Research article

Identification and stability analysis for inverse diffusion-wave fractional problems

  • Published: 14 January 2026
  • MSC : 35R11, 35R30, 47A52, 49M41, 49N45

  • Inverse problems for fractional diffusion-wave equations are vital in various scientific fields, but are inherently ill-posed due to the non-local and memory effects of fractional derivatives. Resolving these challenges, particularly in reconstructing multiple unknown initial values from final time data, remains a significant mathematical and computational hurdle. This work addressed this gap by establishing the well-posedness of such inverse problems involving space-time fractional operators, specifically the fractional Caputo derivative and the fractional Laplacian. We developed a stable regularization framework based on Tikhonov's method to ensure the stability and uniqueness of the solution, despite the poorly posed nature of the problem. An efficient conjugate gradient algorithm was proposed to numerically reconstruct the unknowns, with specialized techniques to handle fractional operators effectively. Numerical experiments with exact and noisy data confirmed the robustness, accuracy, and practicality of our approach, demonstrating its potential for real-world applications in modeling anomalous diffusion, heat conduction, and structural dynamics. Our results contributed both theoretical insights and computational tools for tackling complex inverse problems in fractional systems.

    Citation: Ghaziyah Alsahli, Mustapha Benoudi, Maawiya Ould Sidi, Eid Sayed Kamel, Ibrahim Omer Ahmed, MedYahya Ould-MedSalem, Hamed Ould Sidi. Identification and stability analysis for inverse diffusion-wave fractional problems[J]. AIMS Mathematics, 2026, 11(1): 1050-1070. doi: 10.3934/math.2026046

    Related Papers:

  • Inverse problems for fractional diffusion-wave equations are vital in various scientific fields, but are inherently ill-posed due to the non-local and memory effects of fractional derivatives. Resolving these challenges, particularly in reconstructing multiple unknown initial values from final time data, remains a significant mathematical and computational hurdle. This work addressed this gap by establishing the well-posedness of such inverse problems involving space-time fractional operators, specifically the fractional Caputo derivative and the fractional Laplacian. We developed a stable regularization framework based on Tikhonov's method to ensure the stability and uniqueness of the solution, despite the poorly posed nature of the problem. An efficient conjugate gradient algorithm was proposed to numerically reconstruct the unknowns, with specialized techniques to handle fractional operators effectively. Numerical experiments with exact and noisy data confirmed the robustness, accuracy, and practicality of our approach, demonstrating its potential for real-world applications in modeling anomalous diffusion, heat conduction, and structural dynamics. Our results contributed both theoretical insights and computational tools for tackling complex inverse problems in fractional systems.



    加载中


    [1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Amsterdam: Academic Press, 2003.
    [2] R. Almeida, A caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [3] M. BenSaleh, H. Maatoug, Inverse source problem for a space-time fractional diffusion equation, Ricerche Mat., 73 (2024), 681–713. https://doi.org/10.1007/s11587-021-00632-x doi: 10.1007/s11587-021-00632-x
    [4] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [5] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [6] S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377–416. https://doi.org/10.4171/RMI/942 doi: 10.4171/RMI/942
    [7] S. Duo, L. Ju, Y. Zhang, A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75 (2018), 1929–1941. https://doi.org/10.1016/j.camwa.2017.04.008 doi: 10.1016/j.camwa.2017.04.008
    [8] Z. Fu, L. Yang, Q. Xi, C. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023
    [9] Z. Fu, L. Yang, H. Zhu, W. Xu, A semi-analytical collocation trefftz scheme for solving multi-term time fractional diffusion-wave equations, Eng. Anal. Bound. Elem., 98 (2019), 137–146. https://doi.org/10.1016/j.enganabound.2018.09.017 doi: 10.1016/j.enganabound.2018.09.017
    [10] J. W. He, Y. Liang, B. Ahmad, Y. Zhou, Nonlocal fractional evolution inclusions of order $\alpha\in(1, 2)$, Mathematics, 7 (2019), 209. https://doi.org/10.3390/math7020209 doi: 10.3390/math7020209
    [11] J. Janno, Y. Kian, Inverse source problem with a posteriori boundary measurement for fractional diffusion equations, Math. Method. Appl. Sci., 46 (2023), 15868–15882. https://doi.org/10.1002/mma.9432 doi: 10.1002/mma.9432
    [12] K. H. Karlsen, S. Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations, arXiv: 0902.0538. https://doi.org/10.48550/arXiv.0902.0538
    [13] Y. Kian, Z. Li, Y. Liu, M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement, Math. Ann., 380 (2021), 1465–1495. https://doi.org/10.1007/s00208-020-02027-z doi: 10.1007/s00208-020-02027-z
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [15] M. M. Meerschaert, D. A. Benson, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. https://doi.org/10.1103/PhysRevE.65.041103 doi: 10.1103/PhysRevE.65.041103
    [16] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Hoboken: Wiley, 1993.
    [17] V. A. Morozov, Methods for solving incorrectly posed problems, New York: Springer, 2012. https://doi.org/10.1007/978-1-4612-5280-1
    [18] D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138–1145. https://doi.org/10.1016/j.camwa.2008.02.015 doi: 10.1016/j.camwa.2008.02.015
    [19] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [20] H. O. Sidi, M. Huntul, M. O. Sidi, H. Emadifar, Identifying an unknown coefficient in the fractional parabolic differential equation, Results in Applied Mathematics, 19 (2023), 100386. https://doi.org/10.1016/j.rinam.2023.100386 doi: 10.1016/j.rinam.2023.100386
    [21] H. O. Sidi, M. A. Zaky, W. Qiu, A. S. Hendy, Identification of an unknown spatial source function in a multidimensional hyperbolic partial differential equation with interior degeneracy, Appl. Numer. Math., 192 (2023), 1–18. https://doi.org/10.1016/j.apnum.2023.05.021 doi: 10.1016/j.apnum.2023.05.021
    [22] F. Yang, J. Xu, X. Li, Simultaneous inversion of the source term and initial value of the time fractional diffusion equation, Math. Model. Anal., 29 (2024), 193–214. https://doi.org/10.3846/mma.2024.18133 doi: 10.3846/mma.2024.18133
    [23] Y. Zhang, T. Wei, Y. X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Meth. Part. Differ. Eq., 37 (2021), 24–43. https://doi.org/10.1002/num.22517 doi: 10.1002/num.22517
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(145) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog