; W), W∗ = Lq(I; W∗) and V = {y ∈ W |C Dβ;ψ
0,t y ∈ W},

where 0 < β ≤ 1, 1
β
< p < +∞ and q = p

p−1 .
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Problem 3. Find (x, y) ∈ C(I, X) ×V such that
x(t) = 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s),M(y(t))ds + x0 for a.e. t ∈ I,

⟨A(CDβ;ψ
0,t y(t)) + By(t) − f (t), v(t)⟩Y×Y∗ + ⟨(R(CDβ;ψ

0,t y))(t), v(t)⟩
+ j0(x(t),My(t); Mv(t)) ≥ 0 for v ∈ W, a.e. t ∈ I,

x(0) = x0, y(0) = y0.

(3.7)

Let u(t) = CDβ;ψ
0,t y(t) in Problem 3. One has

y(t) = Iβ;ψ
0,t u(t) + y0 for a.e. t ∈ I.

Therefore, Problem 3 can be rewritten in the following form.

Problem 4. Find (x, u) ∈ C(I, X) ×W such that
x(t) = 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s),M(Iβ;ψ

0,s u(s) + y0))ds + x0 for a.e. t ∈ I,

⟨A(u(t)) + B(Iβ;ψ
0,t u(t) + y0) − f (t), v(t)⟩Y×Y∗ + ⟨(Ru)(t), v(t)⟩

+ j0(x(t),M(Iβ;ψ
0,t u(t) + y0); Mv(t)) ≥ 0 for v ∈ W, a.e. t ∈ I.

(3.8)

Further, we know that the Problem 4 can be translated into the following inclusion Problem 5.

Problem 5. Find (x, u) ∈ C(I, X) ×W such that
x(t) = 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, x(s),M(Iβ;ψ

0,s u(s) + y0))ds + x0 for a.e. t ∈ I,

A(u(t)) + B(Iβ;ψ
0,t u(t) + y0) + (Ru)(t) + M∗∂ j(x(t),M(Iβ;ψ

0,t u(t) + y0)) ∋ f (t)
for a.e. t ∈ I,

(3.9)

where M∗ denotes the adjoint operator of M.

The following hypothesis are proposed regarding the data in Problem 5.
(HA) : A ∈ L(W,W∗) and there exists a constant mA > 0 such that ⟨Au, u⟩ ≥ mA∥u∥2W for all u ∈ W.
(HB) : B ∈ L(W,W∗) and ⟨Bu, u⟩ ≥ 0 for all u ∈ W.
(HM) : The compact operator M ∈ L(W,Y).
(HJ) : The function J : X × Y → R is such that

(i) y 7→ J(x, y) is locally Lipschitz for all x ∈ X;
(ii) ∥∂J(x, y)∥Y∗ ≤ LJ(1 + ∥y∥Y) for all x ∈ X and y ∈ Y, where contact LJ > 0;
(iii) (x, y) 7→ J0(x, y; v) is upper semicontinuous from X × Y into R for all v ∈ Y.

(Hh): The operator h ∈ C(I × I,L(W,W∗) satisfies

∥h(t1, s) − h(t2, s)∥ ≤ Lh|t1 − t2| for all s, t1, t2 ∈ I,
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with Lh > 0 and mh = max
t,s∈I×I

∥h(t, s)∥.

(HR): The operator R ∈ L(W,W∗) is defined by

(Ru)(t) = S
(∫ t

0
h(t, s)u(s)ds + ϵR

)
,

and there exists constant LR > 0 such that

∥(Ru1)(t) − (Ru2)(t)∥W∗ ≤ LR

∫ t

0
∥u1(s) − u2(s)∥Wds

for all u1(t), u2(t) ∈ C(I; W), where S ∈ L(W,W∗), ϵR ∈ W, and LR = mh∥S∥.

(H1) : f ∈ W∗ and y0 ∈ W.

Theorem 3.2. Assume that the conditions (HA), (HB), (HM), (HJ), (Hh), (HR), (HG) and (H1) hold. Then
Problem 5 admits at last one solution (x, u) ∈ C(I; X) ×W

We use the Rothe method(temporally semi-discrete scheme) to prove Theorem 3.2.
Let N ∈ N+, τ = T/N, and the equidistant nodes of the interval [0,T ] are denoted by {tk}

N
k=0 = {kτ}

N
k=0,

and fτ(t) = f k
τ =

1
τ

∫ tk

tk−1

f (s)ds for t ∈ (tk−1, tk], k = 1, 2, ...,N. Next, we consider the discretized format

of Problem 5.

Problem 6. Find {uk
τ}

N
k=0 ∈ W, xτ ∈ C(I; X) and {ηk

τ}
N
k=0 ∈ Y∗ such that y0

τ = y0, and

xτ(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))α−1G(s, xτ(s),Mŷτ(s))ds + x0 for a.e. t ∈ (0, tk), (3.10)

Auk
τ + Byk

τ + wk
τ + M∗ηk

τ ∋ f k
τ (3.11)

with ηk
τ ∈ ∂J(xτ(tk),Myk

τ) for k = 1, 2, ...,N, where yk
τ and ŷτ(t) for t ∈ (0, tk) are defined by

yk
τ = y0 +

1
Γ(β)

k∑
j=1

u j
τ

∫ t j

t j−1

ψ′(s)(ψ(tk) − ψ(s))β−1ds

= y0 +
1

Γ(β + 1)

k∑
j=1

((
(ψ(tk) − ψ(t j−1)

)β
− (ψ(tk) − ψ(t j)

)β)u j
τ (3.12)

= y0 +
τβ

Γ(β + 1)

k∑
j=1

(
(ψ′(ξ j−1))β(k − j + 1)β − (ψ′(ξ j))β(k − j)β

)
u j
τ

where ξ j−1 ∈ (tk, t j−1), ξ j ∈ (tk, t j), and

ŷτ(t) =
{ ∑N

j=1X(t j−1,t j](t)y
j−1
τ , 0 < t ≤ T,

y0, t = 0,
(3.13)

respectively. Here, X(t j−1,t j] be defined by

X(t j−1,t j](t) =
{

1, t ∈ (t j−1, t j],
0, otherwise.
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Moreover, the element wk
τ is given as follows

wk
τ = S

(
ϵR +

k−1∑
j=1

∫ t j

t j−1

h(tk, s)u j
τds +

∫ tk

tk−1

h(tk, s)uk
τds

)
.

Theorem 3.3. Assume that the conditions (HA), (HB), (HM), (HJ), (Hh), (HR), (HG) and (H1) hold. Then
Problem 6 has at least one solution (uk

τ, xτ) ∈ W ×C(I; X).

Proof. For the given y0
τ, y

1
τ, ..., y

n−1
τ , we will prove the existence of yn

τ, η
n
τ and xτ that satisfy (3.10)

and (3.11). Using the definition of yk
τ, we can obtain y0

τ, y
1
τ, ..., y

n−1
τ . Therefor, ŷτ is welldefined in (0, tn).

