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1. Introduction

Fractional-order operators have recently gained attention as a promising alternative for modeling
various phenomena in science and engineering, and offering the ability to capture effects that traditional
operators cannot. Specifically, non-local diffusion operators, such as the fractional Laplacian, have
become a popular choice for modeling diffusion processes. Within a probabilistic framework, this
operator can be derived as the limit of a long jump random walk. These models find applications in
diverse areas, including geophysics, anomalous transport and diffusion, image denoising, phase-field
modeling, porous media flow, data analysis, elasticity, and population dynamics.

The space-time fractional diffusion equation has emerged as a fundamental tool to describe
anomalous diffusion [4,12,15]. The fractional-time derivative is employed to capture particle trapping
and adhesion behaviors, while the fractional-spatial derivative accounts for long-range particle jumps.
These combined effects yield a distinctive concentration profile with pronounced peaks and extended
tails. Fractional-time derivatives are used to model slow diffusion processes, while the parameter s
is associated with the asymptotic properties of waiting-time distributions and Lévy stable processes.
Such equations have applications in diverse fields.

In recent years, attention to inverse problems formulated with fractional derivatives has continued
to expand, given their practical importance in uncovering unknown parameters or sources within
these models. For example, one-dimensional time-fractional diffusion equations have been studied
to establish uniqueness results using eigenfunction expansions and Gel’fand-Levitan theory [23].
Other studies have focused on reconstructing spatially varying coefficients, identifying source terms,
or addressing ill-posed backward problems using regularization techniques. These problems are
particularly relevant in systems where fractional derivatives introduce memory effects, enabling
efficient recovery of the medium’s initial state. In addition, the numerical treatment of multi-term
and anomalous heat conduction models has received increasing attention. A semi-analytical Trefftz
collocation scheme was introduced in [9], and further extensions using boundary collocation methods
for functionally graded materials were presented in [8].

Several approaches have been developed to address inverse problems in fractional diffusion
equations [20, 21] such as quasi-solution methods, eigenfunction expansions, and operator equations.
These methods have been used to prove the existence, uniqueness and stability of solutions, as
well as to design numerical algorithms for practical applications. Despite significant progress,
challenges remain in addressing problems that combine both fractional Laplacians and fractional-time
derivatives. However, these studies continue to advance our understanding of fractional models and
their applications in various scientific and engineering fields.

For the simultaneous reconstruction of initial values in time fractional diffusion-wave equations,
several researchers have contributed significantly to understanding and solving these problems, which
arise in various applications involving anomalous diffusion processes and memory effects. In [11],
the authors investigate the inverse source problem for time-fractional diffusion equations, focusing on
using a posteriori boundary measurements. Their study provides valuable insight into the simultaneous
determination of multiple parameters in fractional diffusion equations, demonstrating the importance
of boundary data to ensure the uniqueness and stability of the solutions. In [23], they study the
simultaneous inversion of two initial values in time-fractional diffusion-wave equations using Cauchy
boundary data. They establish uniqueness results through the Laplace transformation and analytic
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continuation methods. To address the ill-posed nature of the problem, they propose a nonstationary
iterative Tikhonov regularization method, which proves effective in numerical simulations for
reconstructing the initial values. In another study, in [22], they focus on the simultaneous recovery
of both the source term and the initial values in time-fractional diffusion equations. They develop
algorithms to recover these parameters simultaneously, which is crucial for applications in complex
systems where both initial conditions and source terms are unknown. Their work expands the scope
of inverse problems in fractional diffusion equations and provides practical algorithms for solving
them. Moreover, in [13], the investigation contributes to the theoretical foundation of inverse problems
in fractional diffusion equations. They investigated the uniqueness and stability of solutions for
time-fractional diffusion models, providing a rigorous mathematical framework for addressing the ill-
posedness typically associated with inverse problems in this context.

Inverse source problems for fractional diffusion-wave equations are not only of theoretical interest
but also arise naturally in many branches of engineering. In this section, we highlight several
application areas where the reconstruction of unknown initial values plays a crucial role.

In heat conduction, fractional models provide a more accurate description of anomalous transport
in heterogeneous and composite materials. Identification of initial temperature fields or heat inputs is
essential in non-destructive testing, thermal management of industrial processes, and microelectronics
reliability. Foundational studies on fractional models and their applications to diffusion and heat
transfer can be found in [14, 18, 19].

