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Abstract: The rapid advancement of smart healthcare systems demands sophisticated mathematical
tools to manage uncertainty and conflicting expert opinions in critical decision-making (DM)
processes. Multi-criteria group decision making (MCGDM) plays a pivotal role in synthesizing diverse
expert evaluations for complex healthcare challenges. However, existing soft set (SS) extensions
often struggle to simultaneously capture multinary evaluations, bipolar reasoning, higher-order fuzzy
logic, and multi-expert input. To overcome these limitations, we propose the Fermatean fuzzy N-
bipolar soft expert set (FFNBSES), which enhances fuzzy representation while integrating multinary,
bipolar, and multi-expert evaluations. We formally define the fundamental operations of FFNBSES
and demonstrate its algebraic properties. A DM methodology based on FFNBSES is developed and
applied to a healthcare case study, showcasing its superior capability to handle expert consensus and
disagreement in multi-criteria evaluations. Comparative analysis within the SS theory framework
highlights the enhanced flexibility and robustness of FFNBSES for real-world MCGDM problems.
This work provides a powerful and comprehensive approach to support smart healthcare transformation
through improved group DM under uncertainty.
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1. Introduction

The digital transformation of healthcare has ushered in the era of smart healthcare systems, where
technologies such as artificial intelligence, the Internet of Things, telemedicine, and cloud computing
are increasingly integrated into clinical practice to enhance quality, efficiency, and accessibility.
These innovations aim to improve diagnostic accuracy, enable proactive care, and mitigate disparities
in healthcare delivery—especially in underserved regions [1-3]. As cities pursue sustainability
and inclusivity, smart healthcare is becoming a foundational component of modern urban health
infrastructure [4-6].

Despite their potential, integrating these technologies into complex healthcare ecosystems presents
significant challenges. Decision-makers must evaluate multiple, often conflicting criteria such as
cost, patient outcomes, data security, and user acceptance. In this context, multi-criteria decision-
making (MCDM) frameworks have proven indispensable for balancing competing demands and
conducting structured evaluations of smart health strategies [7-9]. These tools enable administrators
and policymakers to incorporate both quantitative metrics and qualitative insights, including expert
opinions, to reach informed, consensus-based decisions [10-12].

To better reflect the uncertainty and hesitation inherent in expert judgments, more flexible
approaches beyond classical logic have gained attention. Since Zadeh’s [13] seminal work on
fuzzy sets (FSs), numerous extensions have emerged to enhance the modeling of ambiguity.
Atanassov’s [14] intuitionistic FSs (IFSs) introduced non membership degrees (NMDs) alongside
membership degrees (MDs), enabling the explicit representation of hesitation. Building on this,
Pythagorean FSs (PFSs) [15] and Fermatean FSs (FFSs) [16] further relaxed the underlying constraints
on MDs and NMDs to accommodate higher levels of uncertainty in DM.

From a modeling perspective, the adoption of FFSs is particularly suitable for expert-driven DM
environments that require expert involvement and bipolarity consideration. Compared with earlier FS
extensions, including IFSs and PFSs, FFSs provide a broader and more flexible assessment space,
enabling experts to express strong supportive and opposing evaluations without imposing overly
restrictive conditions on the membership structure. This enhanced capability allows FFSs to handle
higher uncertainty and hesitation, which are common in complex healthcare DM scenarios where
expert judgments may conflict. Although more complex higher-order FS models can further expand
expressive capability, their increased structural complexity may limit interpretability and practical
usability in parameterized frameworks involving expert involvement and multinary evaluation. In
contrast, FFSs offer a balanced structure that supports deeper uncertainty modeling while remaining
conceptually transparent and computationally manageable.

Recent studies have further advanced FFS methodologies and FS-based approaches in MCDM.
In particular, new distance measures and divergence metrics for complex FFSs have been developed
with applications in MCDM, clustering, post-flood assessment, and pattern classification [17-19].
Moreover, FFSs have demonstrated practical utility across diverse application domains, including
system reliability [20], transportation [21], investment analysis [22], and sustainability assessment [23,
24], highlighting their effectiveness in supporting nuanced DM under uncertainty [25]. Other works
have demonstrated the versatility of FS-based methods, including spherical FSs for augmented reality
evaluation [26], FFSs with Dombi aggregation for blockchain technology selection [27], and interval-
valued picture FSs for design concept evaluation [28, 29]. Further contributions include linguistic
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Pythagorean hesitant FSs, quasi-rung orthopair FSs, and T-spherical FSs with advanced aggregation
strategies [30-32], as well as spherical fuzzy Z-numbers for municipal waste management [33].

While these FS extensions significantly enhance the modeling of vagueness and hesitation, they
often lack mechanisms for structured parameterization—an aspect addressed by SS theory since its
introduction by Molodtsov [34]. Alkhazaleh and Salleh [35,36] expanded this theory by incorporating
expert perspectives and fuzziness, resulting in soft expert sets (SESs) and fuzzy SESs (FSESs).
Broumi and Smarandache [37] further enriched the model by integrating intuitionistic fuzzy logic.
Innovations include Pythagorean fuzzy [38], Fermatean fuzzy [39], and hesitant FSESs [40], all aimed
at improving model expressiveness in MCGDM contexts. Additionally, neutrosophic-based extensions
such as interval-valued [41] and possibility-driven neutrosophic soft expert models [42] offer enhanced
flexibility in dealing with uncertain decision environments. Subsequent extensions, including hypersoft
sets [43, 44], introduced multi parameter capabilities for greater model flexibility. Fujita and
Smarandache [45] generalized these models further through advanced variants like superhypersoft and
bi-hypersoft sets.

An essential feature for capturing human reasoning more realistically is the ability to reflect both
positive and negative evaluations within a decision framework. The concept of bipolar SSs (BSSs),
introduced by Shabir and Naz [46], addresses this by enabling the simultaneous analysis of supportive
and opposing information. Dalkilic and Demirtag [47] extended this notion by introducing bipolar
SESs (BSESs), incorporating expert evaluations under bipolarity. Their work inspired hybrid models
such as fuzzy BSESs (FBSESs) [48] and m-polar FSESs [49], now applied in healthcare and risk
assessment. Musa and Asaad [50] later proposed the bipolar hypersoft set, merging bipolarity with
hypersoft logic to handle conflicting assessments more effectively. This was extended to the fuzzy
bipolar hypersoft set by Asaad et al. [51] to better manage uncertainty.

All the aforementioned models are based on binary evaluation. To overcome this limitation,
Fatimah et al. [52] introduced the concept of N-soft sets (NSSs), providing a multinary evaluation
framework through multi parameter structures. Building on this, Ali and Akram [53] proposed
(fuzzy) N-soft expert sets ((F)NSESs), which effectively incorporated expert judgment and fuzziness.
Akram et al. [54] further enhanced this model using Pythagorean fuzzy logic, thereby improving its
capacity to model uncertainty in group DM. Khan et al. [55] later contributed separable NSSs, which
are tailored for multinary descriptions involving large-scale parameter sets. In parallel, Riaz et al. [56]
introduced an M-parameterized N-soft topology-based TOPSIS approach, which integrated soft
topological structures with classical MCDM techniques. Shabir and Fatima [57] contributed by
formulating N-bipolar soft sets (NBSSs) for DM applications. Recently, Musa and collaborators have
proposed advanced variants including bipolar M-parameterized NSSs [58], N-hypersoft sets [59], and
N-bipolar hypersoft sets [60], each aiming to enhance the representation of multidimensional and
contradictory information. These efforts culminated in the development of the N-bipolar hypersoft
topology [61], which combines bipolarity, hypersoft modeling, and topological structures for robust
MCGDM.

Extending this trajectory, the recently introduced N-bipolar soft expert set (NBSES) provides
a sophisticated framework capable of integrating multinary, bipolar, and expert-based assessments.
Musa et al. [62] presented this model to support complex MCGDM processes under uncertainty. Its
practical relevance has been demonstrated in several domains. A fuzzy NBSES (FNBSES) approach
was applied to healthcare facility allocation [63], addressing conflicting stakeholder priorities. Further
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extensions, such as intuitionistic FNBSES (IFNBSES) [64], have been utilized in cybersecurity
risk assessments for financial institutions. Likewise, Pythagorean FNBSES (PFNBSES) [65] have
supported strategic DM in urban transportation planning. Collectively, these models reflect the
adaptability and effectiveness of N-bipolar soft expert-based approaches in addressing complex, real-
world MCDM problems.

1.1. Challenges in existing approaches and the need for the proposed model

Classical fuzzy information is inherently limited because it employs a single MD to represent
uncertainty. This makes it unsuitable for situations where hesitation, indeterminacy, or conflicting
expert views must be explicitly modeled. For example, in medical DM, one expert may strongly
support a treatment while another raises serious concerns; classical FSs cannot represent such bipolar
and contradictory judgments simultaneously. Moreover, classical fuzzy frameworks are single-valued,
lack parameterization, and do not incorporate expert involvement, which restricts their practicality in
complex group DM problems. Therefore, more flexible frameworks such as SSs and their extensions
have been developed to overcome these drawbacks.

Despite the progress made in SS theory and its numerous extensions, several critical limitations
remain. Classical SSs and their fuzzy adaptations typically rely on binary evaluations and do not
accommodate bipolar reasoning. Although BSSs addressed this gap by enabling both positive and
negative assessments, they remain constrained in evaluation granularity and uncertainty handling.

The introduction of NSSs improved expressiveness through multinary evaluations and parameter
richness, yet these models lack bipolar integration. Fuzzy enhancements—such as intuitionistic,
Pythagorean, and even Fermatean fuzzy approaches—have added depth in modeling uncertainty and
hesitation but fall short in structured, parameterized frameworks capable of handling expert-driven,
conflicting information.

Even recent advanced models like PFNBSES may be insufficient in scenarios that demand high-
level uncertainty handling, fine-grained evaluation, and expert consensus involving contradictory
opinions.

To overcome these limitations, the FFENBSES model is proposed. This new framework:

e cnables simultaneous analysis of positive and negative evaluations;

applies Fermatean fuzzy logic to capture deep uncertainty and hesitation;

e incorporates multinary evaluation mechanisms suitable for nuanced decision contexts;

supports expert involvement for collective DM in uncertain environments.

1.2. Scope and core contributions of the study

This study aims to construct a comprehensive and adaptive DM model that integrates bipolar
reasoning, Fermatean fuzzy logic, multinary evaluation, and multi-expert input. The FFNBSES
framework is proposed to address these needs and demonstrate its utility in complex decision
environments.

The main contributions of this research are outlined as follows:
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e Theoretical foundation of FFNBSES: A complete mathematical formulation of the FFNBSES
model is presented, including essential operations such as union, intersection, complement,
equality, and others, along with their algebraic properties and examples to ensure clarity and
consistency.

e Design of a DM framework: An algorithmic structure is developed to apply the FFNBSES model
in real-world MCGDM tasks. The procedure incorporates bipolar Fermatean fuzzy evaluations
from multiple experts.

e Healthcare-oriented case study: The model is validated through its application to a smart
healthcare scenario. This demonstrates the framework’s practical relevance in evaluating
alternatives across technological, clinical, and ethical dimensions.

e Comparative evaluation within SS models: A structured comparison with existing SS variants
is conducted to highlight FFNBSES’s advancements in membership structure, evaluation scale,
bipolar handling, and expert integration. Strengths and limitations are discussed to provide a
balanced outlook.

1.3. Layout of the paper

The organization of this paper is as follows. Section 2 presents essential notations and background
definitions used throughout the paper. It also reviews several foundational models, including SSs,
BSSs, and their expert-based and N-extended variants, thereby establishing a comparative basis for
the proposed approach. Section 3 introduces the FFNBSES model, defines its key components, and
formalizes a range of operations along with their corresponding algebraic properties and examples.
Section 4 develops a DM methodology based on the FFNBSES framework and applies it to a
healthcare-related scenario. Section 5 evaluates the FFNBSES model in the context of other SS-
based approaches, offering a comparative analysis. Finally, Section 6 concludes the study and outlines
potential directions for future research.

2. Preliminary concepts

This section introduces the essential definitions and notations adopted throughout the paper. Let k
be the universal set of alternatives (or objects), and ¢ denote the set of attributes (or parameters). The
evaluation scale is defined as ® = {0,1,...,N — 1}, where N € {2,3,...}. Let & represent the set of
experts, and O = {0 = disagree, | = agree} be the set of expert opinions. We define F = p X & X O, and
let{ CF.

We begin by reviewing classical FS models, where each alternative is assigned an MD in
[0, 1], allowing nuanced modeling of uncertainty. Extensions such as IFS, PFS, and FFS enrich
this representation by incorporating additional membership dimensions, supporting multi-valued
aggregation and more informed DM. The associated score and accuracy functions then offer a
systematic basis for ranking alternatives according to these fuzzy numbers.

Definition 2.1. Let u®, u° : k — [0, 1] be the membership and non-membership functions associated
with each k € k. Then, the collection ¥ = {{k, u®(«), u°(x)) : k € k} represents the following:

i. an FS [13], when u®(k) = 0 for every k € k;
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ii. an IFS [14], if 0 < u®(K) + u(x) < 1;
iii. a PFS [15],if0 < (u®(k))* + (u®(x))? < 1;
iv. an FFS [16], if 0 < (u®(0))® + (u®(x))* < 1.
Definition 2.2. [16] Consider y = (¢®, ¢°) as a Fermatean fuzzy number (FFN). Then,
i. The score value of Y is given by S() = (¢®) — (¢®)?, where S(y) € [-1,1].
ii. The accuracy value of  is defined as A(Y) = (¢®)® + (¢°)3, with A(y) € [0, 1].

Definition 2.3. [16] Let y, = (¢7,¢}) and Y, = (¢5,¢5) be two FFNs, with their respective score
values S(Yy), S(») and accuracy values A(Y), A(Y,). Then the comparison is made as follows:

. If S(W1) > S(Y2), then Yy > .
ii. If S(1) = S(Y2), Then,

o if A(Y1) > A(Yn), then Yy > Yy
o if A(Y1) < A(Yn), then Yy < Yy
o if A(Y1) = A(Yn), then Yy = .