It’s easy to know that ŷτ ∈ L2(0, tn; W). Furthermore, we can verify that ŷτ satisfies all the conditions of
Lemma 3.1. Now we consider inclusion problem (3.11) and write it in the following equivalent form

Auk
τ + Byk

τ + S
( ∫ tk

tk−1

h(tk, s)uk
τds

)
+ M∗∂J(xτ(tk),Myk

τ) ∋ Fk
τ (3.14)

where

Fk
τ = f k

τ − S
(
ϵR +

k−1∑
j=1

∫ t j

t j−1

h(tk, s)u j
τds

)
.

Let

ϑ̂ = y0 +
τβ

Γ(β + 1)

n−1∑
j=1

(
(ψ′(ξ j−1))β(k − j + 1)β − (ψ′(ξ j))β(k − j)β

)
u j
τ,

ĉ =
τβ

Γ(β + 1)
(
ψ′(ξn−1)

)β
, ξn−1 ∈ (tn, tn−1).

It easy to see that inclusion problem (3.14) equivalent to the following inclusion problem. Find ϑ ∈ W
such that

Aϑ + B(ϑ̂ + ĉϑ) + S
( ∫ tk

tk−1

h(tk, s)ϑds
)
+ M∗∂J

(
xτ(tk),M(ϑ̂ + ĉϑ)

)
∋ Fk

τ. (3.15)

We will show that the multivalued operator G : W → 2W∗ defined by

Gϑ = Aϑ + B(ϑ̂ + ĉϑ) + S
( ∫ tk

tk−1

h(tk, s)ϑds
)
+ M∗∂J

(
xτ(tk),M(ϑ̂ + ĉϑ)

)
(3.16)

is surjective. To this end, we first prove that operator G is coercive.
Since ∣∣∣∣〈B(ϑ̂ + ĉϑ) + S

( ∫ tk

tk−1

h(tk, s)ϑds
)
+ M∗∂J

(
xτ(tk),M(ϑ̂ + ĉϑ)

)
, ϑ

〉
W∗×W

∣∣∣∣
≤ ∥B∥∥ϑ̂∥∥ϑ∥ + ĉ∥B∥∥ϑ∥2 + ∥S∥

∫ tk

tk−1

∥h(tk, s)∥∥ϑ∥2ds

+ LJ∥M∥(1 + ∥ϑ̂∥∥M∥)∥ϑ∥ + LJ ĉ∥M∥2∥ϑ∥2
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≤
(
∥B∥∥ϑ̂∥ + LJ∥M∥(1 + ∥ϑ̂∥∥M∥)

)
∥ϑ∥ + τmh∥S∥∥ϑ∥

2 (3.17)

+
τβM0

β

Γ(β + 1)
(∥B∥ + LJ∥M∥2)∥ϑ∥2.

Next, we choose

τ0 =
( (mA − Tmh∥S∥)Γ(β + 1)

M0
β(∥B∥ + LJ∥M∥2)

) 1
β
.

From the H(A) and (3.17), one has

⟨ξ, ϑ⟩W∗×W ≥
(
mA − τmh∥S∥ −

τβM0
β

Γ(β + 1)
(∥B∥ + LJ∥M∥2)

)
∥ϑ∥2

−
(
∥B∥∥ϑ̂∥ + LJ∥M∥(1 + ∥ϑ̂∥∥M∥)

)
∥ϑ∥

for all ξ ∈ Gϑ and 0 < τ < τ0. Furthermore, we get

⟨ξ, ϑ⟩W∗×W

∥ϑ∥
≥
(
mA − τmq∥S∥ −

τβM0
β

Γ(β + 1)
(∥B∥ + LJ∥M∥2)

)
∥ϑ∥

−
(
∥B∥∥ϑ̂∥ + LJ∥M∥(1 + ∥ϑ̂∥∥M∥)

)
for all ξ ∈ Gϑ,

which implies that operator G is coercive.
On the other hand, we show that operator G is pseudomonotone. Under the condition (HA), (HB)

and (HR) , we obtain that for every ϑ ∈ W, the set Gϑ is nonempty, bounded, closed and convex,
this means that G is nonempty, bounded, closed and convex operator. Let ϑn ⇀ ϑ in W as n → ∞,
ϑ∗n ∈ Gϑn, ϑ∗n ⇀ ϑ∗ in W∗ as n→ ∞, and lim supn→∞⟨ϑ

∗
n, ϑn − ϑ⟩W∗×W ≤ 0. We will check ϑ∗ ∈ Gϑ and

lim
n→∞
⟨ϑ∗n, ϑn⟩W∗×W = ⟨ϑ

∗, ϑ⟩W∗×W . (3.18)

First, since A, B,S ∈ L(W,W∗) and ϑn ⇀ ϑ in W as n→ ∞, we know that

Aϑn ⇀ Aϑ in W∗, (3.19)

B(ϑ̂ + ĉϑn) ⇀ B(ϑ̂ + ĉϑ) in W∗, (3.20)

S
( ∫ tk

tk−1

q(tk, s)ϑnds
)
⇀ S

( ∫ tk

tk−1

q(tk, s)ϑds
)

in W∗. (3.21)

According to the compactness of M and ϑn ⇀ ϑ in W as n→ ∞, one has

M(ϑ̂ + ĉϑn)→ M(ϑ̂ + ĉϑ) in W. (3.22)

Let ξn ∈ ∂J(M(ϑ̂ + ĉϑn)). Based on (HJ), we obtain that {ξn} ⊂ W∗ is bounded. So, there is convergent
subsequence, which is still represented by {ξn}. Further, one has

ξn ⇀ ξ in W∗ as n→ ∞. (3.23)
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According to convergence results (3.22) and (3.23), we get ξ ∈ ∂J(M(ϑ̂ + ĉϑ)). By virtue of (3.19)–
(3.23), we can obtain

lim
n→∞

ϑ∗n = lim
n→∞

(
Aϑn + B(ϑ̂ + ĉϑn) + S

( ∫ tk

tk−1

q(tk, s)ϑnds
)
+ M∗ξn

)
= Aϑ + B(ϑ̂ + ĉϑ) + S

( ∫ tk

tk−1

q(tk, s)ϑds
)
+ M∗ξ.

Using ϑ∗n ⇀ ϑ∗ as n→ ∞, we get

ϑ∗ = Aϑ + B(ϑ̂ + ĉϑ) + S
( ∫ tk

tk−1

h(tk, s)ϑds
)
+ M∗ξ,

which implies that ϑ∗ ∈ Gϑ. Subsequently, we prove that limn→∞⟨ϑ
∗
n, ϑn⟩W∗×W = ⟨ϑ

∗, ϑ⟩W∗×W . Using
(HB),(HG) and ϑn ⇀ ϑ in W, we have

lim sup
n→∞

〈
B(ϑ̂ + ĉϑn), ϑ − ϑn⟩W∗×W

≤ lim sup
n→∞

〈
B(ϑ̂ + ĉϑ), ϑ − ϑn⟩W∗×W = 0 (3.24)

and

lim sup
n→∞

〈
S
( ∫ tk

tk−1

h(tk, s)ϑnds
)
, ϑ − ϑn⟩W∗×W

≤ lim sup
n→∞

〈
S
( ∫ tk

tk−1

h(tk, s)ϑds
)
, ϑ − ϑn⟩W∗×W = 0. (3.25)

Applying ϑ∗n ∈ Gϑn, we have

lim sup
n→∞

⟨ϑ∗n, ϑn⟩ = lim sup
n→∞

(
⟨Aϑn + B(ϑ̂ + ĉϑn), ϑn⟩X∗×X + ⟨M∗ξn,Mϑn⟩W∗×W

)
+ lim sup

n→∞

〈
S
( ∫ tk

tk−1

h(tk, s)ϑnds
)
, ϑn

〉
W∗×W .