Fractional diffusion-wave equations describe the damping and viscoelastic behavior in beams,
plates, and shells. Identifying unknown initial displacements or velocities is crucial for vibration
control, structural health monitoring, and aerospace applications. Theoretical results and practical
implementations of fractional operators of relevance to engineering are presented in [5, 14].

Pollutant transport in aquifers and porous soils often exhibits anomalous diffusion. Fractional
advection-diffusion equations provide a better description of these processes than classical models,
especially when non-Fickian effects dominate. The use of fractional calculus in environmental and
hydrological systems is discussed in [5, 14].

The key contributions of this study are primarily theoretical, as we address several fundamental
challenges associated with the inverse problem studied. In particular, we provide a detailed analysis
of Tikhonov’s regularization method in the context of a model that involves two distinct fractional
operators: a time-dependent Caputo derivative and a spatially nonlocal fractional Laplacian. After
reformulating the inverse problem within an optimization framework, we investigate two essential
questions concerning the existence, uniqueness, and stability of the minimizer. From a numerical
perspective, we also face the difficulty of approximating fractional operators, which substantially
increases the complexity of the computational implementation.

The main results of this work can be summarized as follows:

(1) The existence and uniqueness of the solution to the studied inverse problem are rigorously
established.

(2) Stability analysis is provided, showing that the minimization problem is well posed under the
chosen regularization framework.

(3) An efficient numerical scheme based on a conjugate gradient algorithm is developed to reconstruct
the two initial values.

(4) The robustness of the method is validated through numerical experiments, demonstrating accurate
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reconstructions even in the presence of noise.

The organization of this paper will be as follows: In Section 1, a general introduction to the problem
is provided, giving an overview of the research topic. Section 2 presents preliminary results of the
fractional problem, including the development of theories that explain the existence of direct and
inverse solutions to the problem. Moving to Section 3, the focus shifts to studying the inverse problem
using Tikhonov’s classical method. This section also delves into the examination and proof of the
problems related to existence, uniqueness, and stability. Section 4 outlines the identification approach
for the proposed problem, describing the methodology used in the investigation. The numerical results
obtained from the research are presented and discussed in Section 5, which presents the practical
implications of the proposed approach. Finally, Section 6 provides the conclusions drawn from the
study, summarizing the key findings.

2. Preliminary

This section introduces the key definitions required for the next section.

Definition 2.1. [16,19] The fractional integral of order α in the sense of Riemann-Liouville is defined
by

Iα0Ψ(t) =
1

Γ(α)

∫ t

0
(t − ν)α−1Ψ(ν)dν. (2.1)

Definition 2.2. [16,19] For all n − 1 ≤ α < n and n ∈ N. The Caputo fractional derivative of order α
is expressed as

CDα
t Ψ(t) = In−α

0 Ψ(n)(t) =
1

Γ(n − α)

∫ t

0
(t − ν)n−1−αΨ(n)(ν)dν. (2.2)

Definition 2.3. [16, 19] Whenever m − 1 ≤ β < m with m ∈ N, the Riemann-Liouville fractional
derivative of order β is given by

RLDβ
t Ψ(x) =

d
dt

Im−β
0 Ψ(t) =

1
Γ(m − β)

dm

dtm

∫ t

0
(t − q)m−1−βΨ(q)dq. (2.3)

For T > 0 and Ω ⊂ Rm, we consider the following fractional system of order α ∈ (1, 2) in the
Caputo sense defined by:

CDα
t Θ(x, t) = −(−∆)sΘ(x, t), (x, t) ∈ Ω × (0,T ),

Θ(ξ, t) = 0, ∂Ω × (0,T ),

Θ(x, 0) = Θ0(x),
∂Θ

∂t
(x, 0) = Θ1(x), x ∈ Ω,

(2.4)

where the fractional Laplacian operator of order s ∈ (0, 1) is defined as follows:

(−∆)sΘ(x, t) = Cm,sP.V
∫
Rm

Θ(x, t) − Θ(y, t)
|x − y|2s+m dy, (2.5)

with Cm,s is a normalization constant, given by

Cm,s =
4ssΓ(s + m

2 )

π
m
2 Γ(1 − s)

,
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and “P.V.” is the principal value of the integral, defined by

P.V
∫
Rm

Θ(x, t) − Θ(y, t)
|x − y|2s+m dy = lim

ε→0

∫
{y∈Rm, |y−x|>ε}

Θ(x, t) − Θ(y, t)
|x − y|2s+m dy.

