The rapid advancement of smart healthcare systems demands sophisticated mathematical tools to manage uncertainty and conflicting expert opinions in critical decision-making (DM) processes. Multi-criteria group decision making (MCGDM) plays a pivotal role in synthesizing diverse expert evaluations for complex healthcare challenges. However, existing soft set (SS) extensions often struggle to simultaneously capture multinary evaluations, bipolar reasoning, higher-order fuzzy logic, and multi-expert input. To overcome these limitations, we propose the Fermatean fuzzy N-bipolar soft expert set (FFNBSES), which enhances fuzzy representation while integrating multinary, bipolar, and multi-expert evaluations. We formally define the fundamental operations of FFNBSES and demonstrate its algebraic properties. A DM methodology based on FFNBSES is developed and applied to a healthcare case study, showcasing its superior capability to handle expert consensus and disagreement in multi-criteria evaluations. Comparative analysis within the SS theory framework highlights the enhanced flexibility and robustness of FFNBSES for real-world MCGDM problems. This work provides a powerful and comprehensive approach to support smart healthcare transformation through improved group DM under uncertainty.
Citation: Baravan A. Asaad, Sagvan Y. Musa, Badr Alharbi, Zanyar A. Ameen. Advancing smart healthcare decision-making: an innovative Fermatean fuzzy N-bipolar soft expert set framework for complex multi-criteria group evaluations[J]. AIMS Mathematics, 2026, 11(1): 1071-1116. doi: 10.3934/math.2026047
The rapid advancement of smart healthcare systems demands sophisticated mathematical tools to manage uncertainty and conflicting expert opinions in critical decision-making (DM) processes. Multi-criteria group decision making (MCGDM) plays a pivotal role in synthesizing diverse expert evaluations for complex healthcare challenges. However, existing soft set (SS) extensions often struggle to simultaneously capture multinary evaluations, bipolar reasoning, higher-order fuzzy logic, and multi-expert input. To overcome these limitations, we propose the Fermatean fuzzy N-bipolar soft expert set (FFNBSES), which enhances fuzzy representation while integrating multinary, bipolar, and multi-expert evaluations. We formally define the fundamental operations of FFNBSES and demonstrate its algebraic properties. A DM methodology based on FFNBSES is developed and applied to a healthcare case study, showcasing its superior capability to handle expert consensus and disagreement in multi-criteria evaluations. Comparative analysis within the SS theory framework highlights the enhanced flexibility and robustness of FFNBSES for real-world MCGDM problems. This work provides a powerful and comprehensive approach to support smart healthcare transformation through improved group DM under uncertainty.
| [1] |
K. A. B. Ahmad, H. Khujamatov, N. Akhmedov, M. Y. Bajuri, M. N. Ahmad, A. Ahmadian, Emerging trends and evolutions for smart city healthcare systems, Sustain. Cities Soc., 80 (2022), 103695. http://doi.org/10.1016/j.scs.2022.103695 doi: 10.1016/j.scs.2022.103695
|
| [2] |
G. M. Minopoulos, V. A. Memos, C. L. Stergiou, K. D. Stergiou, A. P. Plageras, M. P. Koidou, et al., Exploitation of emerging technologies and advanced networks for a smart healthcare system, Appl. Sci., 12 (2022), 5859. http://doi.org/10.3390/app12125859 doi: 10.3390/app12125859
|
| [3] | M. Z. Syeda, D. E. H. Syeda, H. Babbar, The role of emerging technologies in smart healthcare, In: IoT‐enabled smart healthcare systems, services and applications, Wiley, 2022, 1–17. http://doi.org/10.1002/9781119816829.ch1 |