From, (3.22), (3.24)–(3.26) and lim sup
n→∞

⟨ϑ∗n, ϑn − ϑ⟩W∗×W ≤ 0, we obtain

lim sup
n→∞

⟨Aϑn, ϑn − ϑ⟩W∗×W

≤ lim sup
n→∞

⟨ϑ∗n, ϑn − ϑ⟩W∗×W + lim sup
n→∞

⟨B(ϑ̂ + ĉϑn, ϑ − ϑn)⟩W∗×W

+ lim sup
n→∞

〈
S
( ∫ tk

tk−1

h(tk, s)ϑnds
)
, ϑ − ϑn⟩W∗×W + lim sup

n→∞
⟨M∗ξn,M(ϑ − ϑn)⟩ ≤ 0.

On the other hand, by using the monotonicity of A, it follows that

lim sup
n→∞

⟨Aϑn, ϑn − ϑ⟩W∗×W ≥ lim sup
n→∞

⟨Aϑ, ϑn − ϑ⟩W∗×W = 0.
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Based on the discussion above, we get

lim
n→∞
⟨Aϑn, ϑn⟩ = ⟨Aϑ, ϑ⟩. (3.26)

By a similar scheme, we can get the following conclusion

lim
n→∞

〈
B(ϑ̂ + ĉϑn), ϑn

〉
W∗×W =

〈
B(ϑ̂ + ĉϑ), ϑ

〉
W∗×W (3.27)

and

lim
n→∞

〈
S
( ∫ tk

tk−1

h(tk, s)ϑnds
)
, ϑn⟩W∗×W =

〈
S
( ∫ tk

tk−1

h(tk, s)ϑds
)
, ϑ⟩W∗×W . (3.28)

Thus, we have

lim
n→∞
⟨ϑ∗n, ϑn⟩W∗×W = lim

n→∞
⟨Aϑn, ϑn⟩W∗×W + lim

n→∞
⟨B(ϑ̂ + ĉϑn), ϑn⟩W∗×W

+
〈
S
( ∫ tk

tk−1

h(tk, s)ϑnds
)
, ϑn⟩W∗×W + lim

n→∞
⟨ξn,Mϑn⟩W∗×W = ⟨ϑ

∗, ϑ⟩W∗×W .

So, operator G is pseudomonotone. Using the Theorem 2.3, we obtain that G is surjective for all
0 < τ < τ0. The proof of the Theorem 3.3 is completed. □

Next, we will provide results of priori estimates for the sequence of solution of Problem 6.

Lemma 3.4. Assume that the hypotheses (HA), (HB), (HM), (HJ), (Hh), (HR), (HG) and (H1) hold. Then,
there exist τ0 > 0 and Ci > 0(i = 1, 2, 3, 4) independent of τ , such that τ ∈ (0, τ0), the solutions of
Problem 6 satisfy

max
k=1,2,...,N

∥uk
τ∥ ≤ C1, (3.29)

max
k=1,2,...,N

∥yk
τ∥ ≤ C2, (3.30)

max
k=1,2,...,N

∥wk
τ∥ ≤ C3, (3.31)

max
k=1,2,...,N

∥ηk
τ∥ ≤ C4, (3.32)

where ηk
τ ∈ ∂J(xτ(tk),Myk

τ) with

Auk
τ + Byk

τ + wk
τ + M∗ηk

τ = f k
τ (k = 1, 2, · · · ,N).

Proof. Based on hypothesis (HB) and (3.12), we get

⟨Byn
τ, u

n
τ⟩ =

〈
B
(
y0 +

τβ

Γ(β + 1)

n∑
j=1

(
(ψ′(ξ j−1))β(n − j + 1)β − (ψ′(ξ j))β(n − j)β

)
u j
τ

)
, un

τ

〉
(3.33)

≥ −∥By0∥V∗∥un
τ∥ −

τβM0
β

Γ(β + 1)
∥B∥

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥∥u
n
τ∥ −

τβM0
β

Γ(β + 1)
∥B∥∥un

τ∥
2.
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From hypothesis (HS), (Hh) and definition of wn
τ, we obtain

⟨wn
τ, u

n
τ⟩ =

〈
S

(
ϵR +

n−1∑
j=1

∫ t j

t j−1

h(tn, s)u j
τds +

∫ tn

tn−1

h(tn, s)un
τds

)
, un

τ

〉
≥ −∥S∥

(
∥ϵR∥ +

n−1∑
j=1

∫ t j

t j−1

∥h(tn, s)∥∥u j
τ∥ds

)
∥un

τ∥ − τ∥S∥∥h(tn, s)∥∥un
τ∥

2

≥ −∥S∥
(
∥ϵR∥ + Lh

n−1∑
j=1

∫ t j

t j−1

∥u j
τ∥ds

)
∥un

τ∥ − T Lh∥S∥∥un
τ∥

2. (3.34)

Using the (HJ), we obtain

⟨ξn
τ ,Mun

τ⟩ ≥ −LJ(1 + ∥Myn
τ∥)∥Mun

τ∥

≥ −LJ∥Mun
τ∥

(
1 + ∥My0∥ +

τβ∥M∥
Γ(β + 1)

n∑
j=1

(
(ψ′(ξ j−1))β(n − j + 1)β

− (ψ′(ξ j))β(n − j)β
)
∥u j

τ∥
)

≥ −LJ

(
∥M∥ + ∥M∥2∥y0∥

)
∥un

τ∥ −
LJτ

βM0
β∥M∥2

Γ(β + 1)
∥un

τ∥
2

−
LJτ

βM0
β∥M∥2

Γ(β + 1)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥∥u
n
τ∥. (3.35)

According to the coercivity of A and inequalities (3.33)–(3.35), we have

⟨ f n
τ , u

n
τ⟩ = ⟨Aun

τ + Byn
τ + wn

τ, u
n
τ⟩ + ⟨ξ

n
τ ,Mun

τ⟩

≥ mA∥un
τ∥

2 −
(τβMβ

0∥B∥
Γ(β + 1)

+
LJτ

βMβ
0∥M∥

2

Γ(β + 1)
+ T Lh∥S∥

)
∥un

τ∥
2

−
(
∥By0∥V∗ + LJ∥M∥ + LJ∥M∥2∥y0∥ + ∥S∥∥ϵR∥

)
∥un

τ∥

− Lh∥S∥

n−1∑
j=1

∥u j
τ∥

∫ t j

t j−1

ds∥un
τ∥

−
τβMβ

0∥B∥
Γ(β + 1)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥∥u
n
τ∥

−
LJτ

βM0
β∥M∥2

Γ(β + 1)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥∥u
n
τ∥,

and (
mA −

τβM0
β

Γ(β + 1)
(∥B∥ + LJ∥M∥2) − T Lh∥S∥

)
∥un

τ∥

≤
τβM0

β

Γ(β + 1)
(∥B∥ + LJ∥M∥2)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥ + Lh∥S∥

n−1∑
j=1

∥u j
τ∥

∫ t j

t j−1

ds
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+ ∥By0∥W∗ + LJ∥M∥ + LJ∥M∥2∥y0∥ + ∥S∥∥ϵR∥ + ∥ f n
τ ∥W∗ .