In the following, we set some basic notations and recall some definitions and theorems. Throughout
this work, L2 = L2(Ω) denotes the classical Hilbert space with inner product (·, ·). The spaces H1

0(Ω),
H1(Ω), and related notation represent the standard Sobolev spaces. We use H s(0,T ) to indicate the
fractional Sobolev space in time (Adams [1]). Especially for s ∈ (0, 1), the fractional Sobolev space
H s(Ω) is defined by

H s(Ω) =

Θ ∈ L2(Ω) : |Θ|Hs(Ω) =

(∫
Ω

∫
Ω

|Θ(x) − Θ(y)|2

|x − y|m+2s dxdy
) 1

2

< ∞

 .
Its natural norm is defined by

‖Θ‖Hs(Ω) =
(
‖Θ‖2L2(Ω) + |Θ|2Hs(Ω)

) 1
2
.

Moreover, we define the fractional space Ḣ s(Ω) of order s ∈ (0, 1) as follows:

H̃ s(Ω) :=
{
Θ ∈ H s(Rm) : supp Θ ⊂ Ω

}
.

For the space H s(Ω), the corresponding bilinear form is defined as follows:

Bs(Θ, Φ) = Cm,s

∫ ∫
(Rm×Rm)\(Ωc×Ωc)

(Θ(x) − Θ(y))(Φ(x) − Φ(y))
|x − y|m+2s dx dy,

where Ωc is the complement of Ω in Rm.

Proposition 2.1. (see [6]). Let Θ, Φ : Rm → R be smooth functions; then∫
Ω

Φ(x)(−∆)sΘ(x)dx =
Bs(Θ, Φ)

2
−

∫
Ωc

Φ(x)NsΘ(x)dx,

hereNs represents the non-local Neumann operator associated with (−∆)s, which is defined as follows:

NsΘ(x) = Cm,s

∫
Ω

Θ(x) − Θ(y)
|x − y|m+2s dy.

The relationship between the Riemann-Liouville fractional derivative and the Caputo derivative is
encapsulated in the fractional integration by parts formula. This fundamental result establishes a bridge
between these two Definitions, highlighting their interconnection within fractional calculus and their
overall significance.

Proposition 2.2. [2] Let α ∈ (1, 2). Let Θ1 and Θ2 be assumed to be absolutely integrable. Hence, we
get∫ T

0
Θ2(t) CDα

t Θ1(t) dt =

∫ T

0
Θ1(t) RLDα

t Θ2(t) dt +

[
Θ1(t)

∂

∂t
I2−α
t Θ2(t)

]t=T

t=0
−

[
I2−α
t Θ2(t)

∂Θ1

∂t
(t)

]t=T

t=0
.
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Definition 2.4. [10] A collection of bounded linear operators {C(t)}t∈R on the Hilbert space H s(Ω)
is referred to as a strongly continuous cosine family if it satisfies the following conditions: C(0) = I,
C(s + t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R, and the map t 7→ C(t)Θ is strongly continuous for every
Θ ∈ H s(Ω).

Let {S (t)}t∈R represent the strongly continuous sine families that are related to the strongly
continuous cosine families {C(t)}t∈R, where

S (t)Θ =

∫ t

0
C(s)Θ ds, Θ ∈ H s(Ω), t ∈ R.

Furthermore, the operator A = (−∆)s is referred to as the infinitesimal generator of cosine families
{C(t)}t∈R if

AΘ =
d2

dt2 C(t)Θ
∣∣∣∣∣
t=0
, for all Θ ∈ D(A),

the domain A is given byD(A) = {Θ ∈ H s(Ω) : C(t)Θ ∈ C2(R, H s(Ω))}.