Building on these FS models, SSs provide a structured framework to represent relationships between
objects and parameters, enabling parameterized decision analysis.

Definition 2.4. [34] An SS refers to an ordered pair (A, 9), where A : 9 — 2¥ and 2* represents the
set of all crisp subsets of k.

Definition 2.5. A pair (4, () is described as follows:
i. It is called an SES [35] if A : ¢ — 2%;
ii. It is termed an FSES [36] if A : { — F*, where F* denotes the collection of all FSs over k;
iii. It is referred to as an IFSES [37] if A : ¢ — I¥, where I* denotes the collection of all IFSs over k;
iv. It is identified as a PFSES [38] if A : { — P*, where P* denotes the collection of all PFSs over k;
v. It is known as an FFSES [39] if A : { — FY, where F* denotes the collection of all FFSs over k.

To further extend this framework, the NOT operation is introduced to model opposite or negative
attributes explicitly.

Definition 2.6. [35] The NOT set corresponding to a set {, denoted by —(, is given by ={ = {—=€ | € €
L}, where for each element { = (b, v, 0) such thath € 9, v € &, and o € O, the negation —{ is defined as
(=b, v, 0), representing the opposite of the element ¢.

While SSs handle single evaluations, BSSs extend this concept by distinguishing between positive
and negative assessments, thus capturing both supportive and opposing perspectives.

Definition 2.7. [46] A BSS is characterized by the triple (1,6, p), where A : 9 — 2% and 6 : —p — 2%,
satisfying the condition that for every b € g, it holds that A(b) N 6(=b) = 0, with A(b), 6(=b) C k.
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Definition 2.8. A triple (4,06, () is characterized as follows:

i. It is called a BSES [47] if A : { — 25 and § : =¢ — 2¥, satisfying A(€) N 6(=€) = O forall € € ¢,
where A(€), 6(=€) C k.

ii. It is referred to as an FBSES [48] if A : { — F* and 6 : = — F¥, such that for each € € { and
k €k, the constraint 0 < A(€)(«) + 6(=€)(k) < 1 holds, where A(€)(k), 6(=€)(k) € [0, 1].

To accommodate more granular assessments, NSSs generalize SSs using multigraded evaluation
scales, while their fuzzy variants integrate membership and non-membership degrees for richer
modeling.

Definition 2.9. [52] An NSS is defined as a triple (1, p, N), where 1 : 9 — 25, such that for each
b € g, there exists a unique pair (k,3,) € k X O satisfying (k,%,) € n(b), where k € k and ¥}, € O. The
set 2% denotes all crisp subsets of k x ©.

Definition 2.10. A triple (n,, N) is defined as follows:

i. Itis called an NSES [53]ifn : ¢ — 2© assigns to each element € € ¢ a unique pair (k, %) € kx®
with k € k and 9, € O, such that (k, ;) € n(f).

ii. It is called an FNSES [53] if n : { — F*®, where for every { € ( there is a unique pair
(k, ;) € k X O with k € k and 9, € O, satisfying {(k, %), n(k, )y € n(t). Here, F® represents
the set of all FSs overk x ©.

iii. It is called an IFNSES [54] if n : { — I¥© such that for each € € [ there exists a unique
pair (k,9¢) € k X ® with k € k and 9, € O such that {(x,9;),n®(k, F¢),n°(k,Ir)) € n({), where
0 < 7%k, %) + 1°(k, %) < 1 and 12k, 9),n°(k, %) € [0,1]. The set I**® denotes all IFSs on
kx ©.

iv. It is called a PFNSES [54] if n : { — P® such that for each € € [ there is a unique pair
(k, %) € k X O with k € k and 9, € O satisfying {(x,9,),n%(, F¢),n°(k, )y € n(f), with the
condition 0 < (®(k,9))> + (11°(k, %)) < 1, where n®(k, %), n°(k, %) € [0,1]. The set P*®
represents all PFSs onk X ©.

Although NSSs and their fuzzy extensions provide expressive modeling, DM often requires
simultaneous consideration of positive and negative evaluations. This motivates NBSSs, which capture
dual evaluations for a single expert.

Definition 2.11. [57] An NBSS is defined as a quadruple (7,7, 9, N) where T : 9 — 2°© and n :
—p — 2O satisfy the following conditions: For each b € g, there exists a unique pair (x,%,) € k X ©
such that (k,9y) € ©(b); similarly, for each =b € —g, there is a unique pair (k,9-,) € k X © with
(k,¥-p) € m(=), and these pairs fulfill the inequality 9, + -, < N — 1, where k € k and 9, 9-,, € O.

Building on NBSSs, their extensions—NBSES, FNBSES, IFNBSES, and PENBSES—incorporate
multiple experts and various fuzzy membership types, facilitating more nuanced group DM under
uncertainty.

Definition 2.12. A quadruple (t,7,{, N) is called
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i. an NBSES [62], if T : ¢ — 2°® and rt : =¢ — 2°© such that for each € € , there is a unique pair
(k, ) € k X O with (k, %) € 1(f), and for each —C € —{, there is a unique pair (k,9-;) € k X ®
with (k,9-,) € n(=€), satisfying &, + 9, < N — 1, where k € k and 9,,9-, € ©.

ii. an FNBSES [63], if T : { — F*® and n : =¢ — F*® such that for each € € [, there exists a
unique pair (k, %) € k x ® with {(«, %), 78k, 9,)) € 1(£), and for each =€ € =(, there is a unique
pair (k,9-¢) € k X © with {(k,9-¢), 1%k, 9-,)) € n(=C), satisfying 0 < 7k, ¥,) + n%(k,9-,) < 1,
where k € k, 9,9, € O, and 8k, 9,), 1, 9-;) € [0, 1].

iti. an IFNBSES [64], if T : { — I®® and © : = — T® such that for each € € (, there is
a unique pair (k,9¢) € k x ® with {(k, %), 7%, F¢), %k, 9,)) € 1(f), and for each =€ € =,
there is a unique pair (k,9-;) € k X @ with {(k,9-¢), 7%k, 9-¢), n°(k,9-r)) € n(=Lf), subject to
0 < 7%k, ) + 7%k, 9-¢) < 1 and 0 < 1°(k, ¥;) + m°(k,9-) < 1, where k € k, 9,9, € O, and all
8(k, 9¢), T°(k, O¢), n®(k, 9-¢), 7°(k, 9-¢) € [0, 1]. Clearly, t8(k,9,) and n®(k,9-,) are MDs, while
°(k, 9y and n°(k, 9-;) are NMDs.

iv. a PFNBSES [65], if T : { — P*® and m : = — P*® such that for each € € ¢, there is
a unique pair (k, %) € k x @ with {(k,9;), 7%, %), %k, %)) € 1(f), and for each =€ € =,
there is a unique pair (k,9-;) € k X @ with {(k,9-;), 1%k, 9-¢), n°(k,9-;)) € n(=f), subject to
0 < (7%, 90) + (n®(k,9-0))> < 1 and 0 < (%, %))* + (1°(k,9-0))* < 1, where k € k,

D, 0 € O, and 8k, Fy), T°(k, Fy), n®(k, 9-r), 7°(k,9-,) € [0, 1].

It is important to note that the FNBSES, IFNBSES, and PFNBSES models are fuzzy extensions of
the crisp NBSES framework. Consequently, the condition on the evaluation grades, namely ¢, + ¢, <
N—1, is inherited from the underlying crisp model and is assumed to be satisfied for all parameter pairs.
Therefore, this condition is not restated in the fuzzy extensions, and the emphasis is placed instead on
the additional membership and non-membership constraints that govern the fuzzy evaluations.

3. Fermatean fuzzy N-bipolar soft expert sets

This section presents the innovative FENBSES model along with its core operations such as the null
set, whole set, complement, subset, equality, agreement, disagreement, union, and intersection. Each
operation is accompanied by its algebraic properties and clarified through relevant examples.

Definition 3.1. A quadruple (y,y,{,N) is termed an FFNBSES if y @ { — F® and Y

- — F™®, such that for each ¢ € (, there is a unique pair (k,9;) € k X O satisfying
(&, 00), Y2k, 90), ¥° (k, 00)) € Y(€), and for each =€ € —{, there is a unique pair (k,9-;) € k X @
such that {(k,9-¢), z$(K, ), Ze(K, PTp)) € z(ﬂf), subject to the following conditions:

0 < Gk 8)) + ¥k, 9-0) < 1,

0< (k30 + ¥k, 9-0)) < 1,

where k € k, 9,9, € O, and 7®(K, 05),?9(& ﬂg),z@(K, ﬂﬂ[),')_/e(K, =) € [0,1]. Here, ’)_/{B(K, %) and
Ze’(K, 9_¢) represent the MDs, whereas ¥°(k, 9;) and ’)_/G(K, 9-¢) denote the NMDs. The set F}X@) stands
for all FFSs onk x ©.
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Remark 3.1. The following observations, in relation to Definition 3.1, clarify the structural
assumptions inherited from earlier models and explain the rationale behind the additional Fermatean
fuzzy constraints introduced in the FFNBSES framework.

1)

2)

From now on, we consider the sets k = {«i,ko,..
{vi, v, ..
(¥,¥,{,N) can be conveniently expressed in a tabular form.

As an extension of the previously defined FNBSES models, the FFNBSES framework likewise
presumes that the evaluation grades satisfy ¥, + 9., < N — 1, as inherited from the crisp NBSES
structure. Accordingly, this grading condition is assumed to hold for all admissible evaluations,
while the novelty of the FFNBSES model lies in the introduction of Fermatean fuzzy membership
constraints that further regulate the interaction between positive and negative evaluations.

The cubic-sum constraints serve to regulate the joint influence of a parameter and its opposite
within the bipolar evaluation structure. Since { and —{ represent two opposing perspectives
of the same criterion, their associated membership and non membership values are not
treated as independent quantities. The imposed condition ensures that strong support for a
parameter is accompanied by correspondingly limited support for its opposite, thereby preventing
contradictory extreme assessments. The use of the cubic form, characteristic of Fermatean fuzzy
sets, amplifies high membership values and enforces stricter control as evaluations approach
their upper bounds. In this way, the constraint captures the intended bipolar relationship in a
multi-graded fuzzy context while maintaining logical consistency.

~’Kn}, K') = {bl,bZ"‘-’bm}7 and 8 =
Under this assumption, the FFNBSES
In particular, we use the

.,U;} to be finite, unless otherwise specified.

abbreviations y(£{;)(k;) = (0ij€,,)7?;,?iej> and y(=€)(k;)) = (Fj_.,.,y%,¥") to denote the elements
i L ity

((Kj,

ﬂijgi)ie)(Kj,01‘;'5,.),?6(/9,191'1'&» € y(6) and <(Kj’ﬂij_,gl.)’zea(/(jaﬁij_,gi)a’)_/e(Kj’ﬂij_,gi» € Z("fi),

respectively. The corresponding tabular representation is presented in Table 1.

Table 1. Tabular representation of the FENBSES (7,y,{, N).

7.7, {N) K K2 Ky

Onv, ) YO, v, D) Y, v, Dik) (b1, vy, D)(ky)
O v, 1) YO, v, D) Y1, vz, (ko) (b1, v, (k)
(bla Uy, 1) 7(b1’ Us, 1)(K1) ?(bla Us, 1)(K2) ?(bb Uy, l)(Kn)
(b2, vy, 1) 7(|72, vy, D(k1) V(bz’ vy, D(k2) 7('72, vi, D(kn)
(b2, v2, 1) Y02, v2, (k) Y(b2, 02, 1)(k2) Y(b2, v2, 1)(k,)
(b27 Uh 1) 7(b2’ Ut7 1)(K1) 7(b27 Ut’ 1)(K2) ?(b27 Uh 1)(Kn)
(bm7 Uy, 1) ?(bm’ Uy, 1)(K1) ?(bm7 vy, 1)(K2) 7(bma Uy, 1)(Kn)
(bm’ Up, 1) 7(bm’ Up, 1)(K1) ?(bﬂh Up, 1)(K2) ?(bb Up, 1)(Kn)
(bma Uy, 1) ?(bn’u Us, 1)(Kl) ’y(bm’ Ut 1)(K2) ?(bm’ Uy, 1)(Kn)

(Continued on next page)
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(V,Z, {,N) ki K2 Ky

(brv,0)  Yb,v,00k1) Y1, v1,0)(k2) y(b1, v1, 0)(k,)
(br,v2,0) Y, v,0)(k1)  Y(b1,v2,0)(k2) y(b1, v2, 0)(ky)
(b1,v:,0) y(b1, v, 0) (k1) Y(b1, v1, 0)(k2) y(b1, vy, 0)(;,)
(02,v1,0)  Y(b2,v1,0)(k1) V(b2 v1,0)(k2) Y (b2, v1, 0)(ky)
(02,12,0)  Y(b2,v2,0)(k1) ¥ (b2, v2,0)(k2) ¥(b2, v2, 0)(k,)
(bZa Ut’ O) 7(b2’ Uta 0)(K1) 7(b2a vt7 O)(K2) ?(b27 Ut’ O)(Kn)
Omv1,0) Y0, v1,0)(k1) YO, v1, 0)(k2) Y (b, v1, 0)(k)
Omv2,0) Y0, v2,0)(k1) YOy, v2, 0)(k2) y(b1, v2, 0)(ky)
O v,0) YO, v, 0)(k1) V(b v, 0)(k2) YO, vr, 0) (k)
(=br,v1, 1) y(=by, vy, D) y(=by, v, Diko) y(=by, v, Dika)
(=b1,v2, 1) y(=bi,v2, Dk1)  y(=b1, vz, D(k2) Y(=b1, va, ()
(_'bl9 Uy, 1) Z(_'bl, Uy, 1)(K1) Z(_'bl, Uy, 1)(K2) Z(_'bl’ Uy, 1)(Kn)
(=ba, v, 1) y(=bo, w1, D) y(=ba, vr, Diko) y(=ba, vy, (k)
(=b2, v, 1) y(=b2, w2, Dik1)  y(=ba, v2, ko) Y(=ba, va, D(ky)
(=ba, v, 1) y(=bo, vy, D(k1)  y(=b2, vy, D(k2) Y(=b2, vy, (k)

(_'bma Uy, 1)
(_'bm’ U, 1)

(_'bm’ Uy, 1)

Z(_'bM7 Uy, 1)(K1)
Z(_'bm’ U, 1)(K1)

YDy s, (k1)

Z(_'bma Uy, 1)(K2)
Y(=by, v2, Dik2)

YD, v, D)

Z(_'bma Ui, 1)(Kn)
Z(_'bm’ U, 1)(Kn)

Z(_‘bm’ Uy, 1)(Kn)

(=by, v1,0) Z(_'bl’vl’O)(Kl) Z(_'bl,vl»o)(KZ) Z(_'bl,vl’o)(Kn)
(=b1,v2,0)  y(=b1,v2, 0)(k1)  y(=b1, 12, 0)(ko) y(=bi, v2, 0)(ky)
(_'blavla O) Z(_'blavt’ 0)(K1) Z(_'blavta O)(KZ) Z(_'blavl, 0)(Kn)
(=2, v1,0) Z(_'bZ’UlaO)(Kl) z("bz,vl,o)(Kz) Z(_'bZavlvO)(Kn)
(=b2,v2,0)  y(=b2, 12, 0)(k1)  y(=ba, 12, 0)(k2) Y(=ba, v2, 0)(ky)
(=b2, v, 0)  y(=b2, v, 0)k1)  y(=ba, vr, 0)(k2) y(=ba, vy, 0)(k,)
(Continued on next page)
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(7aZa§,N) Ki K3 Kn

(=by, 01, 0) Y (b, w1, 0)(k1) Y (b 1, 0)(K2) -+ Y (=D, 01, 0)(in)
(2D 12,0) Y (b, v2,0) (k1) Y(=bim, 02, 0)(k2) -+ Y(=by, 2, 0)(kin)
(_'bm’ Uy, O) Z(_'bnh Us, 0)(K1) Z(_'bm’ U, O)(KZ) e Z(_'bm’ Uy, O)(Kn)

To showcase the effectiveness and clarity of our proposed model, we present the following
illustrative example:

Example 3.1. Suppose a metropolitan planning authority is tasked with selecting the most suitable
city to pilot a new smart public transportation system. The five candidate cities are denoted by k =
{1, K2, K3, Ka, K5}. Two critical evaluation criteria are selected:

¢ = {by = infrastructure readiness, b, = technology integration capacity},
along with their associated negative criteria:
- = {=by = infrastructure bottlenecks, —b, = technical integration risks}.

An internal transit committee performs an initial feasibility assessment, which is subsequently
reviewed by two national urban mobility experts & = {vy,vs2}. Each expert provides symbolic
evaluations using a standardized transportation-readiness scale:

e "% denotes critical limitations (e.g., outdated infrastructure or incompatible systems).
e "A” denotes minor limitations (e.g., partial readiness or small integration issues).

e "AA” denotes moderate readiness (some strengths, but room for improvement).

e "AAA” denotes strong readiness (good alignment with smart transit goals).

e "AAAA” denotes full readiness (fully equipped for implementation).

Table 2. Symbolic evaluation of cities for smart transit system deployment by Metropolitan

Planning Authority.
{\k K1 Ky K3 K4 Ks
(by,v, 1) AAA AA AAAA A X
(b1, va, 1) AA AA  AA AAA A
(by, vy, 1)  AA  AA AAA A X
(b, v, 1) % A AAAA  AA AA
(by,v1,0) % AN X X A
b1, v2,0) % A AA A A
(by,v1,0) A X X AN AA

(Continued on next page)
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{\k K1 Ky K3 K4 Ks
(ba, v2,0) AAA AN X AA AA
(=br, v, 1) % AN ¥ AN X
(=by,v0,1) A A AA X X
(=by, vy, 1) % A X AN X
(mby, 0, 1) % X X AA A
(=b,v1,0) AA A % X AA
(=b1,v2,0) AAA A~ A AN AA
(=by, v1,0) AA % AAA A A
(=by, 15,0) A AA A A A

Each qualitative grade is mapped to a specific numerical value within the set ® = {0,1,2,3,4},

defined as follows:

e 0 corresponds to *.

e 1 corresponds to A.

2 corresponds to AA.

3 corresponds to AAA.

4 corresponds to AAAA.

In line with Definition 2.12 (i), the detailed numerical evaluations of the 5BSES (t,n,(,5) are
systematically arranged and presented in Table 3.

Table 3. Symbolic-to-numerical mapping of grades in the Metropolitan Planning Authority

evaluation scale.

(T’ 7-[’ {’ 5)

Ko

9

Ob1,v1, 1)
(bl,vz, 9]
(02,1, 1)
(02,2, 1)
(b1,v1,0)
(b1,12,0)

AIMS Mathematics

(b2,v1,0)

(b2,1,0)

(=bi, v, 1)
(=b1, v, 1)
(=bs, vy, 1)
(=ba, 12, 1)
(=by1,v1,0)
(=b1,v,,0)

N OO~ O W~k OO N W

(98]

— O = = DO =N~ NN

\S}

— O OO MNOOONO PR WD AX

NO[\)[\)O[\)[\)[\)'-‘O[\)'-‘W"_;Q

D= OO~ =DNO—=OIX

(Continued on next page)
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{ \ k K1 Ky K3 K4 Ks
(=byv,0) 2 0 3 1 1
(—|b2,U2,0) 1 2 1 1 1

To ensure a comprehensive evaluation process, experts provide their judgments in the form of
an FF5BSES. Utilizing the grading scheme outlined above, the assignment of MDs and NMDs is
conducted according to the framework established by FFSs. The corresponding evaluation criteria
and grade boundaries are summarized in Table 4.

Table 4. Evaluation grades and their corresponding criteria for the Metropolitan Planning
Authority assessments.

Grade Criterion

9:=0 0.0< 0K %) +F(k3))> <02
=1 02<G%%93))°+ G« ) <04
9e=2  04<GK5)) +Fk %) <0.6
9,=3 0.6 <%k, 9))° + Gk ) <08
9=4 08<0G%Kk3)) +F(k,I))> < 1.0
Grade Criterion

90=0 0.0< 2k 9-0)) + (kD)) <02
de=1 02< G2k 9-0)) + Ok B-))° <04
90 =2 04 <K 3.0 + (K 9.0)) <0.6
9-¢=3 0.6 < (¥°(k,9-0) + (¥ (k,0-)) < 0.8
9 =4 08 <%k 9-)) + %k, 3-) < 1.0

It is important to note that the thresholds defining the evaluation grades in Table 4 (i.e., 0.0, 0.2,
0.4, 0.6, 0.8) are based on expert experience and standard practices in the relevant domain. These
thresholds guide the mapping of FFNBSES numerical evaluations to qualitative grades, while still
allowing flexible adjustment to reflect expert judgment in different scenarios. Although alternative
threshold settings may slightly affect the final ranking of alternatives, the FFNBSES framework
ensures that the evaluation process remains consistent, interpretable, and adaptable across diverse
DM contexts. Additionally, within each cubic-sum range corresponding to a grade, multiple FFN
pairs satisfy the defining inequality, and these pairs can be selected based on expert judgment, ensuring
reproducibility while providing flexibility to accommodate different applications or contexts.

Based on these thresholds and expert judgments, the finalized FF5BSES evaluations for each
alternative are compiled in Table 5.

AIMS Mathematics Volume 11, Issue 1, 1071-1116.
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Table 5. Expert evaluations of Metropolitan Planning Authority planning scenarios in the
form of an FF5BSES (v, Y Z,5).

7.7.4,9)

K1

K2

K3

Ky

Ks

(b, v, 1)
(br,v2,1)
(b2, 1, 1)
(02,10, 1)
(b1,v1,0)
(b1,12,0)
(b2, v1,0)
(b2, 12,0)
(=by, v, 1)
(=b1, v, 1)
(=by, vy, 1)
(=ba, 12, 1)
(=by1,v1,0)
(=b1,v,,0)
(=bs, vy, 0)
(=b2,v,0)

(3,0.9,0.2)
(2,0.6,0.6)
(2,0.3,0.8)
(0,0.3,0.4)
(0,0.1,0.5)
(0,0.2,0.3)
(1,0.6,0.5)
(3,0.7,0.7)
(0,0.0,0.1)
(1,0.6,0.2)
(0,0.4,0.4)
(0,0.1,0.5)
(2,0.6,0.7)
(3,0.7,0.7)
(2,0.5,0.7)
(1,0.6,0.3)

(2,0.5,0.7)
(2,0.5,0.7)
(2,0.2,0.8)
(1,0.6,0.4)
(2,0.7,0.4)
(1,0.6,0.5)
(0,0.5,0.4)
(2,0.7,0.5)
(2,0.7,0.4)
(1,0.3,0.6)
(1,0.6,0.5)
(0,0.5,0.2)
(1,0.6,0.5)
(2,0.6,0.7)
(0,04,0.1)
(2,0.8,0.3)

(4,0.8,0.7)
(2,0.4,0.7)
(3,0.4,0.9)
(4,1.0,0.0)
(0,0.4,0.4)
(2,0.7,0.6)
(0,0.0,0.1)
(0,0.0,0.2)
(0,0.1,0.0)
(2,0.1,0.8)
(0,0.3,0.3)
(0,0.0,0.4)
(0,0.1,0.0)
(1,0.3,0.7)
(3,0.2,0.9)
(1,0.6,0.3)

(1,0.5,0.5)
(3,0.8,0.5)
(1,0.5,0.5)
(2,0.7,0.4)
(0,0.1,0.3)
(1,0.1,0.6)
(2,0.6,0.7)
(2,0.6,0.7)
(2,0.8,0.2)
(0,0.5,0.4)
(2,0.7,0.5)
(2,0.8,0.2)
(0,0.4,0.5)
(2,0.8,0.3)
(1,0.2,0.6)
(1,0.3,0.6)

(0,0.1,0.4)
(1,0.5,0.6)
(0,0.5,0.4)
(2,0.3,0.8)
(1,0.5,0.5)
(1,0.6,0.4)
(2,0.7,0.6)
(2,0.4,0.7)
(0,0.1,0.1)
(0,0.2,0.4)
(0,0.0,0.5)
(1,0.1,0.6)
(2,0.7,0.4)
(2,0.4,0.7)
(1,0.2,0.6)
(1,0.5,0.5)

We proceed by defining essential operations on FENBSESs and outlining their algebraic properties
grounded in the underlying theory. Each operation is accompanied by illustrative examples. The
operations covered include the null and whole sets, complement, subset relation, equality, notions of
agreement and disagreement, along with union and intersection.

We start with two important definitions, null and whole sets, which represent the lower and upper
bounds in the FENBSES framework.

Definition 3.2. An FFNBSES (¥, y", ¢, N) is termed a relative null set if, for every € € { and k € k,
it holds that ?N(f)(/() = (0,0.0, 1.6}, and for every = € —( and k € k, it holds that ZN(—|€)(K) =
(N -1,1.0,0.0).

Definition 3.3. An FFNBSES (" ,v¥,¢,N) is termed a relative whole set if. for every € €  and
k €k, it holds that VW(K)(K) = (N_— 1,1.0,0.0), and for every =€ € —{ and k € k, it holds that
ZW(—'K)(K) =(0,0.0,1.0).

The following is the definition of subsethood and equality, which establish hierarchical relationships
and enable comparison between FFNBSESs.

Definition 3.4. An FFNBSES (y,, Zl,gl,N) is considered a subset of (72,ZZ,§Z,N), denoted by
(?1,21, l,N) & 75, Y, (>, N), if the following criteria hold:
1) & €&

2) For each € € ¢ and k € k: 91; < Dap, Y1k, D10) < V5 (k,Dap), and Y5 (k, %ag) < 7 (k, Phy), where
(K, D10, YLk, D10, Yk, D1 ) € ¥1(6) and {(k, D), V5 (K, B20), Vs (K, B20)) € Yo (E);
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3) Foreach -t € =, andk € k: ,_, < V-, Y, Sk, 0y-y) < Y, Sk, 01-p), andye(/( Py < Y, S(k, Ua-p),

where (k910,70 010, Y206 B0y € ¥, (=) and (k. Bao0). Yok, D20, Y20, D)) €
7,0

Example 3.2. Building on Example 3.1, consider two FF5SBSESs (71,Zl,§1, 5) and (?2,22,{2, 5) as
presented in Tables 6 and 7, respectively. It is evident that (y,, Y, 4,5 C >, Y, (>, 5) holds.

Table 6. Tabular representation of the FFSBSES (y,, Y, {1,5) in Example 3.2.

Viy,4.9 K K2 K3 Ks Ks

(b1,v1, 1) (1,0.2,0.7) (1,0.1,0.6) <(0,0.0,0.5) (3,0.5,0.8) <0,0.1,0.4)
(b2, 02, 1) 3,0.2,0.9) (3,0.1,0.9) (2,04,0.7) (1,0.1,0.6) <(1,0.2,0.7)
(b1,v2,0) (0,0.0,0.3) (1,0.2,0.6) (2,0.4,0.8) (1,0.0,0.7) (1,0.2,0.6)
(=by,vy, 1) (1,0.7,0.2) (1,0.6,0.3) (2,0.8,0.3) <(0,0.5,0.1) (1,0.6,0.2)
(=by, 5, 1) (1,0.6,0.3) (1,0.7,0.1) (2,0.7,0.4) (2,0.8,0.4) (2,0.8,0.0)
(=by,v2,0)  (0,0.4,0.1) (0,0.5,0.1) (1,0.6,0.2) (3,0.8,0.5) ¢3,0.9,0.4)

Table 7. Tabular representation of the FFSBSES (y,, Y, {>,5) in Example 3.2.