Let τ0 =
(

(mA−T Lh∥S∥)Γ(β+1)
2M0

β(∥B∥+LJ∥M∥2)

) 1
β , we know that mA −

τβM0
β

Γ(β+1) (∥B∥+ LJ∥M∥2)− T Lh∥S∥ ≥
mA
2 for all τ ∈ (0, τ0).

Furthermore, we get

∥un
τ∥ ≤

2(∥By0∥W∗ + LJ∥M∥ + LJ∥M∥2∥y0∥ + ∥S∥∥ϵR∥)
mA

+
2Lh∥S∥

∑n−1
j=1 ∥u

j
τ∥

∫ t j

t j−1
ds

mA

+
2τβM0

β

mAΓ(β + 1)
(∥B∥ + LJ∥M∥2)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
∥u j

τ∥ +
2∥ f n

τ ∥W∗

mA
.

Using (H1), one has ∥ f n
τ ∥ ≤ c f for all τ > 0, n ∈ N, where c f > 0. Let

C0 =
2(∥By0∥Y∗ + LJ∥M∥ + LJ∥M∥2∥y0∥ + ∥S∥∥ϵR∥)

mA
+

2c f

mA
.

By using Gronwall inequality, we know that

∥un
τ∥ ≤ C0 exp

( 2τβMβ
0

mAΓ(β + 1)
(∥B∥ + LJ∥M∥2)

n−1∑
j=1

(
(n − j + 1)β − (n − j)β

)
+ 2Lh∥S∥

n−1∑
j=1

∫ t j

t j−1

ds
)

≤ C0 exp
( 2Mβ

0

mAΓ(β + 1)
(∥B∥ + LJ∥M∥2)tβn + 2T Lh∥S∥

)
≤ C0 exp

(2Mβ
0(∥B∥ + LJ∥M∥2)T β

mAΓ(β + 1)
+ 2T Lh∥S∥

)
:= C1.

From (3.12), we know that

∥yn
τ∥ =

∥∥∥∥y0 +
τβ

Γ(β + 1)

n∑
j=1

(
(ψ′(ξ j−1))β(n − j + 1)β − (ψ′(ξ j))β(n − j)β

)
u j
τ

∥∥∥∥
≤ ∥y0∥ +

C1M0
β

Γ(β + 1)

n∑
j=1

(tβn− j+1 − tβn− j)

≤ ∥y0∥ +
C1M0

β

Γ(β + 1)
tβn

≤ ∥y0∥ +
C1M0

βT β

Γ(β + 1)
:= C2.

Under the hypotheses (HS) and (Hh), we have

∥wn
τ∥ =

∥∥∥∥∥S(ϵR + n∑
j=1

∫ t j

t j−1

h(tn, s)un
τds

)∥∥∥∥∥ ≤ ∥S∥(∥ϵR∥ + T LhC1) := C3.

The condition (HJ)(ii) ensures that

∥ηn
τ∥ ≤ LJ(1 + ∥Myn

τ∥) ≤ LJ(1 +C2∥M∥) := C4.

So far, the proof of the Lemma 3.4 has been completed. □
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Next, in order to provide the existence result of the solution to Problem 3, we define the piecewise
constant interpolant functions ũτ, ỹτ, w̃τ : [0,T ]→ W, ητ : [0,T ]→ Y∗ and fτ : [0,T ]→ W∗ as follows

ũτ(t) = un
τ, t ∈ (tn−1, tn],

ỹτ(t) = yn
τ, t ∈ (tn−1, tn],

w̃τ(t) = wn
τ, t ∈ (tn−1, tn],

ητ(t) = ηn
τ, t ∈ (tn−1, tn],

fτ(t) = f n
τ , t ∈ (tn−1, tn]

for n = 1, 2, ...,N.

Theorem 3.5. Assume that (HA), (HB), (HM), (HJ), (Hh), (HR), (HG) and (H1) hold. Let 1
β
< p < +∞

and {τn} be a sequence satisfies τn → 0(n → +∞). Here, for convenience, we still use τ to represent
the subsequence of {τn}. Then, the following conclusion holds:

ũτ ⇀ u (τ→ 0), in Lp(0,T ; W),
ητ ⇀ η (τ→ 0), in Lq(0,T ; Y∗),
xτ → x (τ→ 0), in C(0,T ; X),

where (u, x) ∈ Lp(0,T ; W) ×C(0,T ; X) is a solution of Problem 5.

Proof. Due to ∥un
τ∥ ≤ C1, we have

∥̃uτ∥
p
Lp(0,T ;W) =

∫ T

0
∥̃uτ(s)∥pds =

N∑
i=1

∫ ti

ti−1

∥ui
τ∥

pds = τ
N∑

i=1

∥ui
τ∥

p ≤ C5.

So, we deduce that {̃uτ} is bounded in Lp(0,T ; W) which implies that there exists u ∈ Lp(0,T ; W) such
that

ũτ ⇀ u (τ→ 0), in Lp(0,T ; W). (3.36)

For any t ∈ [0,T ] and v∗ ∈ W∗, Let γ(s) = (ψ(t) − ψ(s))β−1ψ′(s)v∗χ[0,t](s) for s ∈ (0, t). Clearly,
γ ∈ Lq(0,T ; W∗) because 1

β
< p < +∞. So, we have∣∣∣∣∣∣⟨v∗, 1

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1ũτ(s)ds −

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1u(s)ds⟩

∣∣∣∣∣∣
≤

1
Γ(β)

∫ t

0
|⟨(ψ(t) − ψ(s))β−1ψ′(s)v∗, ũτ(s) − u(s)⟩|ds

≤
1
Γ(β)
|⟨γ, ũτ − u⟩Lq(0,T ;W∗)×Lp(0,T ;W)| → 0, as τ→ 0.

