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1. Introduction

Fractional calculus, as an extension of integer-order calculus, has held a significant position in the
field of mathematics since its inception. In materials science, particularly in the study of viscoelastic
materials, fractional calculus has demonstrated substantial potential and advantages. By introducing
fractional-order models, researchers can more accurately describe the dynamic behavior and memory
characteristics of materials. For example, in 1947, G. W. Scott Blair introduced a viscoelastic element
known as the Scott-Blair dashpot, whose dynamic behavior can be described by a time-fractional
differential equation [1].

In the early 1980s, Greek mathematician Panagiotopoulos [2] first introduced the hemivariational
inequality based on Clarke generalized gradient. As a generalization of variational inequality theory,
hemivariational inequality has also attracted great attention from scholars since its inception.
Considerable progress has been achieved regarding the solvability, numerical approximation,
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simulation of hemivariational inequalities, as well as their applications in nonsmooth contact
problems, see, e.g., [3-5]. At the same time, some progress has been made in the research on the
optimal control theory of hemivariational inequalities in contact mechanics problems see, e.g., [6—8].
The research results of fractional differential hemivariational inequality can be seen in [9-11].
Recently, research on y-fractional differential systems can be found in [12—14].

In [15, 16], the authors investigated two types of viscoelastic contact models within the framework
of Caputo derivatives, obtaining two fractional hemivariational inequalities. They also demonstrated
the solvability of these fractional hemivariational inequalities by applying the Rothe method in
combination with monotone operator theory. In [17], the author studied a class of viscoelastic contact
models within the framework of y-fractional calculus and established the existence of solutions.
However, the viscoelastic constitutive law in [17] does not incorporate a history-dependent operator.
Inspired by the aforementioned studies, this paper investigates viscoelastic contact problems with
history-dependent operators within the framework of y-fractional calculus. A new y-fractional
hemivariational inequality is derived, and the solvability of the contact model is established. Our
research model exhibits greater generality, serving as an extension of the models presented in [15-17].

The phenomenon of adhesion is the result of the interaction between the surface forces that are at
play when two separate bodies are in some form of contact. Adhesion can be demonstrated by friction
between two solid material bodies during relative sliding, aggregation and the sintering of solid powder,
etc. Therefore, adhesion processes often occur and have important applications in industrial settings.
In [18], the author introduced the concept of the bonding field . In this paper, we use 6 to denote a
bonding field; this represents the intensity of adhesion, and 6 € [0, 1]. When 8 = 1, this means that
all of the bonds are active and that the adhesion is complete. When 6 = 0, there is no adhesion; that
is to say, all of the bonds are inactive and severed. When 0 < 6 < 1, there is partial adhesion, and
only a fraction 6 of the bonds are active. Various frictional contact problems with adhesion have been
introduced and considered for different conditions some of them can be found in [19-21]. This paper
uses a y-fractional differential equation to characterize the bonding field.

The current paper contains three main innovations. Firstly, we consider a viscoelastic frictional
contact model featuring a long-term memory constitutive law formulated within the framework of
Y-Caputo fractional derivatives. This model is entirely new. Second, we account for the adhesion
phenomenon occurring during the contact process, where the adhesion field is characterized by a
differential equation based on y-Caputo fractional derivatives. The outcome of our study is a coupled
system comprising a ¥-Caputo fractional differential hemivariational inequality and a y-Caputo
fractional differential equation. Our results demonstrate enhanced generality and constitute an
extension of the findings in [17], which also represents the novel contribution of this paper.

The organization of the rest of this article is as follows: in Section 2, some preliminaries are
introduced. In Section 3, the unique solvability of y-Caputo fractional differential equations is
presented, and the existence of solutions for y-Caputo fractional differential hemivariational
inequalities with history-dependent operators is obtained. In Section 4, the theoretical results from
Sectional 3 are applied to a class of frictional contact model in witch adhesion is taken into account.
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2. Preliminaries

Let (E,|| - ||g) be a Banach space and let E* represent the dual of E. Let V be a reflexive Banach
space and V* represent the dual of V. Let Y be a separable and reflexive Banach space. The dual space
of Y is denoted by Y*.

Definition 2.1. ( [3]) Assume that j : E — R. Then, the Clarke directional derivative of j at the point
u € E in the direction v € E is defined by

Jw + Av) — j(w)

(u;v) = lim sup
Wwo11,10 A

b

where j is a locally Lipschitz function and A € R*. The generalized gradient of j at u € E is defined by
the set
Ajw) = {€ € E*| °(u;v) > (&, v) forall v € E}.

Definition 2.2. ( [22]) A nonempty, bounded, closed and convex multivalued operator T : V — 2V is
said to be pseudomonotone, if v, — v weakly in V and v, — v* weakly in V* with v, € Tv, and
limsup,,_, V5, Vi = V)yexy < 0, then v € Tv and (v}, Vp)vexy = V5, VIyexy.

Theorem 2.3. ( [22]) Let the multivalued operator T : 'V — 2V be pseudomonotone and coercive.
Then, T is surjective, i.e., for every m € V*, there is u € V such that Tu > n.

Lemma 2.4. ( [23]) Nonnegative sequences {a,}, {b,} and {c,} satisfy

n—1

ansbn+2ckak forn > 1.
k=1

Then, we have

n—

1
a, < b, + Z ckbkexp( cj) forn > 1.
k=1
Moreover, if {a,} and {c,} are such that
n—1
a, < m+chakforn > 1,
k=1

where constant m > 0 . Then, for all n > 1, it holds

N

-1
a, <m exp( ck).
k=1

Definition 2.5. ( [12]) Let X be a reflexive and separable Banach space. Let « > 0, [ = (0,T)T >
0), x € L'(I, X), and let € C'(I) be an increasing function such that y'(t) # 0 on I. The a > 0 order
Y-fractional integral of x is defined by

I(()Y,;zwx(’) = % f(; W ()W (E) — () ' x(s)ds, tel,
where I'(+) is the Gamma function.
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Definition 2.6. ( [12]) Let @ > 0, n € N, x € C"(I) and let € C"(I) be an increasing function such
that ¥'(t) # 0, for all t € I, the w-Caputo fractional derivative of order « for x is defined by

4
W' (t) dt

where n = [a] + 1 for a # N, n = a for « € N. In particular, if 0 < @ < 1, we have

C "y _ gh—ay
Dy x(r) = Iy, (

0 ) x0, el

RRE fo W) - () ¥ (s, if @€ 0,1),

0 o =
v fa=1

C 3
Dy x(1) =

3. Main results

Problem 1. For a given ¢ € L*(1,Y), find x : I — X such that

{CDg;t‘/’x(t) = G(t, x(1), §(s)) fora.e.t€l,
’ 3.1
x(0) = xp.
Taking the fractional integral of a-order to the Eq (3.1), we have
x(t) = IV G(t, x(1), p(1) + co. co €R
1 t
= —f W ()W) = ()™ G(s, x(s), p(s))ds + o, €L (3.2)
Ie) Jo

Let ¢ = 0 in (3.2) and using x(0) = xo, it yields that ¢y = xy. So, we obtain the integral equivalent form
of the boundary value problem (3.1) as follows

1 !
x(t) = — f U (s)((t) — w(s))‘HG(s, x(s), ¢(s))ds + xo, t€l. 3.3)
I'(a) Jo

According to [13, Lemma 2.1], we obtain that Problem 1 is equivalent to the following Problem 2.