72,7,,42,3) K K> K3 Kq Ks

(b1, vy, 1) (2,0.6,0.6) (2,0.7,0.5) <(1,0.6,0.4) (3,0.6,0.8) <(0,0.4,0.1)
(by, v, 1) (3,0.5,0.8) (3,0.2,0.9) (2,0.7,0.5) (2,0.7,0.6) <(1,0.6,0.5)
(by,v2,0) (1,0.6,0.3) (2,0.8,0.2) <(2,0.8,0.3) (2,0.5,0.7) (3,0.8,0.5)
(=by, vy, 1) (0,0.1,0.5) (1,04,0.6) (1,0.3,0.6) (0,0.4,0.4) (0,0.3,0.5)
(=by, v, 1) (0,0.3,0.5) (1,0.6,0.3) <(1,0.5,0.5) <0,0.0,04) <(1,0.6,0.2)
(=b1,v2,0) (0,04,0.1) (0,0.1,0.5) <(0,0.5,0.3) (1,0.5,0.5) (1,0.4,0.6)

Next, we define positive agree/disagree and negative agree/disagree, which we utilize in our
methodology to facilitate computationally efficient handling of expert opinions.

Definition 3.5. Two FFNBSESs (?1,ZI,§I,N) and (72,12,{2,N) are considered equal if both
(71’Zl’§laN)é(?Zazzaéz’N) and(?27zz9§2’N)é(?]azlvél’N) hOldtrl/le.

Definition 3.6. Let (y,y,{, N) be an FFNBSES. The positive agree part, denoted by (y,7y,{, N)®' isa
subset of (y,y,{,N) defined as

¥y, LN = PO | L e px Ex{1}).

Definition 3.7. Let (y, Y {,N) be an FFNBSES. The positive disagree part, denoted by (7, Y L, N)®,
is a subset of (y,,{,N) given by

77, L N)® = () | L € 9 x Ex{0}).
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Definition 3.8. Consider an FFNBSES (y, Y {,N).
(y, Y £, N)®, is a subset of (¥, Y {,N) described by

The negative agree part, represented as

Fr LN = (7 (<0 | =L € =9 x Ex {1}}.

Definition 3.9. Given an FFNBSES (y,y,{, N). The negative disagree part, denoted as (y,y,{, N ),
is a subset of (v, Y, N) and defined by

77, £ N)™ = {y™(=0) | =€ € =p x E X {0}}.

Example 3.3. Let us consider the FF5BSES (y,v,{,5) displayed in Table 5 from Example 3.1. The
corresponding positive agree, positive disagree, negative agree, and negative disagree components are
given in Tables 8—11.

Table 8. Positive agree (y, Y4, 5)® derived from the FF5BSES (¥, Y,¢,5) in Example 3.1.

7.7.4.5% K K> K3 Ky Ks

(by, v, 1) (3,0.9,0.2) (2,0.5,0.7) <(4,0.8,0.7) (1,0.5,0.5) <(0,0.1,0.4)
(b1,v, 1) (2,0.6,0.6) (2,0.5,0.7) (2,0.4,0.7) (3,0.8,0.5) (1,0.5,0.6)
(ba, vy, 1) (2,0.3,0.8) (2,0.2,0.8) (3,0.4,0.9) (1,0.5,0.5) <(0,0.5,0.4)
(by, v2, 1) (0,03,0.4) (1,0.6,0.4) <(4,1.0,0.0) <(2,0.7,0.4) (2,0.3,0.8)

Table 9. Positive disagree (y, s £, 5)® derived from the FFSBSES (¥, s {,5) in Example 3.1.

7,749« K2 K3 Ks Ks

(b1,v1,0) (0,0.1,0.5) (2,0.7,0.4) <(0,0.4,0.4) <(0,0.1,0.3) (1,0.5,0.5)
(b1, v2,0) (0,0.2,0.3) (1,0.6,0.5) (2,0.7,0.6) (1,0.1,0.6) (1,0.6,0.4)
(b2, v1,0) (1,0.6,0.5) ¢0,0.5,0.4) <0,0.0,0.1) <2,0.6,0.7) <2,0.7,0.6)
(b2, 12, 0) (3,0.7,0.7) (2,0.7,0.5) <(0,0.0,0.2) <(2,0.6,0.7) <2,0.4,0.7)

Table 10. Negative agree (7, 7.4, 5)°" derived from the FFSBSES (v, Y4, 5) in Example 3.1.

(?9 Z’ {9 5)61 K1 K3 K3 Ky Ks
(=by,v1, 1) €0,0.0,0.1) (2,0.7,0.4) <0,0.1,0.0) (2,0.8,0.2) <0,0.1,0.1)
(=by, v, 1) (1,0.6,0.2) (1,0.3,0.6) <¢2,0.1,0.8) (0,0.5,0.4) <0,0.2,0.4)
(=by, v, 1) €0,0.4,0.4) (1,0.6,0.5) <0,0.3,0.3) (2,0.7,0.5) <0,0.0,0.5)
(=by, v, 1) €0,0.1,0.5) (0,0.5,0.2) <0,0.0,0.4) (2,0.8,0.2) <(1,0.1,0.6)
AIMS Mathematics Volume 11, Issue 1, 1071-1116.
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Table 11. Negative disagree (¥,vy,{,5)% derived from the FF5BSES (7,v,,5) in
Example 3.1. B -
7.7.4.5% K K> K3 Ks Ks
(=by,v1,0)  (2,0.6,0.7) (1,0.6,0.5) (0,0.1,0.0) <(0,0.4,0.5) ¢2,0.7,0.4)
(=b1,v2,0)  (3,0.7,0.7) (2,0.6,0.7) (1,0.3,0.7) <(2,0.8,0.3) ¢2,0.4,0.7)
(=by,v1,0)  (2,0.5,0.7) ¢0,0.4,0.1) (3,0.2,0.9) (1,0.2,0.6) <1,0.2,0.6)
(=by, v2,0)  (1,0.6,0.3) (2,0.8,0.3) (1,0.6,0.3) (1,0.3,0.6) (1,0.5,0.5)

The complementation in the FFNBSES environment is defined as follows:
Definition 3.10. The complement of (¥,y,{,N), denoted by (¥,y,{,NY, is defined as (¥,y,{, N)* =
(?é,zé,{, N), where for every £ € { and k €k, it follows that ?5(5) = Z(—|€), which implies ﬁf = 9,
?eE(K, P) = z@(K, 9-¢), and 765(/@ D) = ZG(K, ¥-¢). Likewise, for each =€ € = and k € k, we have
V(=0 =Y(0), ie, 95, =D, Yk, 9-0) = ¥k, B), and y*(k,9-¢) = Y7k, 9,).

Example 3.4. Let us refer to the FF5SBSES (71,Zl,§ 1,5) provided in Table 6 of Example 3.2. The
corresponding complement, (y,, Y 01, 5)S, is displayed in Table 12.

Table 12. The complement (y,, Y 1, 5)¢ of the FFSBSES (?1,21, {1,5) in Example 3.2.

71.7,:4.5° & K2 K3 K4 Ks

(b1, v, 1) (1,0.7,0.2) (1,0.6,0.3) (2,0.8,0.3) <(0,0.5,0.1) (1,0.6,0.2)
(b2, v, 1) (1,0.6,0.3) (1,0.7,0.1) (2,0.7,0.4) <(2,0.8,0.4) (2,0.8,0.0)
(b1, v2,0) (0,04,0.1) (0,0.5,0.1) (1,0.6,0.2) (3,0.8,0.5) (3,0.9,0.4)
(=by, v, 1) (1,0.2,0.7)y (1,0.1,0.6) <(0,0.0,0.5) <(3,0.5,0.8) (0,0.1,0.4)
(=by, va, 1) (3,0.2,0.9) (3,0.1,0.9) (2,04,0.7) (1,0.1,0.6) (1,0.2,0.7)
(=by,v2,0) (0,0.0,0.3) (1,0.2,0.6) (2,0.4,0.8) (1,0.0,0.7) (1,0.2,0.6)

Proposition 3.1. Let (7,y,{,N) be an FFNBSES, and let (7N,ZN, ,,N) and (VW,ZW, ., N) represent
the relative null and relative whole, respectively. Then,

1) (7.7, L. NY)Y = 3. 7.4, N);
2) @ ANENY =G YN
3) @YY GNY = GLYLEN).

Proof. Straightforward. O

The definitions of extended and restricted unions and intersections generalize classical set-theoretic
operations to the FFNBSES environment. These operations retain essential properties such as
commutativity and associativity.
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Definition 3.11. The extended union of (?1,11,{ 1, N7) and (?z,zz,g“z,Nz) is denoted and defined as
¥1>¥,- 66 ND Us (72,7, L2, N2) = (7,7, $1 U o, max(Ny, Na)), where for all £ € £ U £,

71(0), ifteli\ o,
Y2(0), ftehH\,
YO =9, max{, ),
<max{7_/€IB(K,0l€)’ 7?(’@ ﬁZ[)L ’ lfg € {1 N {2’
min{y7(k, %1,), ¥5 (k, $20)}

where ((k,91,), Y5 (K, 91,), Y7 (K, 91,)) € ¥,(£) and {(k, D2¢), V5 (k, D2, V5 (k, D21)) € ¥,(£).
Similarly, for all —~{ € —~{; U ={,,

Y,(=0, if =€ € =1 \ =&,
Zz(_'f)’ if = € =\,
Y= =15 (k, min{d_;, 2.},

min{y?(k, $1-0), Yk, 92-0)), if = € =& N =G,
max{z?(x, ti-0), ZS(K, -0}

where (K, 910), Y7 (K, 91-0), Y7 (K, F1-0)) € ¥ (=0) and (K, 92-¢), ¥3 (K, F2-0), V5 (i, D2-)) € 7, (=)

Example 3.5. With reference to Example 3.1, the FF5BSESs (?1,11, {1,5) and (y,, Y, (0, 5) are listed
in Tables 13 and 14, respectively. Their extended union outcome is presented in Table 15.

Table 13. Tabular representation of the FFSBSES (y,, Y {1,5) in Example 3.5.

Viy49) K K2 K3 Ks Ks

(b1, v, 1) (3,0.5,0.8) (2,0.3,0.8) (4,1.0,0.0) <0,0.1,0.4) <(4,0.9,0.6)
(b2, v1,0) (2,0.7,0.6) <0,0.4,0.1) <2,0.8,0.2) (0,0.4,0.5) <(1,0.5,0.5)
(b2, v2,0) (2,0.7,0.5) (2,0.5,0.7) (2,0.1,0.8) (¢3,0.9,0.2) (3,0.4,0.9)
(=by,vy,1)  (0,0.1,0.3) (2,0.7,0.6) (0,0.0,0.5) <(1,0.5,0.6) <0,0.1,0.3)
(=by,v1,0)  (2,0.8,0.3) (0,0.5,0.3) (1,0.5,0.5) (4,0.9,0.5) ¢(3,0.8,0.5)
(=by,v2,0)  (1,0.2,0.7) (1,0.3,0.7) (1,0.6,0.5) <0,0.4,0.4) (0,0.5,0.1)

Table 14. Tabular representation of the FFSBSES (y,, Y, {,,5) in Example 3.5.

(72,7,,2:3) K K2 K3 Ks Ks

(b1, v1,1) (0,0.0,0.2) (1,0.4,0.6) (3,0.7,0.7) (1,0.5,0.6) (2,0.6,0.7)
(by,va, 1) (1,0.1,0.6) (2,0.4,0.7) (1,0.5,0.5) (3,0.6,0.8) (3,0.4,0.9)
(b2, v2,0) (3,0.6,0.8) (1,0.6,0.5) <(0,0.5,0.0) <0,0.1,0.3) <4,1.0,0.0)
(=by, vy, 1) (2,0.5,0.7) (2,0.7,0.6) (1,0.3,0.6) (2,0.6,0.6) <0,0.1,0.4)
(=b1,vp,1)  (3,0.8,0.6) (2,0.2,0.8) (3,0.8,0.5) <(0,0.3,0.3) (1,0.0,0.7)
(=by,v2,0)  (1,0.1,0.6) ¢3,0.9,0.1) (2,0.7,0.5) (2,0.4,0.8) <0,0.2,0.4)
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Table 15. The extended union (71,Zl,§1,5) Us (?2,)_/2,{2,5) = (73,23,{1 U £,5) in

Example 3.5.

737,60V 8,5) « K2 K3 Ky Ks

(by, vy, 1) (3,0.5,0.2) (2,04,0.6) (4,1.0,0.0) (1,0.5,0.4) <(4,0.9,0.6)
(by,va, 1) (1,0.1,0.6) <(2,0.4,0.7) (1,0.5,0.5) (3,0.6,0.8) (3,0.4,0.9)
(b2, v1,0) (2,0.7,0.6) (0,0.4,0.1) (2,0.8,0.2) (0,0.4,0.5) (1,0.5,0.5)
(b, v2,0) (3,0.7,0.5) (2,0.6,0.5) (2,0.5,0.0) (3,0.9,0.2) (4,1.0,0.0)
(=by, vy, 1) (0,0.1,0.7) (2,0.7,0.6) (0,0.0,0.6) (1,0.5,0.6) <(0,0.1,0.4)
(=by,v0, 1) (3,0.8,0.6) (2,0.2,0.8) (3,0.8,0.5) (0,0.3,0.3) (1,0.0,0.7)
(=bs, v1,0) (2,0.8,0.3) (0,0.5,0.3) (1,0.5,0.5) ¢4,0.9,0.5) (3,0.8,0.5)
(=bs, v2,0) (1,0.1,0.7) (1,0.3,0.7) (1,0.6,0.5) <0,0.4,0.8) <(0,0.2,0.4)

Proposition 3.2. Let (y,, Y, {1, Ny), (75, Y, {$, No), and (y;, Yy {3, N3) be FFN|BSES, FFN,BSES, and
FFN;BSES, respectively. Then,

]) (?19117§1’N1) oé (?2’Z2a§2’NZ) = (?2722’42’]\]2) oé (’}_/lazlaglaNl);

2) (?1’11’419N1) Oé ((72’ZQ’§Z,N2) Oé (’73523953’]\[3)) = ((7]azla§l9N1) Oé (’729229§ZaN2)) Oé
(?3,137437]\,3)'

Proof. Straightforward. O

Definition 3.12. The extended intersection of (y,, Y {1, Ny) and (y,, Y, (>, N») is denoted and defined
as (?1 5 Zl 5 419 Nl) ﬁé (72’ ZZ, 527 NZ) = (?’ Za él U §2’ maX(Nla N2))’ Wherefor all f € é‘/l U 42’

v,(0), iftedi\ &,
v,(0), ifteH )\,
YO =1 (k, min{d, 95},

min{yy(k, 1), 75k, Do)}, ), if L €L N,
max{’)_/le(/(, ﬂl {’)’ 7?(/(, 025)}

where ((k,%10), 75 (k, 91), Vi (k, D1,)) € ¥,(€) and {(k, D2¢), V5 (k, D20), V5 (&, F20)) € ¥,(D).
Similarly, for all =€ € =, U ={,,

y,(=0), if =€ € =41\ =4y,
Y,(=0), if ~C € =5\ ¢,
Y(=0) =1 (k, max{t_, P2-)),

max{zef(/(, ti-e), Zf(K, th-oh , if~t e N,
min{z?(K, P1-0), zi(K, )}

where (K, 910), [ (K, 01-0), Y] (K, F1-0)) € ¥ (20) and {(k, F2-0), ] (K, F2-0), V5 (K, Dap)) € 7, (0.
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Example 3.6. Consider the FF5BSESs (y,,y Y4 5) and (yz,y $»,5) provided in Tables 13 and 14,
respectively. Table 16 presents the extended intersection a’erzved from them.

Table 16. The extended intersection (?I,ZI,Q,S) Ny (72,22,{2,5) = (74,24,{1 U £,5) in

Example 3.6.

ey, 61V 0,5) K K> K3 Ky Ks

(by, vy, 1) (0,0.0,0.8) (1,0.3,0.8) <(3,0.7,0.7) (0,0.1,0.6) <(2,0.6,0.7)
(by,vn, 1) (1,0.1,0.6) (2,0.4,0.7) <(1,0.5,0.5) (3,0.6,0.8) (3,0.4,0.9)
(by, v1,0) (2,0.7,0.6) (0,0.4,0.1) (2,0.8,0.2) (0,0.4,0.5) (1,0.5,0.5)
(by, v2,0) (2,0.6,0.8) (1,0.5,0.7) <0,0.1,0.8) (0,0.1,0.3) (3,0.4,0.9)
(=by, vy, 1) (2,0.5,0.3) (2,0.7,0.6) <(1,0.3,0.5) (2,0.6,0.6) <(0,0.1,0.3)
(=b1, v, 1) (3,0.8,0.6) (2,0.2,0.8) (3,0.8,0.5) (0,0.3,0.3) (1,0.0,0.7)
(=bs, v1,0) (2,0.8,0.3) <(0,0.5,0.3) (1,0.5,0.5) (4,0.9,0.5) (3,0.8,0.5)
(=bs, v2,0) (1,0.2,0.6) (3,0.9,0.1) <(2,0.7,0.5) (2,04,04) <(0,0.5,0.1)

Proposition 3.3. Let (y,,y {1,N1) (yz,y {, N»), and ()/3,)/ {3, N3) be FFN,BSES, FFN,BSES, and
FFN;BSES, respectively. Then

]) (71’ZI9§I9N1) ﬁé (?2")_/25 {Z’NZ) = (?2912’ gZ’NZ) hé ()_/1’21’51’]\71)"

2) 01y 8 ND 06 (727,082 Mo (73,7, 63.8N3) = (17,546 ND D (72,7,.0.N2) 0
(73’ {39N3)

Proof. Straightforward. O

Definition 3.13. The restricted union of (71,21, {1, Ny) and (72,22, (>, N») is denoted and defined as
iy, 41 N1) Ur 72, ¥,,42: N2) = (7,7, §1 N {, max(Ny, Na)), where forall € € Ly N & # 0,

7(5) = <(K7 maX{ﬁlg, 02[}), max{ﬁ(’(’ ﬁlf)’ ?GZB(K’ 1-92[)}’ min{?le(K’ 191[)’ ﬁ(’(’ 192[)}>a

where {(k,01,), Y (K, 01¢), ¥ (K, 010)) € ¥,(£) and {(k, 92¢), V5 (K, D2), V5 (K, F20)) € Y,(0).

Similarly, for all =€ € ={, N =& # 0,
Y(=0) = (&, min{d, Do), min{y T (k, $1-0), 7 (k, 92-0)}, max{y] (&, d1-0), ¥ ( Fa-0)]),

where {(k, 1), Y (K, 010, ¥ (K, F1-0)) €y, (=0) and (&, F2-0), ¥ (K, F2-0), YI (K, 020)) €y (20).

Example 3.7. Recall the two FF5BSESs (yl, {1,5) and (y,,7y (2,5) listed in Tables 13 and 14,
respectively. Their corresponding restricted unzon is displayed in Table 17.
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Table 17. The restricted union (?1,11,&,5) Us ()72,22,{2,5) =

(757257{1 m 42,5) ln

Example 3.7.
75 ¥, 00,5« K2 K3 Ky Ks
(by, vy, 1) (3,0.5,0.2) (2,04,0.6) (4,1.0,0.0) (1,0.5,0.4) <(4,0.9,0.6)
(b, v2,0) 3,0.7,0.5) (2,0.6,0.5) (2,0.5,0.0) (3,0.9,0.2) (4,1.0,0.0)
(=by, v, 1) (0,0.1,0.7) ¢2,0.7,0.6) <(0,0.0,0.6) (1,0.5,0.6) <(0,0.1,0.4)
(=bs, v2,0) (1,0.1,0.7) (1,0.3,0.7) (1,0.6,0.5) <0,0.4,0.8) <(0,0.2,0.4)

Proposition 3.4. Let (?l,zl, {1, Ny), (?z,zz, $H, Ny), and (?3,)_/3, {3, N3) be FFN,BSES, FFN,BSES, and
FFN;BSES, respectively. Then,

]) (?19117§1aN1) 07‘ (?Z’ZZ’QVZ,NZ) = (?2522’423N2) 07‘ (71321’{17N1);

2) (?l’zl’ngl) 07‘ ((72azza§2’N2) 07‘ (739139§3aN3)) = ((7]9219415N1) Of (?2’22’429]\]2)) O}v‘
(?3,137{371\,3)'

Proof. Straightforward. O

Definition 3.14. The restricted intersection of (y,, Yy {1, Ny) and (y,, Y, {, N) is denoted and defined
as (v, y,»¢, N Ny (72, ¥,, €2, N2) = (7,7, 1 N &, max(Ny, Na)), where for all € € £y 0 & # 0,

)_/(5) = <(K7 min{ﬁl[’ 792{’})’ min{ﬁ(’& ﬁlf)’ ﬁ(K7 025)}7 max{??(K, 19'16)’ ﬁ(K’ ﬂZ()}>’

where {(k,91,), V1 (k, 910), Y5 (k. 910)) € 7,(€) and {(k, D2¢), V5 (k, B2), V5 (K, D20)) € 7, (0).
Similarly, for all =€ € —~{, N =&, # 0,

Y(ﬂf) = <(K7 maX{ﬁl B4 ﬂ2—|€})a maX{)/@(K, ﬁl —f)’ 7$(K, 19'2—[)}5 min{ye(Ka ﬁl—'f)5 ye(K’ ﬁZﬂ[)}%
L 21 L2 =1 L2

where {(k, 910, Y2k, 910, Y2k, B10) € ¥ (=) and (K, 92-0), Y2 (K, 92-0), Y2k, 92-0)) € ¥, (L),

Example 3.8. Consider once more the FF5BSESs (y,, Yy {1,5) and (y,, Y, (,5) as detailed in
Tables 13 and 14. The outcome of their restricted intersection is presented in Table 18.

Table 18. The restricted intersection (?1,21,41,5) Ny (?2,12,4“2,5) = (?6,26,51 N {,5) in

Example 3.8.
Ve ¥, 1005 ki K> K3 Ky Ks
(by, vy, 1) (0,0.0,0.8) (1,0.3,0.8) (3,0.7,0.7) <0,0.1,0.6) (2,0.6,0.7)
(by, v2,0) (2,0.6,0.8) (1,0.5,0.7) <(0,0.1,0.8) <(0,0.1,0.3) (3,0.4,0.9)
(=by, v, 1) (2,0.5,0.3) (2,0.7,0.6) (1,0.3,0.5) (2,0.6,0.6) (0,0.1,0.3)
(=bs, v2,0) (1,0.2,0.6) (3,0.9,0.1) (2,0.7,0.5) (2,0.4,04) (0,0.5,0.1)

Proposition 3.5. Let (?1,11, {1, Ny), (?Z,Zz, $H, N,), and (?3,)_/3, {3, N3) be FFN,BSES, FFN,BSES, and
FFN;BSES, respectively. Then,
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) (y {1,N1) Ny CZY%% §2,N2) =Y 52,N2) Ny iy {1,N1)
2) (’yl’zl’ngl) miv‘ ((y2a22552’N2) m? (73,13,43,N3)) = ((71,ZI,§I,N1) ﬁf (?2»2234291\]2)) h}v‘
(?3,137437]\,3)'
Proof. Straightforward. O

We now proceed to explore the connections among extended union, extended intersection, restricted
union, and restricted intersection in the context of FFNBSESs. These operations satisfy classical
algebraic properties, including De Morgan’s laws, absorption, and distribution, thereby preserving
the familiar set-theoretic structure within the FFNBSES environment.

Proposition 3.6. Let (y,, Y, ,{,N) and (y,, Y, ,{,N) be two FFNBSESs. Then,

D 776N U 02,7, 6N) = Gy SN Or (72,7, SN

2) (yl,zl,f, N) s (72,7, N) = (yl,zl,g, N) 0 72,7, V).
Proof. Straightforward. O
Proposition 3.7. Let (y,, Y {1, N) and (y,, Y, (>, N) be two FFNBSESs. Then,

D (@17, 0N) Us Gy, 6o M) = G175 8N e (72,7, 0, N

v

2) (757,24 N) e (7,7, &, N)) =0y, 4,N)F U (v Y2 Y, &, N

3) ((7192 ,§1,N) U? (72’7 ’é/Z’N)) = (?l’z ’él’N)C ﬁ?’ (?Z’Z ’é/ZaN)C;

4) ((?’1’ fl,N) " (72’ §2,N)) (71, fl,N) Uy (72’ fz,N)c
Proof. (1) Let ()’1,21,&,1\’) Uy (Yz,zz,éz,N) = (Y3,23,§1 U {,N). Then, ((%Zl,{l,N) U
72:7,.62.N)) = CZ RTINS &L, N)YE = (yg,zg, iU, N). Forall £ € £, U,
v1(0), if¢edi\ &,
v, (0), ifte )\,
V3O =1 (k, max{9,, 92},
<max{7?(l<,l91e),7§(l<, ﬁze)},>, iftelind,
min{y{(k, 91¢), ¥5 (K, D20))

where ((k, %), ¥} (k, 91,), 71 (k, 91,)) € ¥,(£) and {(k, D7), V5 (k, D2¢), V5 (K, 020)) € 7, (0).
Similarly, for all =€ € ={; U =45,

y,(=0), if =0 € =4y \ =4,
y,(=0), if =l € =0\ =4,
Y, (20 =4 (k,min{d_, D)),

min{y?(k, 91-0), Y]k, D20} ), if ~L € =4 N =,
max{y?(k, 91), ¥ (k, 02-0)}
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where (k. ). Y2k, B10). Yok, 1)) € , (=€) and {(k, B2-). Y2k, B2-). Yo (k. 92-) € ¥ (0).
Then, for all £ € {; U &,

7,0 ifeedi\ o,

,(=0), iffeH\ 4,

Y3(0) =y, (=0 =1 (k, min{_s, D)),

min{y((, $1-0), Y (k. D20} ), if L€ gy N .

max{zle(K, t-0), Zf(K, )}

Similarly, for all =¢ € ={; U =45,

Y1(0), if =0 € =0\ 4,
7,0, if =€ € 5\ =41,
VoGO =730 = { (k, max{d, ),

max{FE(k, 910, 72k, tho)L.) . if ~C € =41 O s,
mingy (k, 910), 75 (k, 920))

On the other hand, let (71,Zl,§1,N)Z’ Ny (72,12,{2,N)5‘ = @4,24,{1 U&,N). Forall £ € 4 U 4,

¥.(0), ift e\,
75(0), iféeH )\,
Y4(0) =1 (x, min{d],, 95,}),

min {7?5(/@ &), 75 (x, ﬁ;,)} > iftesiné.

max {77 (k, 95 ). 75" (k. 95 )}

y,(=0), if£ € i\ &,
Zz(_'f)’ if¢edH\ 4,
=3 (&, min{d_., ¥ ¢}),
mﬂﬁmm%m&mmww,uwegmg
max {y°(c, 91-), Y2k, B0)

Similarly, for all =¢ € ={; U =45,

Zi(ﬁf), if =€ € —{1 \ —lé'z,
Z;(ﬂf), if =€ € =4\ 4,
(=0) =1 (k,max{¥_,. %5},

max {y*(k, 9_), Y (6, 95 )}.), if =€ € =41 N =L,
min {y%(, 95_,), Y5 (k. 35}

AIMS Mathematics Volume 11, Issue 1, 1071-1116.