So, we can get

Iβ;ψ
0,t ũτ(t) ⇀ Iβ;ψ

0,t u(t) in W, as τ→ 0 (3.37)
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for all t ∈ I. Moreover, one has

∥̃yτ(t) − y0 − Iβ;ψ
0,t ũτ(t)∥ =

∥∥∥∥ τβ

Γ(β + 1)

n∑
j=1

(
(ψ′(ξ j−1))β(n − j + 1)β − (ψ′(ξ j))β(n − j)β

)
u j
τ

−
1
Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1ũτ(s)ds

∥∥∥∥
=

1
Γ(β)

∥∥∥∥ ∫ tn

0

(
ψ(tn) − ψ(s)

)β−1ũτ(s)ψ′(s)ds

−

∫ t

0

(
ψ(tn) − ψ(s)

)β−1ũτ(s)ψ′(s)ds
∥∥∥∥

≤
1
Γ(β)

∥∥∥∥ ∫ tn

t

(
ψ(tn) − ψ(s)

)β−1ũτ(s)ψ′(s)ds
∥∥∥∥

+
1
Γ(β)

∥∥∥∥ ∫ t

0

[(
ψ(tn) − ψ(s)

)β−1
−

(
ψ(t) − ψ(s)

)β−1
]̃
uτ(s)ψ′(s)ds

∥∥∥∥
≤

C5

Γ(β + 1)
∥
(
ψ(tn) − ψ(t)

)β
∥

+
C5

Γ(β + 1)
∥ψβ(tn) −

(
ψ(tn) − ψ(t)

)β
− ψβ(t)∥

for t ∈ (tn−1, tn]. Therefor, we can deduce that

ỹτ(t)→ y0 + Iβ;ψ
0,t ũτ(t) in W, as τ→ 0, (3.38)

for all t ∈ I. Using (36), we conclude

ỹτ(t) ⇀ y0 + Iβ;ψ
0,t u(t) in W, as τ→ 0, (3.39)

for t ∈ I. Furthermore, according to the compactness of M, we have

M(̃yτ(t))→ M(y0 + Iβ;ψ
0,t u(t)) in Y, as τ→ 0, (3.40)

for t ∈ I. Meanwhile, we obtain

∥̃yτ(t) − ŷτ(t)∥ =
τβ

Γ(β + 1)

∥∥∥∥ n∑
j=1

(
(ψ′(ξ j−1))β(n − j + 1)β − (ψ′(ξ j))β(n − j)β

)
u j
τ

−

n−1∑
j=1

(
(ψ′(ξ j))β(n − j)β − (ψ′(ξ j+1))β(n − j − 1)β

)
u j
τ

∥∥∥∥
=

τβM0
β

Γ(β + 1)

n−1∑
j=1

∣∣∣(n − j + 1)β − 2(n − j)β + (n − j − 1)β
∣∣∣ ∥u j

τ∥

+
τβM0

β

Γ(β + 1)
∥un

τ∥

≤
τβM0

βC1

Γ(β + 1)

( n−1∑
j=1

∣∣∣(n − j + 1)β − 2(n − j)β + (n − j − 1)β
∣∣∣ + 1

)
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≤
τβM0

βC1

Γ(β + 1)
(1 + nβ − (n − 1)β)→ 0, as τ→ 0, (3.41)

for t ∈ (tn−1, tn]. Based on (3.41) and the compactness of M, it is true that

M(̂yτ(t))→ M(y0 + Iβ;ψ
0,t u(t)) in Y, as τ→ 0, (3.42)

for t ∈ (tn−1, tn]. Since u ∈ Lp(0,T ; W), it is obvious that M(y(t)) ∈ L2(0,T ; W). Lemma 3.1 implies
that there is a unique solution x ∈ (0,T ; X) that satisfies

x(t) =
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1G(s, x(s),M(y(s)))ds + x0. (3.43)

Using condition (HG), we have

∥xτ(t) − x(t)∥ ≤
1
Γ(α)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1∥G(s, xτ(s),M(̂yτ(s))) −G(s, x(s),M(y(s)))∥ds

≤
LG

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1

(
∥xτ(s) − x(s)∥ + ∥M(̂yτ(s)) + M(y(s))∥

)
ds

≤
LG

Γ(β)

( ∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1ds

)
∥Mŷτ − My∥C(0,T ;Y)

+
LG

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1∥xτ(s) − x(s)∥ds

≤
LGψ

β(T )
Γ(β + 1)

∥Mŷτ − My∥C(0,T ;Y) +
LG

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1∥xτ(s) − x(s)∥ds

= δ(τ) +
LG

Γ(β)

∫ t

0
ψ′(s)(ψ(t) − ψ(s))β−1∥xτ(s) − x(s)∥ds

where δ(τ) = LGψ
β(T )

Γ(β+1) ∥Mŷτ − My∥C(0,T ;Y). Using Gronwall inequality, we have

∥xτ(t) − x(t)∥ ≤ C6δ(τ), ∀t ∈ I.

From (3.42), we obtain

∥xτ(t) − x(t)∥ ≤ C6δ(τ)→ 0, as τ→ 0.

So, we have xτ → x in C(I; X) as τ → 0. On the other hand, based on the boundedness of sequence
{ητ}, it can be concluded that sequence {ητ} has a convergent subsequence (still denoted as {ητ}), which
implies there exists η ∈ Y∗, such that

ητ ⇀ η in Y∗ as τ→ 0. (3.44)

By applying the conclusion of [3, Lemma 12], the fact that

ηk
τ ∈ ∂J(xτ(tk),M(yk

τ)) for k = 1, 2, ...,N,
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and combined with xτ → x in C(0,T ; X), (3.42) and (3.44), then utilizing [3, Theorem 3.13], we can
derive that

η(t) ∈ ∂J(x(t),M(y0 + Iβ;ψ
0,t u(t)))

for a.e. t ∈ (0,T ). From boundedness of sequence {̃uτ} and the hypothesis (Hh) , it is ensure that∥∥∥∥∥∥
∫ t

0
h(t, s)̃uτ(s)ds −

∫ tk

0
h(tk, s)̃uτ(s)ds

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ t

0
h(t, s)̃uτ(s)ds −

∫ t

0
h(tk, s)̃uτ(s)ds −

∫ tk

t
h(tk, s)̃uτ(s)ds

∥∥∥∥∥∥
≤

∫ tk

t
∥h(tk, s)∥∥̃uτ(s)∥ds +

∫ t

0
∥h(t, s) − h(tk, s)∥∥̃uτ(s)∥ds

≤ τmhC5 + τLhC5 → 0(τ→ 0) for a.e. t ∈ [tk−1, tk]. (3.45)

Furthermore, we introduce the Nemytskii operator G1,G2 :W→W∗ by

(G1u)(t) = S
( ∫ t

0
h(t, s)u(s)ds

)
and (G2u)(t) = S(u(t))

for all u ∈ Y and a.e. t ∈ I. According to (3.36), we have

lim
τ→0
⟨G1ũτ, v⟩W∗×W = ⟨G1u, v⟩W∗×W

for all v ∈ W. Let

ωτ(t) = ϵR +
k∑

j=1

∫ t j

t j−1

h(tk, s)u j
τds, t ∈ (t j−1, t j].

According to (HR), (Hh) and (3.45), we have

G2(ωτ − ϵR) − G1(̃uτ)

= S
( k∑

j=1

∫ t j

t j−1

h(tk, s)u j
τds

)
− S

( ∫ t

0
h(t, s)̃uτ(t)ds

)
→ 0 strongly inW∗, as τ→ 0,

which implies

lim
τ→0
⟨G2ωτ, v⟩W∗×W

= lim
τ→0

(
⟨G2(ωτ − ϵR) − G1(̃uτ), v⟩W∗×W + ⟨G1(̃uτ), v⟩Y∗×Y + ⟨G2(ϵR), v⟩W∗×W

)
= ⟨G1(u), v⟩W∗×W + ⟨G2(ϵR), v⟩W∗×W. (3.46)

Next, we prove that (x, u) ∈ C(0,T ; X)×W is the solution to Problem 5. To this end, we define the
operatorsA, B andM by

(Av)(t) = A(v(t)), (Bv)(t) = B(y0 + Iβ;ψ
0,t v(t)) and (Mv)(t) = M(v(t))

AIMS Mathematics Volume 11, Issue 1, 1239–1265.