Problem 2. Find x € C(I; X) such that

1 !
x(1) = —f W ()W) — ()™ G(s, x(s), p(s))ds + xo, 1€ 1. (3.4)
(@) Jo

In what follows, we establish the solvability of Problem 2. To this end, we provide some necessary
assumptions. We denote K= HQHL%([O,T])’ where 6(s) = ||G(s, x(s),¢(s)|ly and 0 < @ < p < 1,
Mo = max{y/(} and ¢ = $=;.
(Hg): G : I Xx X XY — Y is such that
(1) the mapping ¢t — G(t, x,n) is continuous for all x € X,n € Y;
(i1) there exists Lg > 0, such that

NG, x1,m) — G(t, x2, )ly < La(llx1 — x2llx + (llm1 — n2lly)
forall x;,x, € X,m,m e Y,tel;
(iii) t — G(t,0,0) belongs to L*(I; Y).
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(Hy) : There exists a constant M; > 0, such that

MoLg W(T)4 D\ 1-p, p \p
F(Q)G( 1+4 ) (ﬁl) <l

Lemma 3.1. Assume that (Hy) and (Hg) hold. Then, for a given ¢ € L*(1,Y), 0 < a < 1, y(0) = 0, the
fractional integral equation

X0) = o f W ()W) — () G5, x(5), (s))ds + xo, 1€ 1. (3.5)

has a unique solution x € C(I, X).

Proof. We prove that Eq (3.5) admits a unique solution x. To this end, we consider an equivalent norm
of C(I; X), which defined by ||x]|, = sup e ™||x(¢)|| for all x € C(I; X). We define the operator 7 by

tel

1 !
T x(1) = @fo W ()W) = Y()* ' G(s, x(s), p(s))ds + xo, 1€ 1. (3.6)

Next, we show that operator 7 admits a unique fixed point in C(I; X). The proof process is divided
into two steps.

Stepl. For any x € C(I;X), 7x € C(I,X). In fact, for any 6 > 0 and x € C(I;X). By using the
condition (Hg) and Holder inequality, we have

(T 2)(t + 6) = (T X)®llx

F( )ftﬁ(S) (1) = ()™ = (Wt +8) = Y())* NIG(s, x(s), p(5))llyds

b f WS +6) = ()™ G ls, 3(5), 65y
a) J,
< s [ (@O = v — @i+ & —ur s
t+0
t s [ s o uor s

1

FAZ)( f (W@ —w()*™ = (it +6) - w(s)* ") 7d f 6(s))7ds) ’

el 1-p t+0 1
+@ f Wt +08) —y(s)Frds) f @s)hds)”

M K ! ) . A
< rf )0( f (W) = () = Wt +6) - w(s))ds)

M .
T f W+ ) = w(s))ids)
MoK A .
m('ﬂ(n“q + (Yt + 6) — () — (s + 5)1+q)1 p
MoK,

* T s o~ o) "
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MK,

)<1+q>(1—ﬁ>
T+

MoK, N
< W(w ©0)'") " (v ()5

2M(()l+q)(1 p)+1KO

< SU+DA-p)
~ a1+

M(l +@)(1-p)+1 Ko

W(S(”‘?)(]‘ﬁ) — 0, as 6 — 0. Similarly, when § < 0, we have

Thus, we have

(T x)t+0)—(Tx)|x =0 aso — 0.

So, we know that 7 x € C(I; X).
Step2. We will check 7 is a contractive map. For any x;,x, € C(I; X), using (Hg) and Holder
inequation, we have

(T x)@) = (T x)®lIx

1 !
< m f W' () (t) — lﬁ(S))a_IHG(S, x1(5), #(s5)) — G(s, x2(5), p(5))||yds

f(@b(t) ()™ lxi(s) = x2(9)llxds

- F( )

M,
- FE )Gf(lﬂ(t) W) (Ix1(5) = x2(5)llxe M *)eM*ds
< ]¥E )G”xl x|l f(lﬂ(l‘) Q//(S))(l 1 Mlqu

||xl x|l f(l//(t) ()= Pds f(eM”) ds)
+1)(1- PP it
) (1,//(T))(‘f (1 p)(ﬁl) M

_F()

1
= 2”*( N
F( ) 1+¢g
According to the above inequality, we have

MoLc(w(T><@+‘>)l—ﬁ<£ P

(T x)(8) = (T x2)(@)llxe™" < T\ 144 M1) llx1 — xoll. forallz e/,

which implies that

MoLg ()4 D\ 1-p, p \p
(=) "(5;) It = xall..
I'(@) 1+¢ M,

Based on the assumptions (Hjy) and Banach fixed point theorem, we get 7 has a unique solution
x e C; X). O

(T x1) = (T Xl <

Let W be separable and reflexive Banach spaces. W* and “W* represent the dual spaces of W and
W, respectively. Define the following function spaces

W =L/(W), W =L(W) and V={yeW| Dj'yeW),

whereO<,8§1,l<p<+ooandq:I%.
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Problem 3. Find (x,y) € C(I,X) X V such that

x(t) = r(la) f W ()W(E) — () G(s, x(s), M(y(£))ds + xo forae.tel,

(ACDLY®) + By(®) = f(O, V@) + (REDLT Y@, v(D) 37
+ 2(x(8), My(1); Mv()) > 0 forve W, ae. 1€,
x(0) = xp, y(0) =

Let u(t) = CDgffy(t) in Problem 3. One has

¥ = Blu®) +y, forae. tel

Therefore, Problem 3 can be rewritten in the following form.