| [4] | S. Vyas, D. Bhargava, Smart health systems: emerging trends, Singapore: Springer, 2021. http://doi.org/10.1007/978-981-16-4201-2 |
| [5] | S. Sikdar, S. Guha, Advancements of healthcare technologies: paradigm towards smart healthcare systems, In: Recent trends in image and signal processing in computer vision, Singapore: Springer, 2020,113–132. http://doi.org/10.1007/978-981-15-2740-1_9 |
| [6] |
S. B. Junaid, A. A. Imam, A. O. Balogun, L. C. De Silva, Y. A. Surakat, G. Kumar, et al., Recent advancements in emerging technologies for healthcare management systems: a survey, Healthcare, 10 (2022), 1940. http://doi.org/10.3390/healthcare10101940 doi: 10.3390/healthcare10101940
|
| [7] |
S. Pant, P. Garg, A. Kumar, M. Ram, A. Kumar, H. K. Sharma, et al., AHP-based multi-criteria decision-making approach for monitoring health management practices in smart healthcare system, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 1444–1455. http://doi.org/10.1007/s13198-023-01904-5 doi: 10.1007/s13198-023-01904-5
|
| [8] |
C.-H. Yang, W. Hsu, Y.-L. Wu, A hybrid multiple-criteria decision portfolio with the resource constraints model of a smart healthcare management system for public medical centers, Socio-Econ. Plan. Sci., 80 (2022), 101073. http://doi.org/10.1016/j.seps.2021.101073 doi: 10.1016/j.seps.2021.101073
|
| [9] |
A. Aljohani, AI-driven decision-making for personalized elderly care: a fuzzy MCDM-based framework for enhancing treatment recommendations, BMC Med. Inform. Decis. Mak., 25 (2025), 119. http://doi.org/10.1186/s12911-025-02953-5 doi: 10.1186/s12911-025-02953-5
|
| [10] |
G.-V. Băcescu Ene, M. A. Stoia, C. Cojocaru, D. A. Todea, SMART multi-criteria decision analysis (MCDA)—one of the keys to future pandemic strategies, J. Clin. Med., 14 (2025), 1943. http://doi.org/10.3390/jcm14061943 doi: 10.3390/jcm14061943
|
| [11] |
G. Wang, Q. Shao, Design of a smart medical service quality evaluation system based on a hybrid multi-criteria decision model, Sci. Rep., 14 (2024), 26407. http://doi.org/10.1038/s41598-024-71224-6 doi: 10.1038/s41598-024-71224-6
|
| [12] | A. Alsaig, A. Alsaig, V. Alagar, A critical review of multi criteria decision analysis method for decision making and prediction in big data healthcare applications, In: Applied intelligence. ICAI 2023, Singapore: Springer, 2023, 89–100. http://doi.org/10.1007/978-981-97-0827-7_8 |
| [13] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X |
| [14] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 |
| [15] | R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), IEEE, Edmonton, AB, Canada, 2013, 57–61. http://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
| [16] | T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Human. Comput., 11 (2020), 663–674. http://doi.org/10.1007/s12652-019-01377-0 |
| [17] |
Z. Liu, S. Zhu, T. Senapati, M. Deveci, D. Pamucar, R. R. Yager, New distance measures of complex Fermatean fuzzy sets with applications in decision making and clustering problems, Inform. Sci., 686 (2025), 121310. http://doi.org/10.1016/j.ins.2024.121310 doi: 10.1016/j.ins.2024.121310
|
| [18] |
Y. Li, S. Zhu, J. Liao, S. Letchmunan, J. Shi, Z. Liu, Application of new divergence measure in complex Fermatean fuzzy sets for post-flood assessment, Intelligent Decision Making and Granular Computing, 1 (2025), 127–142. http://doi.org/10.31181/jidmgc1120258 doi: 10.31181/jidmgc1120258
|
| [19] |
Y. Li, S. Zhu, J. Liao, X. Han, Z. Liu, Establishment of distance measures on Fermatean fuzzy sets and their applications in pattern classification and multi-attribute decision-making, Discover Applied Sciences, 7 (2025), 529. http://doi.org/10.1007/s42452-025-07042-w doi: 10.1007/s42452-025-07042-w