1257

for v ∈ W, a.e. t ∈ (0,T ), respectively. According to (3.19) and A ∈ L(W,W∗), we have

Aũτ ⇀ Au in W∗ as τ→ 0. (3.47)

Under (3.20) and (HB), we obtain

B(y0 + Iβ;ψ
0,t ũτ(t)) ⇀ B(y0 + Iβ;ψ

0,t u(t)) in W∗, as τ→ 0,

for all t ∈ I. Moreover, we have

⟨Bỹτ, v⟩ = ⟨B(y0 + Iβ;ψ
0,t ũτ(t)), v(t)⟩

≤ ∥B(y0 + Iβ;ψ
0,t ũτ(t))∥∥v(t)∥

≤

(
2ψβ(T )∥B∥C5

Γ(β + 1)
+ T∥B∥∥y0∥

)
∥v(t)∥.

Furthermore, by utilizing above inequality and Lebesgue-dominated convergence theorem, we can
obtain

lim
τ→0
⟨Bỹτ, v⟩W∗×W = lim

τ→0

∫ T

0
⟨B(y0 + Iβ;ψ

0,t ũτ(t)), v(t)⟩dt

=

∫ T

0
lim
τ→0
⟨B(y0 + Iβ;ψ

0,t ũτ(t)), v(t)⟩dt

=

∫ T

0
⟨B(y0 + Iβ;ψ

0,t u(t)), v(t)⟩dt

= ⟨By, v⟩W∗×W. (3.48)

By using the compactness of the Nemytskii operatorM, we find that

lim
τ→0
⟨ητ,Mv⟩ = ⟨η,Mv⟩ (3.49)

for all v ∈ W. Moreover, according to [24, lemma 3.3], we know that

fτ → f strongly inW∗, as τ→ 0. (3.50)

From (3.46)–(3.50), we obtain the following result

lim sup
τ→0

⟨Aũτ, v⟩W∗×W + lim sup
τ→0

⟨Bỹτ, v⟩W∗×W + lim sup
τ→0

⟨G2ωτ, v⟩W∗×W

+ lim sup
τ→0

⟨ητ,Mv⟩W∗×W − lim inf
τ→0
⟨ fτ, v⟩W∗×W ≥ 0,

for all v ∈ W. Thus, we have

⟨Au + By + Su +M∗η, v⟩W∗×W ≥ ⟨ f , v⟩W∗×W,

where η(t) ∈ ∂J(x(t),M(y0 + Iβ;ψ
0,t u(t))) for a.e. t ∈ (0,T ). This implies (u, x) ∈ W × C(0,T ; X) is a

solution of Problem 5, which finishes the proof of the theorem. □
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4. The mechanical model

In this section, we shall consider a class of history-dependent viscoelastic frictional contact problem.
We use Ω to represent the open, bounded subset of Rd(d = 2, 3) occupied by a viscoelastic body. Sd

stands for the second order symmetric d × d matrices. The boundary ∂Ω is assumed to be composed
of three sets: ΓD,ΓN and ΓC, with meas(ΓD) > 0. We assume that the evolutionary process of the body
belongs to time interval t ∈ I with T > 0. σ = σ(t, x) and u = u(t, x) represent the stress field and the
displacement field, respectively. Consider the following two inner products and norms:

u · v = uivi, ∥v∥Rd =
√

(v · v), ∀ u = (ui), v = (vi) ∈ Rd,

σ : τ = σi jτi j, ∥τ∥Sd =
√

(τ · τ), ∀ σ ∈ (σi j), τ = (τi j) ∈ Sd.

We provide the tangential and normal components of the vector as

σν = (σν) · ν, στ = σν − σνν, ϑν = ϑ · ν, ϑτ = ϑ − ϑνν,

where ν represents the outward unit normal at Γ. The linearized strain tensors ε(u) are expressed by

ε(u) = (εi j(u)), (εi j(u)) =
1
2

(ui, j + u j,i)(i, j = 1, · · · , d),

where ui, j = ∂ui/∂x j. We denote thatD = I ×Ω, TD = I × ΓD, TC = I × ΓC and TN = I × ΓN .

Problem 7. Find a displacement field u : D → Rd, a stress field σ : D → Sd and a bonding field
θ : TC → [0, 1] such that

σ(t) = A (ε(CDα;ψ
0,t u(t)) +B(ε(u(t))) +

∫ t

0
C (t − s)ε(CDα;ψ

0,t u(t))ds in D, (4.1)
Div σ(t) + f 0(t) = 0 in D, (4.2)

u(t) = 0 on TD, (4.3)
σ(t)ν = f N(t) on TN , (4.4)

−σν(t) ∈ ∂ jν(θ(t), uν(t)) on TC, (4.5)
−στ(t) ∈ ∂ jτ(θ(t),uτ(t)) on TC, (4.6)

CDα;ψ
0,t θ(t) = Q(t, θ(t),u(t)) on TC, (4.7)

θ(0) = θ0 on ΓC, (4.8)
u(0) = u0 in Ω. (4.9)

For the convenience of readers, we give a brief mechanical explanation for the equations and
conditions in Problem 7. A general viscoelastic constitutive law is of the form

σ(t) = A (ε(u′(t))) +B(ε(u(t))) +
∫ t

0
C (t − s)ε(u′(t))ds +

∫ t

0
D(t − s)ε(u(t))ds. (4.10)

Here, A represents the viscosity operator, B is the elasticity operator, and C , D represent relaxation
tensors. Consequently, the viscoelastic constitutive law (4.10) describes a nonhomogeneous material.
Note that (4.10) illustrates the fact that the current value of the stress depends on the current value of
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the strain and strain rate, as well as on their history. Particular cases can be obtained, for instance, when
C= D ≡ 0. Then, Eq (4.10) reduces to the so-called viscoelastic constitutive law with short memory

σ(t) = A (ε(u′(t))) +B(ε(u(t))). (4.11)

A second important particular case is obtained from (4.10) in the case when A = C ≡ 0. The
corresponding constitutive law is the so-called viscoelastic constitutive law with long memory, i.e.

σ(t) = B(ε(u(t))) +
∫ t

0
D(t − s)ε(u(t))ds. (4.12)

A third important particular case is obtained from (4.10) in the case when D ≡ 0. The corresponding
constitutive law is

σ(t) = A (ε(u′(t))) +B(ε(u(t))) +
∫ t

0
C (t − s)ε(u′(t))ds. (4.13)

Such constitutive laws have been used in the literature in order to model the behavior of real materials
like rubbers, rocks, metals, pastes, and polymers. In particular, Eq (4.13) was employed in [25, 26]
in order to model the hysteresis damping in elastomers. Introducing fractional calculus into friction
contact problems is mainly to more accurately describe the memory, path dependence, and nonlinear
characteristics of complex mechanical behaviors, thereby making up for the limitations of traditional
integer-order models. Based on this, we study the (4.1) fractional viscoelastic constitutive relations

σ(t) = A (ε(CDα;ψ
0,t u(t))) +B(ε(u(t))) +

∫ t

0
C (t − s)ε(CDα;ψ

0,t u(t))ds.