Problem 4. Find (x,u) € C(I, X) X W such that

t
x(t) = ﬁ f W ()W (t) — Y()* G (s, x(5), M(Iﬂ wu(s) +y0))ds + xo fora.e.t€l,
CAG(D) + BUu(t) + o) = £, vy + (Ru)(D), () G:8)
+ 2(x(0), M(Iﬂ Yut) + yo); Mv(1)) 20 forve W, ae.tel.
Further, we know that the Problem 4 can be translated into the following inclusion Problem 5.

Problem 5. Find (x,u) € C(I,X) X ‘W such that

x(1) = ﬁ f l//(s)(z//(t) — w(s))“_lG(s, x(s), M(I'B wu(s) + y0))ds + xo fora.e.r€l,
AG(®) + BUE u(@) + yo) + Ru)(t) + M j(x(t), MUE u() + y0)) 3 f(1) (3.9)
forae.tel,

where M* denotes the adjoint operator of M.

The following hypothesis are proposed regarding the data in Problem 5.

(Hy) : A € LW, W) and there exists a constant m4 > 0 such that (Au, u) > mAllull%V forallu e W.
(Hp) : Be L(W,W*) and (Bu,u) > 0 forall u € W.

(Hy) : The compact operator M € L(W,Y).

(H,) : The function J : X X Y — R is such that

(1) y = J(x,y) is locally Lipschitz for all x € X;
1) |0J(x, Y)lly= < Ly(1 + |[ylly) forall x € X and y € ¥, where contact L; > 0;

(iii) (x,y) = J°(x,y;v) is upper semicontinuous from X x Y into R for all v € Y.
(Hy): The operator h € C(I x I, L(W, W*) satisfies
(21, s) = h(tz, )| < Lylty — 1| for all s, 11,1, € 1,
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with L, > 0 and my;, = mellxl 1Az, $)]I.
1,5€IX
(Hg): The operator R € L(W, W*) is defined by

Ru)(t) =S (f h(t, S)u(s)ds + ER) ,
0

and there exists constant Lg > 0 such that

l(Ru)(®) = (Ru)(Dllw- < Lﬂfo llur(s) — ua($)llwds

for all u (1), ur(t) € C(I; W), where S € L(W, W), ex € W, and Lg = m,||S||.
(H):feW andy, e W.

Theorem 3.2. Assume that the conditions (Hy), (Hp), (Hy), (Hy), (Hy), (Hg), (Hg) and (H,) hold. Then
Problem 5 admits at last one solution (x,u) € C(I; X) X W

We use the Rothe method(temporally semi-discrete scheme) to prove Theorem 3.2.
Let N € N*, 7 = T/N, and the equidistant nodes of the interval [0, T'] are denoted by {lk}kN:() = {kT}kN:O,
Ik
and f;(1) = f," =1 f(s)ds fort e (ti_1, 4],k =1,2,..., N. Next, we consider the discretized format

of Problem 5.

Ti—1

Problem 6. Find {u’;}ivzo eW, x; € C;X) and {n’;}kN:O € Y* such that y(T) = yo, and

1 !

x(1) = @ f W ()W) = Y() ™ G(s, x:(5), My(8))ds + xo for a.e. 1 € (0, 1), (3.10)
0

Ak + ByS + wh+ Mt o fF (3.11)

with 1* € 8J(x.(t,), My*) for k = 1,2, ..., N, where y* and y.(t) for t € (0, t,) are defined by

1 <&
i =yo+ TG ]Z:; uy ft;l ()W) — ()Y ds

1 < .

=90+ TETT) JZI (@0 = w0 = e = pt) Ju] (3.12)
S .

=90+ BT T Z} (W E)Pth— j+1F = W EYP k- jF)ul

where §j_y € (t,tj-1), & € (t, 1)), and

j—1
2?[:1 X(tj,l,tj](t)y{' ’ O <t S Ta

- F=0 (3.13)

ﬁ@z{

respectively. Here, X,_, ;) be defined by

I, re(tj1,1],
0, otherwise.

X(l_,;],l‘j](l‘) = {
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Moreover, the element w* is given as follows

k=1 1 ) 17
wk = S(ER £y f h(ty, S)ulds + f h(t;, s)u’;ds).
j=1 Y

J Ti—1

Theorem 3.3. Assume that the conditions (Hy), (Hp), (Hy), (Hy), (Hy), (Hg), (Hg) and (H;) hold. Then
Problem 6 has at least one solution (1, x.) € W x C(I; X).

Proof. For the given y%,y!,...,y""!, we will prove the existence of y”, 1" and x, that satisfy (3.10)
and (3.11). Using the definition of y*, we can obtain y, y!, ..., y"~!. Therefor, y; is welldefined in (0, #,).
It’s easy to know thaty, € L*(0, t,; W). Furthermore, we can verify that y, satisfies all the conditions of
Lemma 3.1. Now we consider inclusion problem (3.11) and write it in the following equivalent form

Tk
Ak + Byt + S( f h(ty, s)uds) + M*0J(x.(t), My*) > F* (3.14)
Tk-1
where
k=1 _
Ff=f"— S(er + Zf h(ty, s)ulds).
j=1 Y-t
Let

n

= R T . , Y
=90+ 1T Zl (WGP lh=j+ 1 = W €k = ) Jul.

—_

c

W EDY, Ent € (ty 1)

“TE+ D

It easy to see that inclusion problem (3.14) equivalent to the following inclusion problem. Find € W
such that

. Us —
A9+ B(9 +¢c) + S(f h(ty, $)0ds) + M*0J(x(t), M( + %)) > F~. (3.15)
k-1
We will show that the multivalued operator G : W — 2% defined by
—_ Ik —
GY = A9 + B9 +¢9) + S(f h(ty, $)9ds) + M*0J (x.(t;), M(I +¢9)) (3.16)
k-1

is surjective. To this end, we first prove that operator G is coercive.
Since

Ik -
(B +7¢) + S( f h(ty, $)9ds) + M*0J(x. (1), M(9 +¢9)), ) sy
Tk-1
Tk

< [IBIINA +CUBIIE + US| | e HIIDIPds

Tk-1

+ LML+ DM + Ll MIP (9P
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< (BN + LAMUC + [INMID) I + Tmy IS (3.17)
M,/
Bl + Ly||IMI))9]1*.
+ T 1y B+ LAMIPION

Next, we choose

. ((mA — Ty |ISINTB + 1))5
MPBI + LM 7

From the H(A) and (3.17), one has

M
& Pwow 2(ma = T 1S — G +°1)

= (IBINBNI + LoAMICL + 311111 )19

(1Bl + LJIIMIIZ))IIﬂII2

for all ¢ € G and O < 7 < 7. Furthermore, we get

& Py oy 2
S 2ma = TSI = S U+ LM

— (ILBIII + LAMICL + 1B1IMID) for all £ € G,

which implies that operator G is coercive.