|
| [20] |
A. Chachra, A. Kumar, M. Ram, A Markovian approach to reliability estimation of series-parallel system with Fermatean fuzzy sets, Comput. Ind. Eng., 190 (2024), 110081. http://doi.org/10.1016/j.cie.2024.110081 doi: 10.1016/j.cie.2024.110081
|
| [21] |
D. Alghazzawi, A. Noor, H. Alolaiyan, H. A. E. W. Khalifa, A. Alburaikan, Q. Xin, et al., A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings, PLoS ONE, 19 (2024), e0303139. http://doi.org/10.1371/journal.pone.0303139 doi: 10.1371/journal.pone.0303139
|
| [22] |
I. U. Haq, T. Shaheen, W. Ali, H. Toor, T. Senapati, F. Pilla, et al., Novel Fermatean fuzzy Aczel–Alsina model for investment strategy selection, Mathematics, 11 (2023), 3211. http://doi.org/10.3390/math11143211 doi: 10.3390/math11143211
|
| [23] |
M. Kirişci, New cosine similarity and distance measures for Fermatean fuzzy sets and TOPSIS approach, Knowl. Inf. Syst., 65 (2023), 855–868. http://doi.org/10.1007/s10115-022-01776-4 doi: 10.1007/s10115-022-01776-4
|
| [24] |
J.-F. Tsai, S.-P. Shen, M.-H. Lin, Applying Fermatean fuzzy sets in sustainable development assessment: a case study in the wire and cable sector, Clean Techn. Environ. Policy, 27 (2025), 1115–1130. http://doi.org/10.1007/s10098-024-02897-w doi: 10.1007/s10098-024-02897-w
|
| [25] |
G. Büyüközkan, D. Uztürk, Ö. Ilıcak, Fermatean fuzzy sets and its extensions: a systematic literature review, Artif. Intell. Rev., 57 (2024), 138. http://doi.org/10.1007/s10462-024-10761-y doi: 10.1007/s10462-024-10761-y
|
| [26] |
P.-H. Nguyen, A data-driven MCDM approach-based spherical fuzzy sets for evaluating global augmented reality providers in education, IEEE Access, 13 (2024), 6102–6119. http://doi.org/10.1109/ACCESS.2024.3361320 doi: 10.1109/ACCESS.2024.3361320
|
| [27] |
Ö. F. Görçün, D. Pamucar, S. Biswas, The blockchain technology selection in the logistics industry using a novel MCDM framework based on Fermatean fuzzy sets and Dombi aggregation, Inform. Sci., 635 (2023), 345–374. http://doi.org/10.1016/j.ins.2023.03.113 doi: 10.1016/j.ins.2023.03.113
|
| [28] |
Q. Ma, H. Sun, Z. Chen, Y. Tan, A novel MCDM approach for design concept evaluation based on interval-valued picture fuzzy sets, PLoS ONE, 18 (2023), e0294596. http://doi.org/10.1371/journal.pone.0294596 doi: 10.1371/journal.pone.0294596
|
| [29] |
H. Aydoğan, V. Ozkir, A Fermatean fuzzy MCDM method for selection and ranking problems: case studies, Expert Syst. Appl., 237 (2024), 121628. http://doi.org/10.1016/j.eswa.2023.121628 doi: 10.1016/j.eswa.2023.121628
|
| [30] |
J. Jana, S. K. Roy, Linguistic Pythagorean hesitant fuzzy matrix game and its application in multi-criteria decision making, Appl. Intell., 53 (2023), 1–22. http://doi.org/10.1007/s10489-022-03442-2 doi: 10.1007/s10489-022-03442-2
|
| [31] |
S. Giri, S. K. Roy, M. Deveci, An MADM model using Frank operations based power aggregation operator under-quasirung orthopair fuzzy sets for highway selection in war-plane landing, Appl. Soft Comput., 185 (2025), 113918. http://doi.org/10.1016/j.asoc.2025.113918 doi: 10.1016/j.asoc.2025.113918
|
| [32] |
K. Debnath, S. K. Roy, Power partitioned neutral aggregation operators for T-spherical fuzzy sets: an application to H2 refuelling site selection, Expert Syst. Appl., 216 (2023), 119470. http://doi.org/10.1016/j.eswa.2022.119470 doi: 10.1016/j.eswa.2022.119470
|
| [33] |