Equation (4.2) represents the equation of motion. Here f 0 represents the density of volume forces,
and Div is the divergence operator. We assume that the body is held fixed on ΓD, and therefore the
displacement boundary condition satisfies condition (4.3). Equation (4.4) stands for the traction
boundary condition and f N represents the surface tractions on ΓN . The normal contact condition (4.5)
and the friction condition (4.6) are modeled by the Clarke subdifferential of a nonconvex potential jν
and jτ, respectively. Here, jν and jτ depend on the adhesion θ(t). For a more detailed explanation
of (4.5) and (4.6), please refer to [3, 27]. The function θ is the adhesion field which governed by a
ψ-fractional ordinary differential equation (4.7) depending on the displacement. In (4.8) and (4.9),
θ(0) = θ0 and u(0) = u0 denote the initial adhesion field and displacement field, respectively.

To obtain the variational formulation of problem 7, we provide the following function space X,Y,
Z,V andH defined by

X = L2(Ω;Sd), Y = {ϑ ∈ H1(Ω;Rd) : ϑ = 0 on ΓD},

Z = L2((ΓC;Rd), V = L2(Ω;Rd), and H = L2(ΓC),
Q∞ = {ε = (εi jkl) : εi jkl = ε jikl = εkli j ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d}.

It is obvious that X is Hilbert space with the inner product

⟨σ, τ⟩X =

∫
Ω

σi j(x)τi j(x)dx for all σ, τ ∈ X
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and the associated norm ∥ · ∥X. On the space Y, we define the inner product by

⟨u, v⟩Y = ⟨ε(u), ε(v)⟩X for all u, v ∈ Y.

Moreover, we obtain that ∥ϑ∥L2(ΓC ;Rd) ≤ Ck∥̃γ∥∥ϑ∥Y for ϑ ∈ Y, where Ck > 0 is the Korn constant and
the trace operator is γ̃ : Y → L2(ΓC;Rd). Next, we give the hypotheses on the data A , B, C , Q, jν, jτ,
f D and f N as follows:
(HA ): A : Ω × Sd → Sd is such that(i) A = (ai jkl) ∈ Q∞, 0 ≤ i, j, k, l ≤ d;

(ii) there exists LA > 0 such that A τ : τ ≥ LA ∥τ∥
2
Sd for all τ ∈ Sd.

(HB): B : Ω × Sd → Sd is such that(i) B = (bi jkl) ∈ Q∞, 0 ≤ i, j, k, l ≤ d;
(ii) Bτ : τ ≥ 0 for all τ ∈ Sd.

(HC ) : Ω × (0,T ) × Sd → Sd,C ∈ C(0,T ; Q∞) is such that
(i) C = (ci jkl) ∈ Q∞, 0 ≤ i, j, k, l ≤ d;
(ii) C τ : τ ≥ 0 for all τ ∈ Sd;
(iiI) C is Lipschitz continuous with Lipschitz constant LC > 0.

(H jν) : jν : ΓC × R × R→ R with the following conditions

(i) jν(·, θ, µ) is measurable on ΓC for all µ ∈ R, θ ∈ R;
(ii) jν(x, θ, ·) is locally Lipschitz a.e. x ∈ ΓC, θ ∈ R;
(iii) jν(x, θ, ·) or − jν(x, θ, ·) is regular a.c. x ∈ ΓC, θ ∈ R;
(iv) there exists cν > 0 such that |∂ jν(x, θ, µ)| ≤ cν(1 + |µ|) for all µ ∈ R a.e. x ∈ ΣC;
(v) there exists mν > 0 such that (η1 − η2)(µ1 − µ2) ≥ −mν|µ1 − µ2|

2

for all ηi ∈ ∂ jν(x, θi, µi), θi, µi ∈ R, i = 1, 2 a.e. x ∈ ΓC.

(H jτ) : jτ : ΓC × R × R
d → R such that

(i) jτ(·, θ,µ) is measurable on ΣC, for all µ ∈ Rd, θ ∈ R;
(ii) jτ(x, θ, ·) is locally Lipschitz a.e. x ∈ ΓC, θ ∈ R;
(iii) jτ(x, θ, ·) or − jτ(x, θ, ·) is regular a.e. x ∈ ΓC, θ ∈ R;
(iv) there exists cτ > 0 such that |∂ jτ(x, θ,µ)| ≤ cτ(1 + ∥µ∥Rd ) for all µ ∈ Rd a.e. x ∈ ΓC;
(v) there exists mτ > 0 such that (η1 − η2)(µ1 − µ2) ≥ −mτ∥µ1 − µ2∥

2
Rd

for all ηi ∈ ∂ jτ(x, θi,µi),µi ∈ R
d, θi ∈ R (i = 1, 2) a.e. x ∈ ΓC.
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(HQ) : Q : ΓC × R × R
d → R satisfies that

(i) Q(·, κ, ι) is measurable on ΓC for all (κ, ι) ∈ R × Rd;
(ii) |Q(x, κ1, ι1) − Q(x, κ2, ι2)| ≤ LQ(|κ1 − κ2| + ∥ι1 − ι2∥)

for all κ1, κ2 ∈ R, ι1, ι2 ∈ R
d and a.e. x ∈ ΓC with LQ > 0;

(iii) Q(x, 0, ι) = 0,Q(x, κ, ι) ≥ 0 for κ ≤ 0, and Q(x, κ, ι) ≤ 0 for κ ≥ 1
for all ι ∈ Rd, a.e. x ∈ ΓC.

(H2) : f 0 ∈ L2(I; L2(Ω;Rd)), f N ∈ L2(I; L2(ΓN;Rd)),u0 ∈ Y and θ0 ∈ L2(ΓC).
By multiplying ϑ ∈ Y on both sides of Eq (4.2), we can obtain∫

Ω

Divσ · ϑdx = −⟨ f 0(t),ϑ⟩V.

Furthermore, by virtue of following Green formula∫
Ω

σ · ε(ϑ)dx +
∫
Ω

Divσ · ϑdx =
∫
∂Ω

σν · ϑdΓ,

we obtain

⟨σ(t), ε(ϑ)⟩X = ⟨ f 0(t),ϑ⟩V×Y +
∫
ΓD

σν · ϑdΓ +
∫
ΓN

σν · ϑdΓ +
∫
ΓC

σν · ϑdΓ.