On the other hand, we show that operator G is pseudomonotone. Under the condition (H,), (Hp)
and (Hg) , we obtain that for every # € W, the set G is nonempty, bounded, closed and convex,
this means that G is nonempty, bounded, closed and convex operator. Let ¢}, — ¢ in W as n — oo,
0, € Gy, U, — 9" in W* as n — oo, and limsup,,_, (F7, ¢, — Hww < 0. We will check 9* € G and

lim @, B by = (0, D wea (3.18)

First, since A, B,S € L(W,W*)and ¥, — ¥ in W as n — oo, we know that

AV, = A9 in W, (3.19)

B( +7T09,) — B +¢0) in W, (3.20)
Tk 3

S(f q(ty, $)9,ds) — S(f q(ty, s)dds) in W*. (3.21)
Te—1 k-1

According to the compactness of M and #, — ¥ in W as n — oo, one has
M@ +T9,) —» M@ +¢09) in W, (3.22)

Let¢, € 0J(M (5 +¢d,)). Based on (H;), we obtain that {£,} € W* is bounded. So, there is convergent
subsequence, which is still represented by {&,}. Further, one has

& — & inWhasn — oo, (3.23)
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According to convergence results (3.22) and (3.23), we get ¢ € dJ(M (5 +7¢1)). By virtue of (3.19)-
(3.23), we can obtain

n—o00

lim ¢, = lim (A9, + B(9 +7T9,) + S( ftk q(ty, )0,ds) + M*&,)
n—oo fet
= A9 + B + ) + S( flk q(ty, s)0ds) + M*E.
k-1
Using ¢, — 9" as n — oo, we get
9 = A9 + B +¢9) + S( f " h(ty, 5)9ds) + M*E,
Tk-1

which implies that 4 € GiJ. Subsequently, we prove that lim, (%}, F)wxw = (I, Hwxw. Using
(Hp),(Hg) and ¥, — & in W, we have

lim sup(B(®& +¢0,), & — T w-sw

n—oo

< lim sup(B(& +¢9), ® — S )wew = 0 (3.24)

n—00

and

Tk

lim sup{S( h(ty, $)9,ds), & — ) wexw

n—oo Tk-1

Tk
< lim sup(S( f h(ty, $)9ds), & — I )wesw = O. (3.25)
n—oo -1

Applying ¢, € G, we have

lim sup(%;, 9,) = lim sup((A®, + B(I +T8,), D )xxx + (M'Exs MO, )y
Tk

+ lim sup{S( h(ti, $)9,d5), 9 ) ey

n—oo Tg-1

From, (3.22), (3.24)—(3.26) and lim sup(¥;, ¥, — #)w-xw < 0, we obtain

n—00

lim sup{A%,,, 3, — Pw-xw

< limsup(¥,, &, — w-xw + lim sup(B(5+?ﬁn, T — ) wesw

3
+ lim sup{(S( h(ty, $)3,ds), & — O )wexw + limsup(M*E&,, M9 — 9,)) < 0.

n—oo te—1 n—oo

On the other hand, by using the monotonicity of A, it follows that

lim sup(Ad,, 3, — Pw-xw = lim sup(AP, F, — Fw+w = 0.

n—o00 n—00
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Based on the discussion above, we get
lim{(Ad,, ?,) = (AP, D). (3.26)

By a similar scheme, we can get the following conclusion

lim (B(I + ), Oud ey = (B@ +T9), Dy (3.27)
and
T Tk
lim (S(f h(ty, $)0,ds), O weew = (S(f h(ty, $)9ds), Fwesw. (3.28)
n—eo k-1 k-1

Thus, we have
Bim (8, O woay = M (AD,, Doy + i (B@ +T8,), 8w
+(S( fttk h(ty, $)0,ds), D) wescw + P_}Ig@m M, Ywesw = (0, Pwesew-
So, operator G is pseudomonotone. Using the Theorem 2.3, we obtain that G is surjective for all
0 < 1 < 79. The proof of the Theorem 3.3 is completed. O

Next, we will provide results of priori estimates for the sequence of solution of Problem 6.

Lemma 3.4. Assume that the hypotheses (H,), (Hg), (Hy), (H)), (H}), (Hg), (Hg) and (Hy) hold. Then,
there exist Tg > 0 and C; > 0(i = 1,2,3,4) independent of T, such that T € (0,71), the solutions of
Problem 6 satisfy

max ||u | <, (3.29)
k=1,2,..

kmax Y4l < C, (3.30)
max Wil < Cs, (3.31)
k=12,...N

(Jpax 78Nl < Ca, (3.32)

.....

where 1 € 0J(x.(t,), MY*) with
Auf + By +wh+ Mk = fF (k=1,2,--- | N).

Proof. Based on hypothesis (Hp) and (3.12), we get

DU E D = j+1F =W E - jPul),ur) (3.33)

(Byy,u7) = <B()’o + F(,BTj- D 2

»M o+ )
> —|IByolly-llezll — ||B||||u2|| :

I+

||B||Z((n—1+1>ﬁ (n = )Ml e -

(B
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From hypothesis (Hs), (Hj) and definition of w”, we obtain

n—1 £ ' Ly
Wi, uy) = <S(qu + Z f h(t,, s)ulds + f h(t,, s)ufds), uﬁ>
j=1 Y-t

(7]

n—1

1 )
> —|ISlI(llexll +Zf 1A(t, e llds) e ] = TSR, NI
j=1 Yl

n—1 1 ‘
> ~IISI(llerll + Ly ) f )21l = T LalSNecsI. (3.34)
J=1 Yl

Using the (H;), we obtain

(&7 Muz) > =L, (1 + |IMyZIDIIMuzl

T

> —L[|Mul|(1 + |Myo|| +

IR |
TG+ D ,Z‘ (W &P = j+ 1)

- W ENY = Pl
LML M

> — 2 n nn2
> —L;(I\M1] + 1M1 yoll 1z rarn
LAPMAMIP e
“TTGAD ;«n—ﬁ1>ﬁ—<n—1>ﬁ)||u4||||uf||. (3.35)

According to the coercivity of A and inequalities (3.33)—(3.35), we have
(ff,uly = (Au; + By + Wi ul) + (&2, Mu?)