1094

v1(0), if =€ € =4\ =4y,
Y,(0), if = € = \ 4,
=13 (k, max{th,, th}),

<max {??(K, B10), 75 (k, 7925)} ,> , it =l e =1 N,
min {ﬁ(K, D10), 5 (k, 1925)}

Since (?3,13,4“1 U &, N)* and (?4,14,& U &,, N) coincide for every € € {; U £, and =€ € =) U =(5,
the result follows directly.
The remaining parts can be established by analogous reasoning. m|

Proposition 3.8. Let (y,, Y {1, N) and (y,, Y, (>, N) be two FFNBSESs. Then,
D Gy, 40N U (017566 N) 08 (72, 7,, 8. N)) = (71,7 G N
2) 0y, 4N 0 (1766 N) Ur (72, 7,, 0. N)) = (71,7 G N
3) Gy, 8N U (01,565 N) 06 (2,7, 0. N)) = (31,7 G N
4) Gy, 66N s (317,56 N) U (72,7, 8. N)) = 71,7, 41 N).
Proof. (1) Suppose that ()71,1/1,(1,N) Ny ()72,)_/2,52,N) = (?3,13,51 N &, N). Then, for all £ € {1 N ¢,
Y3(0) = (&, min{d, Fp0)), minfy T (k, 310), 75 (&, $20)}, max{y7 (k, 91), 75 (K, $20))),

where ((k, %), ¥ (k, 91,), 1 (k, 91,)) € ¥,(£) and {(k, D2,), V5 (k, D20), V5 (K, B20)) € 7, (0).
Similarly, for all =¢ € ={; U =45,

7,20 = (&, max{d ¢, 92— ), max{y[ (&, D1-0), ¥ (K, D2-0)}, min{y T (k, 91-), Y5 (k, F2-0)D),

where {(k, B10), Y2(K, T -0), Y2k, 910) € ¥, (=0 and (K, B2-), Y2k 920, Y2k, D)) € y (=0,
Now, let (71,7, £1.N) Us (73,7306 0 &2 N) = (7,7,:61 U (& N &), N) = (747,41, N). Then, for

all £ € {1 U (&1 N &),

Y1), if €€ i\ (&N &),

Y3(0), ifleinH)\ & =0,

Ya(0) =\ (k, max{d,, I3.)),

max {726, 910, 72k, 93] > frennEng.

min {7} (k, 91), 75 (k, #3)}

710, if £ e i\ (61N,
(¢, max{d,, min{d, Fo(}}),

<max (77 010), min {75 (k, 1), 75 (k. 920)} > if€edn(Gna.
min {77 (k, 91,), max {¥7 (k. 91), 75 (k. 920)}
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Where <(K7 ﬁ3€)7 ﬁ(Ka 193[)7 ??(Ka ﬁ3f)> € ’)_/3(5)

Similarly, for all =€ € ={; U (=4 N =),
y,(=0), if =€ € =41\ (=41 N =),
bASY if =£ € (=41 N =)\ =41 = 0
Y, (=0 =1 (k,min{d_,, I3}),
min {')_/?(K, ﬂl —{)a Z?(K’ ﬂ3_,[)} ,> S if =€ € —|§1 N (—|§1 N —|§2)
max {y°(k, 1), Y5k, 350)

y,(=0), if =0 € =1\ (=1 N =),

(, min{d -, max{d ., P> }}),
min {y®(k, 91 ,), max {y®(k, B1), Y2 (k. 92 }} > if =0 € =01 N (=4 N =E),
max {ZIS(K, ¥1-), min {Zle(K, 9120, 75k, ﬁzﬂf)}}

where ((k, ¥3-¢), Y (K, F3-0), V5 (K, F30)) € 7 (=0).
Hence,

= () = { 710, e\ NG
4 7,0, iftesins
and
p v,(=0), if =l € =4\ (=4 N =)
7,00 = 7, {(=0), it =l €~ N —E.

Therefore, (¥,.7,.£1.N) Ue (71,7, {1 N) O (72, 7,: 2. N)) = (71,7 . 41, N).
The other parts can be demonstrated usmg similar arguments m|

Proposition 3.9. Let (y,, Y {1, Ny), (yz,y 0, Ny), and(y3,7 {3, N3) be FFNBSES, FFN,BSES, and
FFN;BSES, respectively. Then

]) (?1,117{]71\71) oé ((’72722’ {27N2) ﬁiv’ (?37 237 §3’N3)) = ((?1,1174171\71) oé (?2’12, {27 NZ)) ﬁiv’
((?17117 glaNl) oé (?37233 43’ N3));

2) (717ZI9§I9N1) hé ((?Z’ZZ’ gZa N2) Oiv” (73’ 23’ §3aN3)) = ((?152194191\]1) hé (?2’227 {29 NZ)) Or
(717,41 ND) Ne 737,43, N3));

3) (?19zlvglaN1) 07‘ ((?2’22, {2’ NZ) ﬁé (/73’ 23’ 53’N3)) = ((71,Zl’§1aN1) 07‘ (?2,229 (2’ NZ)) ﬁé
((71,21, é/I’Nl) 07’ (?35 Z3’ 43’ N3));

4) (?1,217§1’N1) ﬁlv’ ((?2,229 é/Z’NZ) Oé (?3’ 23’ é/3a N3)) = ((717117§I’N1) ﬁf’ (72’22’ §2’ NZ)) Oé
((?bzl’gl’Nl) ﬁf (?35 Z3a §39 N3));

5) (?1’1194191\]1) 07‘ ((72’ ZZ, §Z’N2) ﬁ? (73913, §3aN3)) = ((7]9219415N1) Of (?2»22’ {29 NQ)) ﬁ}v‘

((?1,11, §I’N1) 07‘ (?Sa Z3’ §3,N3));
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6) (v1,y,>¢1,N1) gt (72,7, 42.N2) Uy 73.7,-45:N3)) = ((71>7,-41:N) at 72:7,-£2.N2)) Uy
((71’11, gl’Nl) rv\IV’ (73,1/3, {3’N3))'

Proof. (3) Suppose that ((?z,zz, &, Ny) 0 737, {3, N3)) = (V4> ¥,»$2U &3, max(Nz, N3)). Then, for all
teH UG,

7,0, ifledH\d,

Y5(0), ifles\ o,

Y4(0) =4 (k, min{&r, F3,}),

<min (73 920). 75 (k. 93)) > iftetHng,
max (75 (k. #0). 75 (k. 93,)

where ((k, D2¢), V5 (K, D20), V5 (K, D20)) € ¥,(€) and ((k, D3,), V3 (K, F30), V5 (K, F30)) € Y5(0).
Similarly, for all =¢ € =, U =3,

7,0, if +£ € =03 \ 4.
7,(=0), if -~ € <5\ 2.
(=0) =1 (k,max{th_;, F3_¢}),

max {Ze;(/(a USSR 7_’?(/(, 03—{)} ’> , if =l e N,
min {yS(k, 92, (6, 0)}

where ((k, 920, Y7 (k, ¥2-0), V5 (K, D2-0)) € v, (=0) and {(k, F3-), Y5 (K, F3-0), I (K, P3-0)) €y, (=0).
Let (yy,y élaNl) Ur ()’457’ HU fs,maX(Nz,N%)) =¥ 7561 N (L UG, max(Nl,max(Nz,N3))
(y5,25 & U fz,max(Nl,Nz,Ng)) where &, =N and & = {1 N . Then, forall £ € &€ U &,

75(5) = <(K’ max{ﬁl Iz ﬂ4f})’ maX{??(K, ﬂl 5)’ ’)_/T(K, 1944)}’ min{?le(K’ ﬂ] f)’ ﬁ(K’ 194[)}>a

where ((k, 910), ¥ (k,D1,), V1 (k, 91,)) € ¥,(£) and {(k, Dar), Vs (k, Dag), V5 (K, F40)) € 74 (0).
Similarly, for all =€ € =&, U =&;,

¥,(=0) = {(k, min{#, _;, F4}), minfy (K P10y, (k. 94-¢)}, max{y (K B0y, °(k, 34-0)}),

where ((k, 1), y{(k, D10, Y7 (K, F1-0)) € ¥ (=) and ((k, Fa—p), Y (K, Fanp), ¥ (K, F4p)) € 7, (20).
Hence, for all f €& U fz,

(K’ maX{ﬁI[, ﬂZK})’
max (75 (k, 01). 75 (k. 920)} ), iteeé\ b

min {7} (k. 910). 75 (k. 02)}
(k, max{d ¢, P3.}),

¥s5(0) = <max P 910,75, 930}), iftle&\ &,

min {77 (k, 1), 75 (k. 03)}
(K’ max{ﬂl l min{ﬁZ& ﬁ3f}})9

@mW%ﬁMmmemaﬁmmm>,ﬁm&n&
min {77 (k, 01), max {75 (k, 92¢), 75 (k, 03) |}
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Similarly, for all =€ € =&, U =&;,

(k, min{9 1, 0-(}),
<min{ﬁ(x,ﬂm,zf(mﬂzﬂg)}, , £t € =) \ =6,
max {y(k, ), Y5k, Br0))
(k, min{9 1, 0s(})

5,07 <mm{Z?(K’ﬁ“")’ﬁ(K’M)}’ ’ if ¢ € =6\ ¢,

max {Z]G(K, 910,75 (k, 193%)}
<(K9 min{ﬂl ={» maX{ﬂZ—'f’ ﬂ3—|t’}})a

< min {y®(, 1), max {y2 (. 920, 2w, 050} ). iF ¢ € 1 1=
max {ZIG(K, ?1_,), min {ZS(K, Pp), ’X?(K, 193ﬁ5)}}>

On the other hand’ let (71, '}’1a {1, Nl) 07’ (72’ 7’2, §2’ NZ) = (’}_/6’ yéa gl N §2a maX(Nh NZ)) Then, for all
teling, - B h

Yo(0) = {(k, max{d,, 92,)), maxi{yy (k, 910), ¥5 (k, 92,)}, min{yy (k, 91,), 75 (k, 20)}).
Similarly, for all =€ € =&, U =&;,
¥, (50 = {(k, min{dh_, - }), min{y Tk, $1-), Y] (K, Do)} max{y [ (, F1-0), ¥ (k. F2-0)}).
Next, let ()_/1,7_/1,{1,N1) Us (73,23,53,N3) = (77,27,{1 N &, max(Ny, N»)). Then, for all £ € {1 N {3,

Y7(0) = {(k, max{d,, 93,)), max{yy (k, 91,), ¥5 (k, 93)}, min{y7 (k, 910), Y5 (&, I30)))-

Similarly, for all =€ € =&, U =&;,
¥,(~00) = ((k, min{8 . B3_}). minfy® (k. 91, (k. 95-0)) max{y®(k. 910 Yk, 95_0)).

Now, suppose that (¥, y,{1 N {2, max(Ny, N2)) N (7, ¥,,&1 N0 &, max(Ny, N3)) = (g, ¥, 61 U
&, max(Ny, N, N3)) where §1 HNGand & =4 N EG. Then, for all £ € & U &,

Ye6(0)s ifteé\&,

720, ifle&\ &,

Y30 =14 («, min{de,, 97,}),

<min (726, 90). 72k, 970 > L iflesng,
max {75 (k, 9,), 75 (K, 97,)}
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(k. max{dy, 9a)),
max (7206, 90,756, 920)) > , ifees\ b
min {7 (k. ). 75 (k. 0¢)]
(k. max{dy, 9s.)),

= <max 72k, 910,73k, 930) > ifeeé\ &,

min {'7?(/(’ ﬁlf)’ ﬁ(K’ ﬂ3f)}
(k, min{max{, ;, ¥}, max{d,, F3,}}),

min {max (77 (k, #1,). 75 (k. 920)} . max (7 (k. 010). V3 (k. 930}).) . if € e & né,
max {min {75 (k, 91,). 75 (k. 820) ), min 75k, 81, 73k, 930}

where ((k, J5,), Vg (K, F6,), Vg (K, F6,)) € ¥6(0) and ((k, F7), Y5 (k, D7), V5 (k, D7) € ¥7(0).
Similarly, for all =€ € =&, U —&;,

7_6(—'5), if =f € =61\ =&,

27(_'5)’ lf _lf e —|§2 \ —|§1,

ZS(_Ig) = (Ka maX{ﬁG_,[, ﬂ7—|f})’

<max {zf(K, z%ﬂe),zf(K, ﬁw)} > if =f € =&, N =&,.
min {y2(k, Fo-), ¥k, 07}

(k, min{} _, Fr_}),
<min [y 810, 770 920 if 0 € =&\ =6,

(«, min{t}; _,, F3_,}),

= < min {Z?(K’ ﬂl—f)’ Zf(K’ ﬁ:ﬁ’—‘t’)} s ), if =€ € —|§2 \ —|§] y
max {z]e(K, 910,73 (k, )

(k, max{min{d_,, %>}, min{}, _,, F3_,}}),

max {min {y®(c, #1,), Y0k, -0}, min {y®(, B1-0), Y26, 950} L), if € € =& 0 =6,
min {max {zle(K, P1-0, 75 (&, ﬁH)} , max {zle(K, 910,73 (k, 034)}}

where (K, D), Y2k, Bs-0), Y5 (K, F-0) € ¥, (~0) and {(k, D7), Y2 (K, 9, Y2k, D)) € 7. (=0).

Since (ys, ¥, §1U&2, max(Ny, Na, N3)) and (¥, ¥, £1UE, max(Ny, Na, N3)) coincide for all £ € £,U&,
and ~f € =& U =&, the result holds.

The remaining parts can be shown using a similar approach. O

4. FFNBSES-based decision-making methodology and healthcare application

Effective DM in complex scenarios requires models that integrate diverse expert opinions, including
both positive and negative assessments under uncertainty. This section presents the FFNBSES-based
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framework, which systematically aggregates bipolar fuzzy evaluations from multiple experts to identify
optimal alternatives.

After outlining the FFNBSES algorithm and its flowchart, the section applies the framework to
a smart healthcare case study, demonstrating its capability to support multi-criteria decisions where
technological, clinical, and ethical factors must be balanced.