Applying the (4.3) and (4.4), we have

⟨σ(t), ε(ϑ)⟩X = ⟨ f 0(t),ϑ⟩V×Y + ⟨ f N(t),ϑ⟩L2(ΓN ;Rd)×Y +

∫
ΓC

(σν(t)ϑν + στ(t) · ϑτ)dΓ. (4.14)

Furthermore, by the definition of the subgradient, (4.5) and (4.6), we have

σν(t)ϑν ≤ − j0
ν(θ(t), uν(t);ϑν), στ(t) · ϑτ ≤ − j0

ν(θ(t),uν(t);ϑν). (4.15)

By utilizing the Riesz representation principle, we know that there exists an element f ∈ Y∗ such that

⟨ f (t),ϑ⟩Y∗×Y = ⟨ f 0(t),ϑ⟩V + ⟨ f N(t),ϑ⟩L2(ΓN ;Rd) (4.16)

for all ϑ ∈ Y, a.e. t ∈ I, where Y∗ denotes the dual space of Y. By substituting inequality (4.15)
into (4.14) and combining (4.1) and (4.16), we can obtain

⟨A (ε(CDα;ψ
0,t u(t)), ε(ϑ)⟩X + ⟨B(ε(u(t))), ε(ϑ)⟩X + ⟨

∫ t

0
C (t − s)ε(CDα;ψ

0,t u(t))ds, ε(ϑ)⟩

+

∫
ΓC

j0
ν(θ(t), uν(t);ϑν) + j0

τ(θ(t),uτ(t);ϑτ)dΓ ≥ ⟨ f (t),ϑ⟩Y∗×Y

for a.e. t ∈ (0,T ). Combining the last inequality and (4.7)–(4.9), we obtain the variational formulation
of Problem 7.
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Problem 8. Find θ ∈ C(I, X),u ∈ L1(I; Y) such that

⟨A (ε(CDα;ψ
0,t u(t)), ε(ϑ)⟩X + ⟨B(ε(u(t))), ε(ϑ)⟩X + ⟨

∫ t

0
C (t − s)ε(CDα;ψ

0,t u(t))ds, ε(ϑ)⟩

+

∫
ΓC

j0
ν(θ(t), uν(t);ϑν) + j0

τ(x(t),uτ(t);ϑτ)dΓ ≥ ⟨ f (t),ϑ⟩Y∗×Y

for all ϑ ∈ Y, a.e. t ∈ (0,T),
CDα;ψ

0,t θ(t) = Q(t, θ(t),u(t)) on TC,

θ(0) = θ0 on ΓC,

u(0) = u0 in Ω.

(4.17)

Theorem 4.1. Assume that (HA ), (HB), (HC ), (H jν), (H jτ), (HQ) and (H2) hold. Then, Problem 8 has
at last one solution (u, θ) ∈ L1(I; Y) ×C(I, X).

Proof. The proof based on Theorem 3.2. To this end, we define operators A : Y → Y∗, B : Y → Y∗,
J : Z×H → R and R : C(0,T ;Y)→ C(0,T ;Y∗) by

⟨Au,ϑ⟩Y∗×Y = ⟨A (ε(u)), ε(ϑ)⟩X for u,ϑ ∈ Y, (4.18)
⟨Bu,ϑ⟩Y∗×Y = ⟨B(ε(u)), ε(ϑ)⟩X for u,ϑ ∈ Y, (4.19)

J(θ, v) =
∫
ΓC

( j0
ν(θ(t), vν(t)) + j0

τ(θ(t), vτ(t))dΓ for v ∈ H , θ ∈ Z, (4.20)

⟨(Ru)(t),ϑ⟩ = ⟨
∫ t

0
C (t − s)ε(u(s))ds, ε(ϑ)⟩X for u,ϑ ∈ Y. (4.21)

Also, we consider the trace operator γ : Y → Z, let M = γ and G : (0,T ) ×Z ×H be defined by

G(t, θ, v)(ρ) = Q(ρ, t, θ(ρ), v(ρ)) for v ∈ H , θ ∈ Z a.e. ρ ∈ ΓC. (4.22)

According to (4.18)–(4.22), Problem 8 can be transformed into the following abstract ψ-fractional
differential hemivariational inequality: find θ ∈ C(I, X),u ∈ L1(I; Y) such that

⟨A(CDα;ψ
0,t u(t)),ϑ⟩Y∗×Y + ⟨B(u(t)),ϑ⟩Y∗×Y + ⟨(RCDα;ψ

0,t u)(t),ϑ⟩Y∗×Y
+J0(θ(t),Mu(t); Mϑ) ≥ ⟨ f (t),ϑ⟩Y∗×Y
for all ϑ ∈ Y, a.e. t ∈ (0,T),

CDα;ψ
0,t θ(t) = G(t, θ(t),u(t)) for a.e. t ∈ (0,T ),

θ(0) = θ0,

u(0) = u0.

(4.23)

Moreover, we denote ζ(t) =C Dα;ψ
0,t u(t) for a.e. t ∈ (0,T ). Thus, we have

u(t) = Iα;ψ
0,t ζ(t) + u0 for a.e. t ∈ (0,T). (4.24)
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Then, (70) can be rewritten as follows. Find ζ ∈ L1(0,T ;Y), and θ ∈ C(0,T ; X) such that

⟨A(ζ(t)),ϑ⟩Y∗×Y + ⟨B(Iα;ψ
0,t ζ(t) + u0),ϑ⟩Y∗×Y + ⟨(Rζ)(t),ϑ⟩Y∗×Y

+J0(θ(t),M(Iα;ψ
0,t ζ(t) + u0(t)); Mϑ) ≥ ⟨ f (t),ϑ⟩Y∗×Y

for all ϑ ∈ Y, a.e. t ∈ (0,T),
CDα;ψ

0,t θ(t) = G(t, θ(t),M(Iα;ψ
0,t ζ(t) + u0)) for a.e. t ∈ (0,T ),

x(0) = x0.

(4.25)

Now, we verify that the operators A, B, J, and R defined by (4.18)–(4.21) satisfy the assumptions (HA),
(HB), (HJ) and (HR), respectively.

⟨(Ru1)(t) − (Ru2)(t),ϑ⟩ ≤
∫
Ω

∫ t

0
∥C (t − s)∥Q∞∥ε(u1(s)) − ε(u2(s))∥Sd ds∥ε(ϑ)∥Sd dx

≤ max
t∈[0,T ]

∥C (t)∥Q∞

∫ t

0
∥u1(s) − u1(s)∥Vds∥ϑ∥V

for all u1,u2 ∈ C(0,T ; V) and ϑ ∈ V . Thus, we have

∥(Ru1)(t) − (Ru2)(t)∥V∗ ≤ max
t∈[0,T ]

∥C (t)∥Q∞

∫ t

0
∥u1(s) − u1(s)∥Vds.

This means that R satisfies (HR) with LR = max
t∈[0,T ]

∥C (t)∥Q∞ . Under the assumption (HA ), operator A

given by (65) satisfies hypothesis (HA). Since operator B satisfies properties (HB), this yields that
operator B satisfies (HB). Based on assumptions (H jν), (H jτ) and [3, Corollary 4.15], we can conclude
that the conditions (HJ)(i) and (ii) are satisfied and LJ = max{

√
3meas(ΓC), 1}(cν + cτ). The upper

semicontinuous of the function (θ,u) 7→ J0(θ,u;ϑ) can be derived from the upper semicontinuous of
jν, jτ and Fatou’s lemma, this is condition (HJ)(iii) is satisfied. According to [4, Theorem 3.9.34], we
conclude that the trace operator γ satisfies the (HM). Finally, by using hypothesis (HQ), we know that
operator G defined by (4.22) satisfies condition (HG). □

5. Conclusions

In this paper, we investigate a class of ψ-Caputo fractional differential hemivariational inequalities
with history-dependent operators. As an application, a class of history-dependent viscoelastic friction
contact problems that account for adhesion phenomena is investigated. Finally, the solvability of the
solution for this friction contact model is established.
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