PMIBI Ly My I MIP

re+1) re+1)

- (||B)’0||v* + Ly IMI| + LIMIPlyoll + IISIIII'ERII)IIuﬁII

n—1 7
- LSy el [ sl
J=1 fint

J

> mylu* = ( + TLISI 1P

?MP|| B ‘= .
" TG 2 = = Nl
j=1
L MPIMIP . e
— = ((n=j+ 1P == P llllcl,
rg+1) ;
and
M/
(ma - G +01)<||B|| + LyAIMIP) = TL ISl
»MP - . =
<T@ +°1)(||B|| FLAMIP) Y. (= i+ 1F = (= Pl + LiliSI Y Nl f ds
Jj=1 j=1 tj-1
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+11Byollw- + LM + LylIMIPllyoll + 1SNllexll + 1£7lw--

1
=TLy|ISIDCB+1) \ B #Mmf
Let 7 = (S tSE)) we know that my — TXS(|Bll + LylIMIP) = TL|IS]| > % for all T € (0, 7).

Furthermore, we get

n—1 j j
201Byolly- + LolIMI + LIMIPlyoll + ISlleld 2LISI Z el [ ds
my ny

lluzll <

27 M,
mal'(B +

Using (H,), one has ||f7'|| < ¢f forall T > 0,n € N, where ¢y > 0. Let

(||B||+LJ||M||)Z((n— 4 1P = (= Pl + Ilf I

j=1

2(11Byolly- + LlIIM|| + LylIMIPllyoll + ISlllexll) N 2¢y
ny mA.

Co =

By using Gronwall inequality, we know that

2P M
il < Co exp( TG + )<||B|| + Ly|IM| )Z (n=j+ 1P =m-jP)+ 2Lh||S||Z f ds
ﬁ
< Co exp( Arw 1Bl + LolIMIP)e; + 2TLh||S||)
2M§<||B|| + LJ||M||2>TB ,
<G exp( e 2TL,,||S||) —C

From (3.12), we know that

W ~
2= o+ 755 ; (W &P j+ 1f = @@= jF)ul

CIMP <
<lboll+ 7515 Zl(zif_,.+1 )

Mo

< Ilyoll + — zﬁ
T3+

< iyl + ST T

=l rer T

Under the hypotheses (Hs) and (H)), we have

n l‘j
Wl = ”S(qu n f hty, s)uﬁds)
; Ij-1

The condition (H;)(ii) ensures that

< ISliCllexll + TLyCy) == Cs.

771l < Ly (1 + IMyZID < Ly(1 + GolIM])) == C.

So far, the proof of the Lemma 3.4 has been completed. O
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Next, in order to provide the existence result of the solution to Problem 3, we define the piecewise
constant interpolant functions u., y,,w; : [0,T] - W,n, : [0,T] - Y* and f; : [0,T] — W* as follows
FIZT(I) = Mﬁ, re (tn—l’ tn]’

y‘l’(r) = yZ’ re (tn—lytn]’
We(t) = wy, 1€ (ty1, 1],

nT(t) = 772’ re (tn—l’ tn],
) =f1, te(t, it

forn=1,2,...,N.

Theorem 3.5. Assume that (Hy), (Hg), (Hy), (Hy), (Hy), (Hg), (Hg) and (Hy) hold. Leté < p <+
and {1,} be a sequence satisfies T, — 0(n — +o0). Here, for convenience, we still use T to represent
the subsequence of {t,}. Then, the following conclusion holds:

U, —=u(r—0), in LPO,T;W),
ne—=n@—0), in LYO,T;Y"),
x> x(t—0), in C0OT;X),

where (u, x) € LP(0,T; W) x C(0, T; X) is a solution of Problem 5.

Proof. Due to |[u?|| < C;, we have

T N i N
AT f F(s)lIPds = f ki Pds =7 > Il < Cs.
0 i=1 Vi1 i=1

So, we deduce that {u,} is bounded in L?(0, T'; W) which implies that there exists u € L?(0, T; W) such
that

u —~u(r—0), in L0, T;W). (3.36)

For any ¢t € [0,T] and v* € W™, Let y(s) = (Y(t) — lﬁ(s))ﬂ‘llp’(s)v*)([o,,](s) for s € (0,7). Clearly,
v € L0, T; W*) because é < p < 400. So, we have

1 t _ !
(V*,—fl//'(S)('J/(t)—l//(S))B_luT(S)dS—fl//'(S)(l//(t)—w(S))ﬁ_lu(S)d@
'3 Jo 0

< FL(ﬁ) fo K@) = w()YP~ @/ (s)v, T (s) — u(s))lds
1 —_
< — Ky, ur — wpao,rwoxeror;wl = 0, ast— 0.

)

So, we can get

BVt = Iu(t) inW, as 10 (3.37)

AIMS Mathematics Volume 11, Issue 1, 1239-1265.



1254

for all # € I. Moreover, one has

I50) = yo — 15 B0l = | Z (W& 0= j+1F =@ € jf)ul

T’B
T+ 1)

F(ﬁ) f V(W) = WP T()ds|

) = ()Y () (5)ds

- fo Wtn) = W) T (s)ds

) = w(s))g_lﬁf(S)W’(s)ds“

1 ' ) e
+ F_(ﬁ)Hf W) = w() ™ = () = w(s) (s (s)dsH
(ﬁ ORNZO)|
*TEe 1)||wﬂ<rn> W) - yo) =0l

for t € (t,-1, t,]. Therefor, we can deduce that
Ve(t) = yo+ Vi) inW, ast—0, (3.38)
for all ¢ € I. Using (36), we conclude
Ve(t) = yo+ IVu(t) inW, ast—0, (3.39)
for ¢ € I. Furthermore, according to the compactness of M, we have
M(.(1)) > M(yo + Iﬂ "’u(t)) inY, ast—0, (3.40)

for t € I. Meanwhile, we obtain

y=(0) =yl =

r(ﬁTf_ D H Z ((‘//,(é:j—l))ﬂ(f’l —j+ P =W NP n- ])ﬁ)ui
=

n—1
(W En-jf - W EaPn—j-1F)ul
j=1

P M = . ) . ,
= TG+ 1);|(H—J+ 1P =2 — jf + (n— j— 1P|l
»MP

+
LB+1)
_ MY cl
F(,B+ 1)

[z

-1
Z|(n—j+1)ﬂ—2(n—j)ﬂ+(n—j—1)ﬁ|+1)
=1
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PRlls C1
“T@+

for t € (t,-1,1,]. Based on (3.41) and the compactness of M, it is true that

( +—m-1F)—>0, ast—0, (3.41)

M@(t) > M(yo + I5Vu()) inY, ast—0, (3.42)

for t € (t,-1,t,]. Since u € LP(0,T; W), it is obvious that M(y(t)) € L*(0,T; W). Lemma 3.1 implies
that there is a unique solution x € (0, T'; X) that satisfies

x(1) = @ f W ()(W(1) = ()" G(s, x(5), M(y(5)))ds + xo. (3.43)