4.1. Decision-making framework and algorithm

This subsection presents the procedural framework for the FFNBSES-based DM approach. The
methodology is formalized in Algorithm 1 and visually represented in Figure 1 to enhance clarity and
ease of implementation. The process begins with the definition of key components, including the set
of alternatives, parameters, expert group, and binary opinion space. The FFNBSES structure serves as
the core input, encapsulating complex evaluations from multiple experts.

The procedure systematically categorizes expert opinions into four bipolar evaluation subsets based
on agreement and polarity. For each category, FFNs are extracted and their corresponding score values
are computed using a predefined scoring function. These scores are then aggregated to derive positive
and negative influence measures, which are subsequently combined to obtain a final score for each
alternative. The alternative with the highest overall score is selected as the optimal decision.

This approach ensures a rigorous treatment of expert opinions under uncertainty and bipolarity,
offering a refined and nuanced tool for complex DM scenarios. The flowchart following the algorithm
further illustrates each step for clearer operational understanding.

To simplify the computational procedure, expert evaluations are initially organized as ordered
triples—such as y(£;)(k;) = (ﬂijfi,yf‘j.,y[ej> and y(—€)(k;) = (¥ jﬁgi,yffj.,ys.)—and arranged in tabular
format. Each triple is subsequently converted into a single numerical score, denoted by s;;, which
is computed using the score function S () from Definition 2.2(i). This transformation streamlines
the data, facilitates comparison and aggregation of expert inputs, and reduces the complexity of the
decision matrix, thereby supporting the identification of the most appropriate alternative.

Before presenting the DM algorithm, we clarify the rationale behind the final score aggregation.
In the FFENBSES framework, positive and negative evaluations are modeled using FFNs subject to
identical cubic-sum constraints. Consequently, the resulting score values derived from Definition 2.2
are normalized on a common scale. This guarantees that the positive score p}r and the negative score
p; are directly comparable in magnitude, and their difference p; = p; — p; represents a meaningful
net-effect measure that balances supportive and opposing assessments.
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Algorithm 1 FFNBSES-based DM and optimal alternative selection

1: Input:
i. k: the set of possible alternatives;
ii. g: the collection of decision parameters;
iii. &: the expert panel participating in the evaluation;
iv. O = {0 = disagree, 1 = agree}: the binary opinion space;
v. FENBSES structure (y, s l,N), where / CFandF = p xEXO.
2: Procedure:
1. Classify the expert evaluations into four bipolar categories:

e positive agreement: (y, 7y, , N)®';

positive disagreement: (y,7y,, N)®;

negative agreement: (y,y,, N)°';

negative disagreement: (y, 7y, , N)°.

ii. For each category, extract the corresponding FFNs and compute their score values (Definition

2.2).

iii. For each alternative j, compute the sum of scores:

sl = Z sy from (%,7,¢,N)®,

1

g}—o = Z Sij from (’7’ z, {’ N)@O’

1

g}l = Z Sij from (/7, Z, g’ N)ela

5= sy from(¥,y,LN).
i
iv. Compute the positive, negative, and final scores:
pi=c=-¢ pi=¢"-¢"% pi=pi-p;.
v. Determine the optimal alternative / by solving the following:

maximize p; subjectto j € k.

3: Output: the optimal alternative ; € k corresponding to the highest score p;.
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[k: Candidate alternatives} [go: Decision parameters} [8: Expert panel}

~N ~N

[O: Binary opinion set} [FFNBSES @74 N)}

Identify (¥,y,{, N)® Identify (,y,{, N)® Identify (¥,y,{, N)*" Identify (¥, y,{, N)®

Extract FFNs and Extract FENs and Extract FENs and Extract FFNs and
calculate score values calculate score values calculate score values calculate score values

~ ~N ~ ~

Calculate g}rl =3, Sij Calculate g;.’o =3 Sij Calculate ;‘JTI =3 Sij Calculate gJTO =3 Sij

~ ~

Compute p¥ = g}l = gjfo

0

Compute p; = gjfl =55

v

Calculate p; = pj*. -p;

~

Output: Select / that maximizes p J-

Figure 1. Flowchart of the proposed algorithm (Algorithm 1).

4.2. Application to smart healthcare transformation: a case study

Smart healthcare is an emerging paradigm that integrates advanced digital technologies with
traditional medical services to enhance efficiency, accuracy, and accessibility in healthcare delivery.
Rising global demand—driven by aging populations, chronic disease prevalence, and urban—rural
disparities—has prompted governments and institutions to explore smart technologies for modernizing
infrastructure and optimizing patient care.

Implementing smart healthcare systems, however, presents a complex MCDM problem.
Stakeholders must evaluate trade-offs among technological feasibility, clinical effectiveness, cost-
efficiency, data security, and equitable access. Traditional models, such as classical FSs or SSs, often
fail to fully capture these complexities: Some consider only binary or unipolar evaluations, neglecting
negative aspects such as cybersecurity risks or implementation challenges; others ignore multinary
assessments or lack mechanisms to aggregate opinions from multiple experts, leading to incomplete or
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biased decision support.

The proposed FFNBSES model addresses these limitations. By supporting multinary evaluations,
it enables experts to provide nuanced assessments of each smart healthcare strategy across multiple
criteria. Its bipolar structure captures both positive and negative aspects, allowing, for example,
simultaneous consideration of clinical effectiveness and potential risks such as Al misdiagnoses or
data breaches. Furthermore, FFNBSES incorporates expert aggregation, ensuring that insights from
healthcare professionals, biomedical engineers, policy analysts, and data scientists are effectively
combined to guide balanced, evidence-informed decisions.

In this case study, we consider five smart healthcare transformation strategies currently evaluated
by a national healthcare authority:

k= {K], K2, K3, K4, K5}.

Each strategy «; corresponds to a targeted initiative:
e «;: deploying Al-based diagnostic tools in outpatient clinics;
® k: implementing remote patient monitoring for chronic diseases;
e k3: establishing telemedicine infrastructure in rural hospitals;
e «4: integrating Electronic Health Record (EHR) systems across departments;
e k5: using robotics for surgical assistance and patient care.

The evaluation is based on two main criteria representing the primary goals of smart healthcare
transformation:

P = {bl’ bZ}’

where

e b;: clinical effectiveness—the extent to which the strategy improves diagnostic accuracy,
treatment quality, and patient outcomes;

e b,: accessibility—the degree to which the strategy ensures equitable healthcare access across
geographic and demographic boundaries.

To capture the associated challenges, the negative aspects are denoted as:
9 = {=by, =by},

where

e —b;: risk of clinical error—potential issues such as algorithmic bias, data misinterpretation, or
system malfunction;

e —b,: inequity in access—arising from digital illiteracy, infrastructure gaps, or economic barriers.

An expert panel is established to assess the strategies:
& = {v, v},
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comprising a senior hospital administrator and a biomedical informatics researcher. Each expert
evaluates all five strategies with respect to each criterion and its bipolar counterpart, using binary
opinions from the set:

O = {0 = disagree, 1 = agree}.

To reflect qualitative nuances, the symbolic system adopted is as follows:
e x denotes extremely poor performance—a red flag indicating high clinical or ethical risk;

e Multiple A symbols denote positive performance levels—with more A symbols reflecting greater
compliance or success.

These expert evaluations—tabulated and symbolically represented in Table 19—form the
foundation for applying our FFNBSES DM framework. Aggregating these assessments allows
stakeholders to systematically identify the most effective smart healthcare transformation strategy that
maximizes benefits while mitigating potential challenges.

Table 19. Initial expert evaluations of smart healthcare transformation strategies.

{\k K1 K2 K3 Ky Ks
(by, vy, 1) AAA AA AAAA  AA AA
(b1, v, 1) AA A AAA AAA A
(br,v1, 1)  AAA AN AA AN A
(by, 12, 1) b3 AA AAAA  AA AA
(by,v1,0) A AN X AN X
(by,v2,0) A AAAN A X AAA
(bs, v1,0) * A X A AAA
(by,15,0)  AAA AN % AA A
(=b, v, 1) % A X AN AA
(=bi, v, 1) AA AN A A AA
(=by, vy, 1) A A A A AA
(=bs,v5,1) AAAA AN % AA A
(=b1,v1,0) AAA AA X AA A
(=b1,v2,0) AA A AAA  AAA X
(=by, v1,0) AA AA AA AA X
(=by, 17,0) A AAA AN AA

The checkmarks from the evaluations are converted into numerical values ranging from 0 to 4
using the approach from Example 3.1, and interpreted based on the grading intervals in Table 4. The
FFNBSES model application is illustrated in Table 20 for the evaluation of smart healthcare strategies.

Table 20. Tabular representation of the FFNBSES (y, Y £, 5) for smart healthcare strategies.

(?’ Z’ g’ 5) K K3 K3 Ky Ks

(by,v1,1)  (3,0.6,0.8) (2,0.6,0.6) (4,1.0,0.0) (2,0.8,0.0) <¢2,0.7,0.5)

(b1,vp, 1)  (2,0.5,0.7) (1,0.2,0.7) (3,0.7,0.7) (3,0.5,0.8) (1,0.6,0.4)
(Continued on next page)
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7.7.4.5)

K1

K>

K3

Ky

Ks

(b2, 1, 1)
(b2, 10, 1)
(b1,v1,0)
(b1,12,0)
(b2, v1,0)
(b2,1,0)
(=by, v, 1)
(=b1, v, 1)
(=bs, vy, 1)
(=b2, v, 1)
(=by,v1,0)
(=b1,v,,0)
(=bs, vy, 0)
(=b2,v,0)

(3,0.8,0.5)
(0,0.0,0.4)
(1,0.2,0.7)
(1,0.0,0.6)
(0,0.0,0.1)
(3,0.9,0.2)
(0,0.1,0.4)
(2,0.4,0.8)
(1,0.7,0.0)
(4,0.9,0.6)
(3,0.9,0.4)
(2,0.6,0.6)
(2,0.8,0.4)
(0,0.0,0.5)

(2,0.7,0.4)
(2,0.5,0.7)
(2,0.5,0.7)
(3,0.5,0.8)
(1,0.2,0.7)
(2,0.7,0.5)
(1,0.6,0.4)
(2,0.4,0.7)
(1,0.2,0.6)
(2,04,0.8)
(2,0.8,0.4)
(1,0.3,0.6)
(2,0.4,0.7)
(1,0.6,0.4)

(2,0.8,0.4)
(4,0.9,0.6)
(0,0.0,0.4)
(1,0.2,0.7)
(0,0.0,0.2)
(0,0.1,0.4)
(0,0.0,0.3)
(1,0.2,0.7)
(1,0.6,0.3)
(0,0.0,0.5)
(0,0.0,0.4)
(3,0.6,0.8)
(2,0.3,0.8)
(3,0.8,0.6)

(2,0.2,0.8)
(2,0.6,0.7)
(2,0.2,0.8)
(0,0.0,0.3)
(1,0.3,0.6)
(2,0.5,0.7)
(2,0.7,0.5)
(1,0.6,0.1)
(1,0.0,0.7)
(2,0.5,0.7)
(2,0.4,0.7)
(3,0.9,0.1)
(2,0.1,0.8)
(2,0.6,0.7)

(1,0.1,0.6)
(2,0.7,0.4)
(0,0.0,0.5)
(3,0.6,0.8)
(3,0.9,0.3)
(1,0.3,0.7)
(2,0.6,0.6)
(2,0.8,0.2)
(2,0.8,0.1)
(1,0.6,0.4)
(1,0.2,0.7)
(0,0.1,0.2)
(0,0.0,0.4)
(2,0.5,0.7)

We classify the expert evaluations into four FENBSES categories: (¥, vy, £, 5)® for strong agreement
with positive impact, (,y,Z,5)® for disagreement with positive impact, (,7y,Z,5)®" for strong
agreement with negative impact, and (y,v,,5)% for disagreement with negative impact. These
categories are detailed in Tables 21-24.

Table 21. Tabular form of (y, Y £, 5)®'—positive criterion, strong agreement.

77497« K2 K3 Ks Ks

(b, v, 1) (3,0.6,0.8) (2,0.6,0.6) (4,1.0,0.0) <(2,0.8,0.0) (2,0.7,0.5)
(b1, v2, 1) (2,0.5,0.7) (1,0.2,0.7) (3,0.7,0.7) (3,0.5,0.8) (1,0.6,0.4)
(b2, v, 1) (3,0.8,0.5) (2,0.7,0.4) (2,0.8,0.4) <(2,0.2,0.8) (1,0.1,0.6)
(b2, v, 1) (0,0.0,0.4) (2,0.5,0.7) <(4,0.9,0.6) <(2,0.6,0.7) (2,0.7,0.4)

Table 22. Tabular form of (y, Y £, 5)®—positive criterion, disagreement.

7,749 « K2 K3 K4 Ks

(b1,v1,0) (1,0.2,0.7) (2,0.5,0.7) (0,0.0,0.4) <2,0.2,0.8) <(0,0.0,0.5)
(b1,v2,0) (1,0.0,0.6) (3,0.5,0.8) (1,0.2,0.7) <(0,0.0,0.3) (3,0.6,0.8)
(b2, v1,0) (0,0.0,0.1) (1,0.2,0.7) <0,0.0,0.2) <(1,0.3,0.6) (3,0.9,0.3)
(b2, 12, 0) (3,09,0.2) (2,0.7,0.5) (0,0.1,0.4) <(2,0.5,0.7) (1,0.3,0.7)

AIMS Mathematics Volume 11, Issue 1, 1071-1116.



Table 23. Tabular form of (y, Y £, 5)°'—negative criterion, strong agreement.

7.7.4,5% K« K2 K3 Ks Ks

(=by,v1, 1) (0,0.1,0.4) (1,0.6,0.4) <0,0.0,0.3) (2,0.7,0.5) (2,0.6,0.6)
(=by,vp, 1) (2,0.4,0.8) (2,04,0.7) (1,0.2,0.7) (1,0.6,0.1) (2,0.8,0.2)
(—by, vy, 1) (1,0.7,0.0) (1,0.2,0.6) (1,0.6,0.3) (1,0.0,0.7) (2,0.8,0.1)
(=by,vp,1)  (4,09,0.6) (2,0.4,0.8) (0,0.0,0.5) (2,0.5,0.7) (1,0.6,0.4)

Table 24. Tabular form of (y, s £, 5)%—negative criterion, disagreement.