S. Ashraf, M. Naeem, C. Jana, M. Akram, G.-W. Weber, Multi-criteria group decision-making method using spherical fuzzy Z-numbers for smart technology revolution in municipal waste management, Eng. Appl. Artif. Intell., 161 (2025), 111928. http://doi.org/10.1016/j.engappai.2025.111928 doi: 10.1016/j.engappai.2025.111928
|
| [34] |
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. http://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
|
| [35] | S. Alkhazaleh, A. R. Salleh, Soft expert sets, Advances in Decision Sciences, 2011 (2011), 757868. http://doi.org/10.1155/2011/757868 |
| [36] |
S. Alkhazaleh, A. R. Salleh, Fuzzy soft expert set and its application, Appl. Math., 5 (2014), 1349–1368. http://doi.org/10.4236/am.2014.59127 doi: 10.4236/am.2014.59127
|
| [37] | S. Broumi, F. Smarandache, Intuitionistic fuzzy soft expert sets and its application in decision making, Journal of New Theory, 1 (2015), 89–105. |
| [38] |
M. Ihsan, M. Saeed, A. U. Rahman, Multi-attribute decision-making application based on Pythagorean fuzzy soft expert set, International Journal of Information and Decision Sciences, 16 (2024), 383–408. http://doi.org/10.1504/IJIDS.2024.142637 doi: 10.1504/IJIDS.2024.142637
|
| [39] |
M. Akram, G. Ali, J. C. R. Alcantud, A. Riaz, Group decision-making with Fermatean fuzzy soft expert knowledge, Artif. Intell. Rev., 55 (2022), 5349–5389. http://doi.org/10.1007/s10462-021-10119-8 doi: 10.1007/s10462-021-10119-8
|
| [40] |
M. Akram, G. Ali, J. C. R. Alcantud, A new method of multi-attribute group decision making based on hesitant fuzzy soft expert information, Expert Syst., 40 (2023), e13357. http://doi.org/10.1111/exsy.13357 doi: 10.1111/exsy.13357
|
| [41] |
F. Al-Sharqi, A. G. Ahmad, A. Al-Quran, Interval-valued neutrosophic soft expert set from real space to complex space, CMES-Comput. Model. Eng. Sci., 132 (2022), 267–293. http://doi.org/10.32604/cmes.2022.019684 doi: 10.32604/cmes.2022.019684
|
| [42] |
F. Al-Sharqi, Y. Al-Qudah, N. Alotaibi, Decision-making techniques based on similarity measures of possibility neutrosophic soft expert sets, Neutrosophic Sets Syst., 55 (2023), 358–382. http://doi.org/10.5281/zenodo.7832770 doi: 10.5281/zenodo.7832770
|
| [43] | F. Smarandache, Extension of soft set to hypersoft set and then to plithogenic hypersoft set, Neutrosophic Sets Syst., 22 (2018), 168–170. |
| [44] |
M. Saeed, A. U. Rahman, M. Ahsan, F. Smarandache, Theory of hypersoft sets: axiomatic properties, aggregation operations, relations, functions and matrices, Neutrosophic Sets Syst., 51 (2022), 744–765. http://doi.org/10.5281/zenodo.7135413 doi: 10.5281/zenodo.7135413
|
| [45] |
T. Fujita, F. Smarandache, An introduction to advanced soft set variants: superhypersoft sets, indetermsuperhypersoft sets, indetermtreesoft sets, bihypersoft sets, graphicsoft sets, and beyond, Neutrosophic Sets Syst., 82 (2025), 817–843. http://doi.org/10.5281/zenodo.15069512 doi: 10.5281/zenodo.15069512
|
| [46] | M. Shabir, M. Naz, On bipolar soft sets, 2013, arXiv: 1303.1344. http://doi.org/10.48550/arXiv.1303.1344 |
| [47] |
O. Dalkilic, N. Demirtaş, Combination of the bipolar soft set and soft expert set with an application in decision making, Gazi Univ. J. Sci., 35 (2022), 644–657. http://doi.org/10.35378/gujs.828316 doi: 10.35378/gujs.828316
|
| [48] |
G. Ali, G. Muhiuddin, A. Adeel, M. Z. U. Abidin, Ranking effectiveness of COVID-19 tests using fuzzy bipolar soft expert sets, Math. Probl. Eng., 2021 (2021), 5874216. http://doi.org/10.1155/2021/5874216 doi: 10.1155/2021/5874216
|
| [49] |
M. Akram, G. Ali, M. A. Butt, J. C. R. Alcantud, Novel MCGDM analysis under m-polar fuzzy soft expert sets, Neural Comput. Appl., 33 (2021), 12051–12071. http://doi.org/10.1007/s00521-021-05850-w doi: 10.1007/s00521-021-05850-w
|