Using condition (Hg), we have

1 !
llx-(2) = x(I| < ) fo W ()W (1) = Y()P G (s, x:(5), MG(5))) = G(s, X(5), M(y()))llds
L !
< F—(;) f W (W) ~ ()P (Ix(5) = () + IMGr(5)) + M)
F(,B) f ()W (D) = y(5))” 1dS)II — Myllco,ry)

+ F_(ﬁ) j(; W ()W) = () Nl (s) = x(s)llds

< ?ﬁﬂ’”ﬁ”))nm ~Myllearan + 1o [ W OWO =06 ) = X0
=00+ 2 [ 00 w6 ) ~ s

where 6(7) = Lf"éﬁ?ll]\@ — Myllc©.7.v)- Using Gronwall inequality, we have
[|x:(t) — x(?)|| £ Ceo(1), Vtel.
From (3.42), we obtain
lx-(£) — x(0)|| £ Ce6(t) = 0, ast — 0.

So, we have x, — x in C(/; X) as T — 0. On the other hand, based on the boundedness of sequence
{n:}, it can be concluded that sequence {7} has a convergent subsequence (still denoted as {7.}), which
implies there exists 7 € Y*, such that

n.—n inY a 7-0. (3.44)
By applying the conclusion of [3, Lemma 12], the fact that

nt € 0J(x(t), M(YY)) for k=1,2,..,N,
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and combined with x; — x in C(0, T; X), (3.42) and (3.44), then utilizing [3, Theorem 3.13], we can
derive that

n(1) € BI(x(@), Myo + Iy u(®)))

for a.e. t € (0, T). From boundedness of sequence {u} and the hypothesis (H},) , it is ensure that

f h(t, s)u(s)ds — f k h(ty, $)u.(s)ds
0 0

f h(t, $)u(s)ds — f h(ty, s)u-(s)ds — fk h(ty, s)u.(s)ds

0 0

Sf IIh(tk,S)IIIFIZT(S)IIdS+£IIh(t,S)—h(tk,S)IIIFIZT(S)IIds

<tmCs +1L,Cs — O(t > 0) fora.e.t € [ti_1, 4] (3.45)

Furthermore, we introduce the Nemytskii operator G|, G, : W — W* by

f
Gw)(®) = S( f h(t, s)u(s)ds) and (Gou)(t) = S(u(1))

0

forall u € Y and a.e. t € I. According to (3.36), we have
lim (Gire, V)aysaw = (Gt Vapmsaw
forall v € W. Let .
1 )
welt) = e+ ) f h(te, Sulds, 1€ (tiy,1;].

J=1 Yl

According to (Hg), (H)) and (3.45), we have
gZ(w‘r - 673) - gl(ﬁ‘r)

k £ . t
=8( Z f h(ty, s)ulds) — S(f h(t, s)u(t)ds) — O strongly in W*, as 7 — 0,
j=1 tjiq 0

which implies
y_I}é(szn VW sew
= 11_{1(1) (Gr(w: — g) — G1(Ur), VIwssxw + (G1(Ur), VI yxy + (G2(€R), V)w+xw)
={G1(W), Vwxw + (G2(€r), V)wrxw- (3.46)

Next, we prove that (x, u) € C(0, T; X) x ‘W is the solution to Problem 5. To this end, we define the
operators A, 8 and M by

(AV)(D) = AV@),  (Bv)(®) = Blyo + Ip; v(D) and  (Mv)(¥) = M(v(1))
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forve W, ae. t € (0,T), respectively. According to (3.19) and A € L(W, W*), we have
Au, — Au in W as 7-0. (3.47)
Under (3.20) and (Hp), we obtain
B(yo + I V(1)) = B(yo + I u(t)) in W*, as 1-0,
for all + € I. Moreover, we have

(BYr,v) = (B(yo + IV (1)), v(1))
< 1By + Iﬂ*”ur(r»nnv(z)n
- (2ZDIBICs
B+

Furthermore, by utilizing above inequality and Lebesgue-dominated convergence theorem, we can
obtain

+ TIIBIIIIyoll) Iv@ll.

T
liI%<B?T,V>W*Xw = ling f (Byo + I ¢ur(t)) v(t))ds
T g 0
T
f lim(B(yo + IVu(), v())dt

f (B(yo + I u(0), v(1))dr
= By, V)wxw- (3.48)
By using the compactness of the Nemytskii operator M, we find that
lim(n., Mv) = (n, Mv) (3.49)
for all v € ‘W. Moreover, according to [24, lemma 3.3], we know that
fr = f strongly in W*, ast — 0. (3.50)
From (3.46)—(3.50), we obtain the following result

lim sup{ Az, V) xw + lim sup{By;, V)qy:xay + lim sup{Grw-, V)ay-xw

0 -0 70

+ lim sup{n., Mv)qy-xay — hm 1nf(f,, Wayesew = 0,

70

for all v € W. Thus, we have
(Au+ By + Su + M0, vywew = {fs Viwxw,

where n(t) € dJ(x(t), M(yo + Iﬁ ‘/’u(t))) for a.e. t € (0,T). This implies (4, x) € W x C(0,T;X) is a
solution of Problem 5, which ﬁmshes the proof of the theorem. m]
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4. The mechanical model

In this section, we shall consider a class of history-dependent viscoelastic frictional contact problem.
We use Q to represent the open, bounded subset of R%(d = 2, 3) occupied by a viscoelastic body. S¢
stands for the second order symmetric d X d matrices. The boundary 0Q is assumed to be composed
of three sets: I'p, 'y and I'¢, with meas(I'p) > 0. We assume that the evolutionary process of the body
belongs to time interval ¢ € I with T > 0. o = o(t,x) and u = u(t, x) represent the stress field and the
displacement field, respectively. Consider the following two inner products and norms:

u-v=uy, |Vlge=Ww-v), Yu=w),v=0w)e€ RY,
oc:t=0yty, e =@ -1), Yoe(o v=1;es

We provide the tangential and normal components of the vector as
o,=(v)-v, o,=ov—o,w, Hh=0-v, 9. =99,

where v represents the outward unit normal at I'. The linearized strain tensors £(u) are expressed by

1
su) = (g(w), (&wm)) = E(ui,j +u)i, j=1,---,d),

where u; j = 0u;/0x;. We denote that D = I X Q, Tp =1 xTp, Te=1xTcand Ty =1XTy.