7.7.4,5% K K2 K3 Ks Ks

(=by,v1,0)  (3,0.9,04) (2,0.8,0.4) <0,0.0,0.4) (2,0.4,0.7) (1,0.2,0.7)
(=by,1,,0)  (2,0.6,0.6) (1,0.3,0.6) ¢3,0.6,0.8) (3,0.9,0.1) (0,0.1,0.2)
(mby,v1,0)  (2,0.8,0.4) (2,04,0.7) (2,0.3,0.8) (2,0.1,0.8) (0,0.0,0.4)
(=b2,1,,0)  (0,0.0,0.5) <(1,0.6,0.4) ¢(3,0.8,0.6) (2,0.6,0.7) (2,0.5,0.7)

From these tables, we extract the FFNs corresponding to each strategy and compute their score
values as per Definition 2.2. The resulting scores, reflecting performance across all categories, are
summarized in Tables 25-28.

Table 25. Score values of FENs in (y,y, £, 5)®" and corresponding gj.l calculations.

7.7.4:5% « K2 K3 K4 Ks

(by, vy, 1) -0.296 0.000 1.000 0.512 0.218

(b, v, 1) -0.218 -0.335 0.000 —-0.387 0.152

(b, v, 1) 0.387 0.279 0.448 -0.504 -0.215

(by, v, 1) -0.064 -0.218 0.513 -0.127 0.279

g‘}rl =Y sit=-0191 ¢'=-0274 ¢;'=1961 ¢}'=-0.506 ¢i'=0.434

Table 26. Score values of FFNs in (¥, y, £, 5)® and corresponding g;.fo calculations.

7.7.4.5% K K> K3 Ky K

(by, vy, 1) -0.335 -0.218 -0.064 -0.504 -0.125

(by, v, 1) -0.216 -0.387 -0.335 -0.027 -0.296

(by, vy, 1) —0.001 -0.335 —0.008 -0.189 0.702

(by, v, 1) 0.721 0.218 —0.063 -0.218 -0.316

V=% s 6°=0169 ¢°=-0722 ¢;°=-0470 ¢;"=-0938 ¢i°=-0.035
AIMS Mathematics Volume 11, Issue 1, 1071-1116.
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Table 27. Score values of FENs in (y, Y £,5)°" and corresponding gj‘.l calculations.

7.7.4.5% K K> K3 K4 Ks

(by, vy, 1) -0.063 0.152 -0.027 0.218 0.000

(b1, va, 1) -0.448 -0.279 -0.335 0.215 0.504

(b, v, 1) 0.343 -0.208 0.189 -0.343 0.511

(by, v, 1) 0.513 —0.448 -0.125 -0.218 0.152

ngl =8 ¢7'=0345 ¢'=-0783 ¢;'=-0298 ¢,'=-0.128 ¢! =1.167
Table 28. Score values of FFNs in (v, s £,5)® and corresponding g}‘.o calculations.

77,45 K K> K3 K4 Ks

(b1, vy, 1) 0.665 0.448 -0.064 -0.279 -0.335

(by, v, 1) 0.000 -0.189 -0.296 0.728 —0.007

by, vy, 1) 0.448 -0.279 -0.485 -0.511 -0.064

(b, 5, 1) -0.125 0.152 0.296 -0.127 -0.218

g]TO = D Sij g‘l_o = 0.988 g‘z_o =0.132 §.3—o = —-0.549 g;o =-0.189 g‘s‘o =-0.624

Based on the evaluations from individual criteria and experts, Tables 29 and 30 summarize the
aggregated positive and negative contributions for each smart healthcare strategy. Specifically, Table 29
aggregates the positive scores from Tables 25 and 26, while Table 30 aggregates the negative scores
from Tables 27 and 28. Table 31 consolidates these aggregated values into the final net scores for each
strategy. Figures 2—4 provide visual representations of these results, displaying positive, negative, and
net scores for all alternatives. From the final scores, the highest net value, i.e., the alternative that
maximizes pj, is p3, indicating that strategy x;—implementing advanced remote patient monitoring
systems—is the most suitable choice under this evaluation framework.

Table 29. Aggregated positive scores (p}) for smart healthcare strategies.

AIMS Mathematics

S =Nisy S =Xisy  pj=67 =6
¢l =-0.191 ¢0=0.169 pf=-0.360
o' =-0274 ¢°=-0.722 pi=0.448
¢ =1.961  ¢'=-0470 pi=2431
¢l =-0.506 ¢}°=-0938 pf =0432
¢l =0434  ¢9=-0.035 pi=0469
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Table 30. Aggregated negative scores (p;) for smart healthcare strategies.

S'=Xisy s =Xis;  pj=67 6
61 =0345  ¢°=0988 p;=-0.643
&' =-0783 &°=0132 p; =-0915
;' =-0298 &°=-0549 p; =0.251
&' =-0.128 ;°=-0.189 p; =0.061
¢! = 1167  §=-0.624 p;=1.791

Table 31. Final aggregated scores (p;) for smart healthcare strategies.

Scores

pr=6¢'=¢1 p;=¢'=57" p;i=pi-p;
p; =-0360 p; =-0.643 p; =0.283
p; =0.448 p; =-0915  p, =1.363
p; = 2431 p; = 0251 o3 = 2.180
p; =0.432 p; = 0.061 pq =0.371
ps =0.469 ps = 1.791 ps = —1.322
4 N |
3 [ |
2 [ |
1 [ |
- [] m H_ B |
-1t i
_2 T T T T il
K1 K> K3 K4 Ks
Alternatives

01 Positive Scores (p;f) 00 Negative Scores ©;)

Figure 2. Positive and negative scores for all smart healthcare strategies.
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Figure 3. Net scores for all smart healthcare strategies.
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Figure 4. Aggregated positive, negative, and net scores for all smart healthcare strategies.

5. Evaluation of the FFNBSES model within the SS framework

This section evaluates the proposed FFNBSES model in the context of SS theory and its major
extensions. We begin with a comparative analysis highlighting how FFENBSES relates to and advances
beyond existing models across several dimensions, including membership structure, evaluation type
and scale, bipolar handling, parameterization, and expert involvement.
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Subsequently, we outline the main advantages that make FFNBSES a robust and expressive DM
model. Lastly, we identify its current limitations to offer a balanced assessment and indicate directions
for further development.

5.1. Comparative analysis of FFNBSES with existing models

We compare the FENBSES model with relevant existing models, including Classical Fuzzy Models,
Classical Soft Sets, Bipolar Soft Sets, N-Soft Sets, and N-Bipolar Soft Sets. As summarized in
Table 32, this comparison considers key aspects such as membership type, membership superiority,
parameterization support, evaluation mechanism, bipolarity, and expert involvement.

The FFNBSES model exhibits a comprehensive structure by integrating Fermatean fuzzy logic,
multinary evaluation, bipolar reasoning, and multi-expert input, making it well-suited for complex DM
problems characterized by uncertainty and subjectivity.

Table 32. Benchmarking FFNBSES against original models and their extensions across SS
model groups.

Model Membership Membership Parameterization Evaluation Evaluation Bipolar Expert
Model . -
Group Type Superiority Support Type Scale Capability Involvement
FS [13] F Low No Continuous  Single-Valued No No
. IFS [14] IF Medium No Continuous  Single-Valued No No

Classical Fuzzy Models - prg'r ) PF High No Continuous Sinile-Valued No No
FFS [16] FF Very High No Continuous  Single-Valued No No
SS [34] None - Yes Discrete Binary No Single
SES [35] None - Yes Discrete Binary No Multiple

Soft Sets FSES [36] F Low Yes Continuous  Binary No Multiple
IFSES [37] IF Medium Yes Continuous  Binary No Multiple
PFSES [38] PF High Yes Continuous  Binary No Multiple
FFSES [39] FF Very High Yes Continuous Binary No Multiple
BSS [46] None - Yes Discrete Binary Yes Single

Bipolar Soft Sets BSES [47] None - Yes Discrete Binary Yes Multiple
FBSES [48] F Low Yes Continuous  Binary Yes Multiple
NSS [52] None - Yes Discrete Multinary No Single
NSES [53] None - Yes Discrete Multinary No Multiple

N-Soft Sets FNSES [53] F Low Yes Continuous Multinary No Multiple
IFNSES [54] IF Medium Yes Continuous Multinary No Multiple
PFNSES [54] PF High Yes Continuous Multinary No Multiple
NBSS [57] None - Yes Discrete Multinary Yes Single
NBSES [62] None - Yes Discrete Multinary Yes Multiple

N-Bipolar Soft Sets FNBSES [63] F Low Yes Continuous  Multinary Yes Multiple
IFNBSES [64] IF Medium Yes Continuous Multinary Yes Multiple
PFNBSES [65] PF High Yes Continuous Multinary Yes Multiple
FFNBSES (Proposed) FF Very High Yes Continuous Multinary Yes Multiple

As observed from Table 32, existing models such as FNBSES, IFNBSES, and PFNBSES are
primarily distinguished by their underlying fuzzy membership type, which limits their ability to
capture extreme supportive or opposing expert opinions. FNBSES and IFNBSES provide limited
membership expressiveness, while PFNBSES, although higher-order, cannot fully accommodate
extreme evaluations or complex uncertainty patterns. The proposed FFNBSES model overcomes
these limitations by employing Fermatean fuzzy logic while retaining multinary evaluation, bipolar
reasoning, and multi-expert input. This enhanced framework allows finer discrimination between
closely competing alternatives, ensures more stable decision outcomes under uncertainty, and enables
systematic aggregation of diverse expert judgments, demonstrating superiority in both mathematical
expressiveness and practical applicability in complex MCDM scenarios. In particular, the qualitative
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ratings of “Membership Superiority” (Low, Medium, High, Very High) correspond to the relative
volume of admissible pairs within each model’s fuzzy framework, reflecting the flexibility of the
membership space and, indirectly, the maximum permissible hesitation index. This provides a more
objective basis for the comparative labels and highlights why FFNBSES allows the largest feasible
region for capturing expert judgments.

5.2. Advantages of the FFNBSES model
The FENBSES model offers key benefits compared with FNBSES, IFNBSES, and PFNBSES:

e Enhanced membership representation: captures higher uncertainty and hesitation, enabling finer
discrimination among closely competing alternatives and subtle differences in expert judgments.

e Multinary evaluation support: accommodates multilevel and categorical assessments with higher-
order membership expressiveness, improving decision stability and practical applicability.

e Bipolar reasoning: handles both positive and negative aspects of criteria more reliably, reflecting
nuanced expert opinions.

e Expert integration: systematically incorporates multiple expert evaluations, capturing diverse
judgments and conflicts effectively.

e Unified generalization: generalizes earlier models as special cases, overcoming structural
limitations and supporting broader applicability in complex MCDM scenarios.

5.3. Limitations of the FFNBSES model

The FENBSES model provides a robust framework for MCGDM, yet several limitations should be
noted:

e Computational overhead: the FFNBSES framework involves evaluating and aggregating two
coupled mappings, y and v, for each parameter-alternative-expert combination, in addition
to handling an N-grade scale and enforcing cubic-sum constraints. This multi layered
structure significantly increases computational complexity, particularly for problems with many
alternatives, parameters, and experts. Consequently, DM time can grow rapidly with the dataset
size. Optimization strategies such as parallel processing, sparse data structures, and pre-
aggregation remain relevant, but their necessity is directly linked to these FFNBSES-specific
operations rather than being generic suggestions.

e Expert dependency: the model relies on accurate expert input, which may be subjective. The
DM algorithm (Algorithm 1) classifies agreements and disagreements systematically, ensuring
differences are incorporated into decisions. Future extensions could automate detection of
inconsistencies or outliers.

e Comparative benchmarking: FFNBSES has not been systematically benchmarked against other
fuzzy/bipolar MCDM models. Formal comparisons would help identify performance bottlenecks
and guide optimizations.
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¢ Interpretability: complex aggregated outputs may be challenging to interpret. Decision matrices,
score aggregation, and ranking help, but advanced visualization techniques could further enhance
understanding.

e Software support: limited implementations exist in current DM platforms, requiring custom
programming. Providing reusable libraries in Python, R, or MATLAB would facilitate broader
adoption.

These limitations indicate areas for methodological refinement and practical improvements.
6. Conclusions

This study proposed the FFNBSES framework as a comprehensive approach for handling
uncertainty, multinary evaluations, and conflicting expert opinions in MCGDM, with application to
smart healthcare. Integrating Fermatean fuzzy logic with bipolar, multinary, and multi-expert input
enhances expressiveness and robustness. The formal definitions, algebraic properties, and healthcare
case study demonstrate practical utility and improved DM capabilities compared to existing SS
approaches.

6.1. Future studies
Future research will focus on enhancing the FFNBSES framework and addressing its limitations:

e Algorithmic optimization: efficient computational strategies to handle large-scale datasets.

e Expert input automation: automated validation, consistency checks, and outlier detection to
improve reliability.

e Software implementation and visualization: user-friendly libraries and advanced visualization
tools to enhance interpretability.

e Machine learning integration: using machine learning to estimate expert evaluations, detect
patterns in multinary and bipolar data, and support adaptive aggregation of uncertain inputs.

e Cross-domain extensions: exploring applications of the FFNBSES model in broader fields such
as financial markets, energy systems, medical imaging, game theory, and neuroscience, thereby
reinforcing its generalization potential beyond healthcare.

These directions aim to strengthen FENBSES’s scalability, applicability, and usability, supporting
informed and efficient DM under uncertainty. Furthermore, by extending its use to diverse real-
world domains, the framework offers a generalizable service to complex DM problems across multiple
disciplines.
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