| [50] | S. Y. Musa, B. A. Asaad, Bipolar hypersoft sets, Mathematics, 9 (2021), 1826. http://doi.org/10.3390/math9151826 |
| [51] |
B. A. Asaad, S. Y. Musa, Z. A. Ameen, Fuzzy bipolar hypersoft sets: a novel approach for decision-making applications, Math. Comput. Appl., 29 (2024), 50. http://doi.org/10.3390/mca29040050 doi: 10.3390/mca29040050
|
| [52] |
F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making algorithms, Soft Comput., 22 (2018), 3829–3842. http://doi.org/10.1007/s00500-017-2838-6 doi: 10.1007/s00500-017-2838-6
|
| [53] |
G. Ali, M. Akram, Decision-making method based on fuzzy N-soft expert sets, Arab. J. Sci. Eng., 45 (2020), 10381–10400. http://doi.org/10.1007/s13369-020-04733-x doi: 10.1007/s13369-020-04733-x
|
| [54] |
M. Akram, G. Ali, J. C. R. Alcantud, A novel group decision-making framework under Pythagorean fuzzy N-soft expert knowledge, Eng. Appl. Artif. Intell., 120 (2023), 105879. http://doi.org/10.1016/j.engappai.2023.105879 doi: 10.1016/j.engappai.2023.105879
|
| [55] |
M. J. Khan, J. C. R. Alcantud, M. Akram, W. Ding, Separable N-soft sets: a tool for multinary descriptions with large-scale parameter sets, Appl. Intell., 55 (2025), 561. http://doi.org/10.1007/s10489-025-06435-z doi: 10.1007/s10489-025-06435-z
|
| [56] |
M. Riaz, A. Razzaq, M. Aslam, D. Pamucar, M-parameterized N-soft topology-based TOPSIS approach for multi-attribute decision making, Symmetry, 13 (2021), 748. http://doi.org/10.3390/sym13050748 doi: 10.3390/sym13050748
|
| [57] | M. Shabir, J. Fatima, N-bipolar soft sets and their application in decision making, Research Square, 03 August 2021, PREPRINT (Version 1). http://doi.org/10.21203/rs.3.rs-755020/v1 |
| [58] |
S. Y. Musa, B. A. Asaad, Bipolar M-parametrized N-soft sets: a gateway to informed decision-making, J. Math. Comput. Sci., 36 (2024), 121–141. http://doi.org/10.22436/jmcs.036.01.08 doi: 10.22436/jmcs.036.01.08
|
| [59] |
S. Y. Musa, R. A. Mohammed, B. A. Asaad, N-hypersoft sets: an innovative extension of hypersoft sets and their applications, Symmetry, 15 (2023), 1795. http://doi.org/10.3390/sym15091795 doi: 10.3390/sym15091795
|
| [60] |
S. Y. Musa, N-bipolar hypersoft sets: enhancing decision-making algorithms, PLoS ONE, 19 (2024), e0296396. http://doi.org/10.1371/journal.pone.0296396 doi: 10.1371/journal.pone.0296396
|
| [61] |
S. Y. Musa, B. A. Asaad, A progressive approach to multi-criteria group decision-making: N-bipolar hypersoft topology perspective, PLoS ONE, 19 (2024), e0304016. http://doi.org/10.1371/journal.pone.0304016 doi: 10.1371/journal.pone.0304016
|
| [62] |
S. Y. Musa, A. I. Alajlan, B. A. Asaad, Z. A. Ameen, N-bipolar soft expert sets and their applications in robust multi-attribute group decision-making, Mathematics, 13 (2025), 530. http://doi.org/10.3390/math13030530 doi: 10.3390/math13030530
|
| [63] |
Z. A. Ameen, S. Y. Musa, M. M. Saeed, B. A. Asaad, Optimizing healthcare facility allocation using fuzzy N-bipolar soft expert decision approach, Contemp. Math., 6 (2025), 7250–7286. http://doi.org/10.37256/cm.6520258086 doi: 10.37256/cm.6520258086
|
| [64] | S. Y. Musa, Z. A. Ameen, W. Alagal, B. A. Asaad, A robust methodology for multi-criteria group decision-making: intuitionistic fuzzy N-bipolar soft expert sets in cybersecurity risk assessment for financial institutions, submitted for publication. |
| [65] |
S. Y. Musa, Z. A. Ameen, W. Alagal, B. A. Asaad, Urban transportation strategy selection for multi-criteria group decision-making using Pythagorean fuzzy N-bipolar soft expert sets, CMES-Comput. Model. Eng. Sci., 144 (2025), 3493–3529. http://doi.org/10.32604/cmes.2025.070019 doi: 10.32604/cmes.2025.070019
|