Problem 7. Find a displacement field u : D — RY, a stress field o : D — S? and a bonding field
6:Tc — [0,1] such that

o(t) = o (e(CDY u(t) + Ble@®)) + [ €(t - €D u(t)ds in D, 4.1)
Divo(t) + fo() =0 in D, (4.2)

u(r)=0 on 7p, 4.3)

o)y = fy) on Ty, 4.4)

—oy(1) € 0j,(0(1), uy(1)) on T, (4.5)

—0+(1) € 0j-(0(1), u-(t)) on T, (4.6)

“DgYo(r) = Q. 6(1), u() on T, (4.7)

6(0) =6, on T¢, (4.8)

u(0)=u, in Q. (4.9)

For the convenience of readers, we give a brief mechanical explanation for the equations and
conditions in Problem 7. A general viscoelastic constitutive law is of the form

! t
o(t) = (e’ (1)) + B(e(u())) + f C(t— s)e('(1)ds + f D(t — s)e(u(t))ds. (4.10)

0 0
Here, .o represents the viscosity operator, 4 is the elasticity operator, and ¢, & represent relaxation
tensors. Consequently, the viscoelastic constitutive law (4.10) describes a nonhomogeneous material.

Note that (4.10) illustrates the fact that the current value of the stress depends on the current value of
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the strain and strain rate, as well as on their history. Particular cases can be obtained, for instance, when
¢= 2 = 0. Then, Eq (4.10) reduces to the so-called viscoelastic constitutive law with short memory

o (1) = o (e’ (1)) + B(e())). (4.11)

A second important particular case is obtained from (4.10) in the case when @/= % = 0. The
corresponding constitutive law is the so-called viscoelastic constitutive law with long memory, i.e.

o(t) = B(eu(t))) + ft D(t — s)eu(t))ds. (4.12)
0

A third important particular case is obtained from (4.10) in the case when & = 0. The corresponding
constitutive law is

o(t) = (e’ (1)) + Be((r))) + f C(t— s)e'(1)ds. (4.13)
0

Such constitutive laws have been used in the literature in order to model the behavior of real materials
like rubbers, rocks, metals, pastes, and polymers. In particular, Eq (4.13) was employed in [25, 26]
in order to model the hysteresis damping in elastomers. Introducing fractional calculus into friction
contact problems is mainly to more accurately describe the memory, path dependence, and nonlinear
characteristics of complex mechanical behaviors, thereby making up for the limitations of traditional
integer-order models. Based on this, we study the (4.1) fractional viscoelastic constitutive relations

!
o(1) = A (&(C Dy u (1)) + B(eu (1)) + f C(t - 5)8(° Dy u(t))ds.
0

Equation (4.2) represents the equation of motion. Here f, represents the density of volume forces,
and Div is the divergence operator. We assume that the body is held fixed on I'p, and therefore the
displacement boundary condition satisfies condition (4.3). Equation (4.4) stands for the traction
boundary condition and f represents the surface tractions on I'y. The normal contact condition (4.5)
and the friction condition (4.6) are modeled by the Clarke subdifferential of a nonconvex potential j,
and j,, respectively. Here, j, and j, depend on the adhesion 6(¢). For a more detailed explanation
of (4.5) and (4.6), please refer to [3,27]. The function 8 is the adhesion field which governed by a
Y-fractional ordinary differential equation (4.7) depending on the displacement. In (4.8) and (4.9),
6(0) = 6y and u(0) = u, denote the initial adhesion field and displacement field, respectively.

To obtain the variational formulation of problem 7, we provide the following function space X, Y,
Z, V and ‘H defined by

X=L*:S), Y={@ecHQR):9=00nTp},
Z =14 T RY, V=L*Q;RY), and H = LX(T¢),

O =1{& = (&ijx1) : &iju = €jit = €nij € L), 1 <0, j k, 1 < d}.

It is obvious that X is Hilbert space with the inner product

(o, T)x = f oij(x)Tij(x)dx forall o,7e€ X
Q
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and the associated norm || - ||x. On the space Y, we define the inner product by
(u,v)y = (eu),e(v))x forall u,v e Y.

Moreover, we obtain that [[d|,2r.re) < CilYllll?]y for & € Y, where C; > 0 is the Korn constant and
the trace operatorisy : ¥ — L*(I'¢c; RY). Next, we give the hypotheses on the data <7, %, €, Q, j,, j-»
fpand f as follows:

(Hy): & : QxS — $¢is such that

(1) & = (aiju) € O, 0<1i,jk,1<d,;
(ii) there exists L., > 0 such that /7 : 7 > L|/7||2, for all 7 € §°.

(Hz): B : QxS?— $¢is such that

() Z = (biju) € Qw, 0=, k1< d;
(i) Bt : 7> 0forall T € S

(Hg) : Q% (0,T)x S? = S, ¢ € C(0,T; Qo) is such that

(1) € = (ciju) € O, 0<1,jk1<d;
(i) T :7>0forall T eS%

(iil) € is Lipschitz continuous with Lipschitz constant Ly > 0.

(Hj) : jy : Te x RX R — R with the following conditions

(1) j,(-,8,u) is measurable on I'c forall u € R,0 € R;

(i1) j,(x,0,-) is locally Lipschitz a.e. x € I'¢,0 € R;

(iii) j,(x,0,-) or — j,(x,0,-)isregular a.c. x € ['¢,0 € R;

(iv) there exists ¢, > 0 such that |0, (x, 0, u)| < ¢, (1 + |u|) forall u € Rae. x € Z¢;
(v) there exists m, > 0 such that (17; — 72)(u; — i2) > —m,|u; — po|?

for all y; € 9j,(x,0;, 1), 0;, s € Rji=1,2ae.x € I'c.
(Hj,): j- : Te X RxR? > R such that

@) j-(-, 0, p) is measurable on X, for all u € R?,0 € R;

(i) j(x,0,-) is locally Lipschitz a.e. x € I'¢,0 € R;

(i) j.(x,6,-)or — j.(x,6,-) isregulara.e. x € ['¢,0 € R;

(iv) there exists ¢, > 0 such that |8j.(x, 0, )| < c-(1 + ||ullge) for all g € R? ace. x € I'¢;
(v) there exists m, > 0 such that (g — p2)(1t; — p,) > —m||u; — yzlléd

forall ; € 8j.(x,0;, 1), u; €RY, 6, €eR (i =1,2) ae. x €.
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(Hg) : Q : T x R x RY — R satisfies that

(i) Q(-, k, 1) is measurable on I'¢ for all (x,¢) € R x R?;

(1) |Q(x, k1, 1)) = Q(x, k2, )| < Lo(lk1 — k2| + [ty — 2]])
for all k1, k2 € R, 11,1, € R and a.e. x € ' with Lg > 0;

(ii1)) Q(x,0,1) = 0, Q(x,k,t) > 0 for k <0, and Q(x, «,t) <0 fork > 1
forallt € RY, a.e. x € Tc.

(Hy) : fo € L*(I; L*(€;RY), fy € L2(I; LA(Ty; RY)), ug € Y and 6, € L*(T¢).
By multiplying ¢ € Y on both sides of Eq (4.2), we can obtain

f Divo - #dx = —(f (1), ).
Q

Furthermore, by virtue of following Green formula

f o-s(@)dx + f Divo - 9dx = f ov-Jdrl,
Q Q o0Q

we obtain

<0'(T),8(19)>X:(fo(l‘),19>ry><y+f 0'V~0dl“+f 0'v-19d1"+f ov-9dl.

I'p In e

Applying the (4.3) and (4.4), we have
(o®),e@)x = (fo(0), Dyxy + fv@, P 2ryroxy + fr (o (DT, + 0 (1) - F)dT. (4.14)

Furthermore, by the definition of the subgradient, (4.5) and (4.6), we have
T (1, < =00, u (1 8,), oo (1) - e < =00, u,(1); B, (4.15)
By utilizing the Riesz representation principle, we know that there exists an element f € Y* such that

O, Dyxy = (o), D)y + (fy@®), D2, ra) (4.16)

for all & € Y, ae. t € I, where Y* denotes the dual space of V. By substituting inequality (4.15)
into (4.14) and combining (4.1) and (4.16), we can obtain

(A (eCDE u(t)), 6@))x + (Be@(®)), 6@ + fo G (1 — e D u(n)ds, 6@))
+ fr 60, 1,0 8,) + J200), w(0); 3T = (F(1), By

for a.e. t € (0, T). Combining the last inequality and (4.7)—(4.9), we obtain the variational formulation
of Problem 7.
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Problem 8. Find 6 € C(I,X),u € L'(I;Y) such that

(o (& DY u(1), s@)x + (B(e(1)), @) x + ¢ fo €t — 9)&(“ Dy u(t))ds, &)
+ f JO@), u, (1) 9,) + J2x(0), ur(0); 9T > (f (1), F)yxy

I'c

foralld € Y, ae. t€(0,T), 1)
CDS‘;’”Q(Z) = Q(l, 9(1),1!(2‘)) on TC,
600) = 6, on T,
u(0) =uy in Q.

Theorem 4.1. Assume that (H,.,), (Hz), (Hg), (H;), (H;,), (Hq) and (H,) hold. Then, Problem 8 has
at last one solution (u,0) € L'(I;Y) x C(I, X).

Proof. The proof based on Theorem 3.2. To this end, we define operators A : Y — Y*, B: Y — V*,
J:ZXH—->RandR:C(0,T;Y) - C(0,T;Y") by

(Au, 8 ywy = (A (e(u)),eP))x for u,d ey, (4.18)
(Bu, ¥ yxy = (B(e(u)),e))x for u,d ey, (4.19)
JO,v) = | (200, v,(@) + j20(t), v (t))dl" for v e H, € Z, (4.20)
I'c
(Ru)(1),9) = ( f E(t - s)e(u(s))ds, &)y for u,9 €Y. (4.21)
0

Also, we consider the trace operatory : Y — Z,let M = yand G : (0,T) x Z X H be defined by
G(,0,v)(p) = Q(p,t,0(p),v(p)) for ve H, e Zae pelc. (4.22)

According to (4.18)—(4.22), Problem 8 can be transformed into the following abstract -fractional
differential hemivariational inequality: find 6 € C(I, X),u € L'(1;Y) such that

(ACDG u(1)), 9oy + (B@(®), #)y-xy + (REDVu)(0), 9)y-xy
+J°(6(t), Mu(t); M) > (f(1), )y xy
foralld e Y, ae.t e (0,7),

C Ny (423)
Dy 0(t) = G(t,0(), u(t)) forae. t€(0,7),
6(0) = 6o,
u(0) = uy.
Moreover, we denote £(f) =€ Dgf;”u(t) for a.e. t € (0, T). Thus, we have
u(r) = Iy () + ug for ae. t € (0,T). (4.24)
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Then, (70) can be rewritten as follows. Find ¢ € L'(0, T; Y), and 6 € C(0, T; X) such that

(AG@), Byxy + (BU §(0) + 1), D yoxy + (RO@), By
+J0000), MG £(0) + uo(1)); MB) 2 (1), $)yxy

foralld € Y, ae.te (0,7T), (4.25)
DY) = G(t, 6(r), M(Iy (1) + o)) forae. 1€ (0,T),
x(0) = xp.

Now, we verify that the operators A, B, J, and R defined by (4.18)—(4.21) satisfy the assumptions (H,),
(Hp), (H;) and (Hg), respectively.

<(Ru1)(t)_(Ru2)(t)aﬂ>§ff”(g(t_S)”lelg(ul(s))_8(“2(5))”des||8(0)||dex
QJO

t
< max II‘f(t)IIme llee1 () — wr()llvdslidly
1€l0.7] 0

for all u,,u, € C(0,T;V) and & € V. Thus, we have

[I(Ruey )(1) = (Ruz) (D]l Stlel[l&)s]ll%(t)llgmﬁ llee1(s) — w1 (9)llvds.

This means that R satisfies (Hg) with Lg = II[lgl;(] I€°(H)llp.,. Under the assumption (H, ), operator A
tel0,

given by (65) satisfies hypothesis (H,). Since operator Z satisfies properties (Hy), this yields that
operator B satisfies (Hp). Based on assumptions (H,), (H;,) and [3, Corollary 4.15], we can conclude
that the conditions (H,)(i) and (ii) are satisfied and L; = max{+3meas(T¢), 1}(c, + c¢;). The upper
semicontinuous of the function (6, u) — J°(#,u;¥) can be derived from the upper semicontinuous of
Jv» Jr and Fatou’s lemma, this is condition (H,)(iii) is satisfied. According to [4, Theorem 3.9.34], we
conclude that the trace operator vy satisfies the (H),). Finally, by using hypothesis (Hy), we know that
operator G defined by (4.22) satisfies condition (Hg). O

5. Conclusions

In this paper, we investigate a class of -Caputo fractional differential hemivariational inequalities
with history-dependent operators. As an application, a class of history-dependent viscoelastic friction
contact problems that account for adhesion phenomena is investigated. Finally, the solvability of the
solution for this friction contact model is established.
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