Definition 2.5. [10] We say that Θ ∈ C((0,T ); H s(Ω))∩C1([0,T ]; L2(Ω)) is a mild solution to Eq (2.4)
if we have Θ(0) = Θ0 and ∂Θ

∂t (0) = Θ1, and if

Θ(x, t) = S α(t)Θ0(x) + Pα(t)Θ1(x), (2.6)

where

S α(t) =

∫ ∞

0
Mα(θ)C(tαθ) dθ, Pα(t) =

∫ t

0
S α(s) ds.

The Mα(θ) function is given by

Mα(θ) =
1
α
θ−α−1Ψα

(
θ−

1
α

)
, Ψα(θ) =

1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα + 1)
n!

sin(nπα),

for θ ∈ (0,∞), where Mα(·) is the Mainardi Wright-type function on (0,∞) that

Mα(θ) ≥ 0 and
∫ ∞

0
Mα(θ) dθ = 1.

Remark 2.1. The fractional Laplacian (−∆)s possesses a complete set of (ϕn) with associated (λn).
Thus, the mild solution of system (2.4) takes the form:

Θ(x, t) =

+∞∑
n=0

[
Eα,1(−λntα)〈Θ0, ϕn〉 + tEα,2 (−λntα) 〈Θ1, ϕn〉

]
ϕn, (2.7)

where Eα,β(z) =

+∞∑
n=0

zn

Γ(β + nα)
the Mittag-Leffl function.

The representation of the solution of the direct problem (2.4) can be derived from the following
findings of this family of functions.
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Lemma 2.1. [10] Let α > 0 and λ > 0, then we have

CDα
t Eα,1(−λtα) = −λEα,1(−λtα), t > 0. (2.8)

Moreover, the following identity holds for integer-order differentiation:

d
dt

Eα,1(−λtα) = −λtα−1Eα,α(−λtα), t > 0. (2.9)

Lemma 2.2. [14, p. 40–45] Let 1 < α < 2. Then there exists a constant C0 = C0(α) > 0 such that

|Eα,1(z)| ≤
C0

1 + |z|
, | arg(z)| ≤ π. (2.10)

We now verify that problem (2.4) has a unique solution.

Theorem 2.1. Let Θ and Π be the solutions of problem (2.4). If Θ(x,T ) = Π(x,T ) for x ∈ Ω for x ∈ Ω,
then it follows that Θ1 = Π1 and Θ2 = Π2 in Ω.

Proof. Using the series representations of the solutions Θ and Π, we can write

Θ(x,T ) =

+∞∑
n=0

[
Eα,1(−λnTα)〈Θ0, ϕn〉 + T Eα,2 (−λnTα) 〈Θ1, ϕn〉

]
ϕn, (2.11)

and

Π(x,T ) =

+∞∑
n=0

[
Eα,1(−λnTα)〈Π0, ϕn〉 + T Eα,2 (−λnTα) 〈Π1, ϕn〉

]
ϕn. (2.12)

Since Θ(·,T ) = Π(·,T ) in Ω, we deduce that
+∞∑
n=0

[
Eα,1(−λnTα)〈Π0, ϕn〉 + T Eα,2 (−λnTα) 〈Π1, ϕn〉

]
ϕn

=

+∞∑
n=0

[
Eα,1(−λnTα)〈Θ0, ϕn〉 + T Eα,2 (−λnTα) 〈Θ1, ϕn〉

]
ϕn.

Based on the proof of Theorem 3.1 (see [23]), we proceed by multiplying both sides of the given
equation by ϕn(x) and then integrating the resulting expression over x. Noting that ϕn = 0 in Ωc, we
obtain {

Eα,1(−λnTα)〈Π0, ϕn〉 = Eα,1(−λnTα)〈Θ0, ϕn〉,

Eα,2 (−λnTα) 〈Π1, ϕn〉 = Eα,2 (−λnTα) 〈Θ1, ϕn〉,
∀ n ≥ 0.

It follows: {
Eα,1(−λnTα)〈Π0 − Θ0, ϕn〉 = 0,
Eα,2 (−λnTα) 〈Π1,Θ1, ϕn〉 = 0,

∀ n ≥ 0.

We know that Eα,1(−λnTα) > 0 and Eα,2(−λnTα) > 0. Then, we get{
〈Π0, ϕn〉 = 〈Θ0, ϕn〉,

〈Π1, ϕn〉 = 〈Θ1, ϕn〉,
∀ n ≥ 0.

Implies that Θ0 = Π0 and Θ1 = Π1. Thus the proof is complete. �
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3. Considered inverse problem

This section focuses on the mathematical examination of the inverse issue associated with the
fractional hyperbolic equation of space-time (2.4). Theoretical conclusions are presented on the
existence and uniqueness of solutions. First, a minimization problem is created from the inverse
problem.

Consider the operator Λ defined by

Λ : H s
0(Ω) × L2(Ω) → L2(Ω),

(Θ0, Θ1) 7→ Θ(x,T ).
(3.1)

Next, we prove that the operator Λ is compact.

Proposition 3.1. The linear operator Λ defined by Eq (3.1) is a compact operator from H s
0(Ω)× L2(Ω)

to L2(Ω).

Proof. By Eqs (2.7) and (3.1), we deduce that, for all (Θ0, Θ1) ∈ H s
0(Ω) × L2(Ω)

Λ(Θ0, Θ1) =

+∞∑
n=0

[
Eα,1(−λnTα)〈Θ0, ϕn〉 + T Eα,2 (−λnTα) 〈Θ1, ϕn〉

]
ϕn. (3.2)

We define the finite rank operators ΛN as follows:

ΛN(Θ0, Θ1) :=
N∑

n=0

[
Eα,1(−λnTα)〈Θ0, ϕn〉 + T Eα,2 (−λnTα) 〈Θ1, ϕn〉

]
ϕn. (3.3)

From Eqs (3.2) and (3.3), we get

‖Λ(Θ0, Θ1) − ΛN(Θ0, Θ1)‖2L2(Ω) ≤

+∞∑
k=N+1

[∣∣∣Eα,1(−λkTα)
∣∣∣2 |〈Θ0, ϕn〉|

2 + T 2
∣∣∣Eα,2(−λkTα)

∣∣∣2 |〈Θ1, ϕn〉|
2
]
.

Thanks to Lemma 2.2, we obtain

‖Λ(Θ0, Θ1) − ΛN(Θ0, Θ1)‖L2(Ω) ≤
C0

TαλN
‖Θ0‖Hs

0(Ω) +
C0

T 2α−2λ2
N

‖Θ1‖L2(Ω).

Therefore, ‖Λ(Θ0, Θ1) − ΛN(Θ0, Θ1))‖L2(Ω) → 0 in the sense of operator norm in L(H s
0(Ω) ×

L2(Ω); L2(Ω)) as N → ∞, which completes the proof. �

To address the regularization of well-posed problems, we utilize one of the most widely applied
techniques: the Tikhonov regularization method. The Tikhonov regularization functional is defined as
follows:

(IP)


Find Θ∗0 ∈ H s

0(Ω) and Θ∗1 ∈ L2(Ω) such that

Q(Θ∗0, Θ∗1) = min
(Θ0, Θ1)∈Hs

0(Ω)×L2(Ω)

1
2

 ‖Λ(Θ0, Θ1) − Θobs‖
2
L2(Ω))

+η
(
‖Θ0‖

2
Hs

0(Ω) + ‖Θ1‖
2
L2(Ω)

)  , (3.4)

with η the Tikhonov regularization parameter and Θobs representing the observer conditions.
In the next step, we will examine this minimization problem and discuss the existence, uniqueness,

and stability issues.
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Proposition 3.2. The function Q has a finite infinitum on L2(Ω), i.e.,

min
(Θ0, Θ1)∈Hs

0(Ω)×L2(Ω)
Q(Θ0, Θ1) is finite. (3.5)

Moreover, there exists (Θ0, Θ1)∗ ∈ H s
0(Ω) × L2(Ω) a sequence {(Θ0, Θ1)n}n≥1 ⊂ H s

0(Ω) × L2(Ω), such
that

(Θ0, Θ1)n ⇀ (Θ0, Θ1)∗ in H s
0(Ω) × L2(Ω) as n→ ∞,

where “⇀” denotes the weak convergence symbol.

Proof. The functional Q is constructed to be non-negative. Applying Lemma 3.1 (see [3]), there exists
a minimizing sequence {(Θ0, Θ1)n}n≥1 in H s

0(Ω) × L2(Ω) such that

lim
n→∞

Q((Θ0, Θ1)n) = min
(Θ0, Θ1)∈Hs

0(Ω)×L2(Ω)
Q(Θ0, Θ1).

Using the relation (25) (see [3]), we deduce:

0 ≤ Q((Θ0, Θ1)n) ≤ Q(0) + c = ‖Θobs‖L2(Ω) + c,

where c ≥ 1 is an arbitrary constant.
As a result, there exists a constant B > 0 such that

‖(Θ0, Θ1)n‖Hs
0(Ω)×L2(Ω) ≤ B, ∀n ∈ N∗.

This implies that the sequence {(Θ0, Θ1)n}n≥1 is uniformly bounded in H s
0(Ω) × L2(Ω). Consequently,

there exist an element (Θ0, Θ1)∗ ∈ H1(Ω) × L2(Ω) and a subsequence of {(Θ0, Θ1)n}n≥1, still denoted
by {(Θ0, Θ1)n}n≥1, such that

(Θ0, Θ1)n ⇀ (Θ0, Θ1)∗ in H s
0(Ω) × L2(Ω) as n→ ∞.

�

Theorem 3.1. Let Θobs ∈ L2(Ω) be an observed data set measured in a specific domain Ω. Then, the
minimization problem (IP) possesses a unique solution (Θ0, Θ1)∗ = (Θ∗0, Θ∗1) ∈ H s

0(Ω) × L2(Ω), such
that

Q(Θ∗0, Θ∗1) ≤ Q(Θ0, Θ1), ∀(Θ0, Θ1) ∈ H s
0(Ω) × L2(Ω). (3.6)

Proof. According to Proposition 3.2 and due to the non-negativity of the function Q, there exists a
uniformly bounded sequence {(Θ0, Θ1)n}n≥1 ⊂ H s

0(Ω)×L2(Ω). This ensures the existence of an element
(Θ0∗, Θ∗1) ∈ H s

0(Ω) × L2(Ω) and a subsequence of {(Θ0, Θ1)n}n≥1, which we continue to denote by
{(Θ0, Θ1)n}n≥1, such that

(Θ0, Θ1)n ⇀ (Θ0, Θ1)∗ in H s
0(Ω) × L2(Ω), as n→ ∞.

From Proposition 3.4 (see [3]), it follows that:

Q((Θ0, Θ1)∗) ≤ lim inf
n→∞

Q((Θ0, Θ1)n) = inf
(Θ0, Θ1)Hs

0(Ω)×∈L2(Ω)
Q(Θ0, Θ1).

�
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4. Numerical reconstruction approach

This section is devoted to the numerical reconstruction approach for solving the minimization
problem. The proposed approach is based on the derivation of an optimality condition and the
conjugate gradient algorithm.

We now derive a first-order optimality condition that provides a simplified characterization of the
unknown initial value Θ0, Θ1. The derivation of this condition is based on the computation of the
gradient of Q, which can be obtained by constructing an adjoint problem. From now on, we denote by
Θ the solution of problem (2.4) to emphasize its dependence on the unknown function Θ0, Θ1. The
weak formulation of problem (2.4) is as follows: Find Θ ∈ Hα,s(0,T ; Ω) such that∫ T

0

∫
Ω

CDα
t Θφ dx dt +

∫ T

0
Bs(Θ(·, t), φ(·, t)) dt = 0, (4.1)

for any test function φ ∈ H s(0,T ; H̃ s(Ω) ∩ H s+η(Ω)) with I2−α
t φ = 0 in Ω × {T }.

To derive the optimality condition, we calculate the Fréshet derivative Q′(Θ0, Θ1) of the objective
functional Q(Θ0, Θ1). By simple computations, we obtain the following:

Q′(Θ0, Θ1) · (ψ0, ψ1) = lim
ε→0

Q
[
(Θ0, Θ1) + ε(ψ0, ψ1)

]
− Q(Θ0, Θ1)

ε

=

∫
Ω

[Θ(x,T ) − Θobs(x)]ψ(x,T ) dx + η 〈Θ0(x), ψ0(x)〉Hs
0(Ω) + η 〈Θ1(x), ψ1(x)〉L2(Ω) .

(4.2)

To simplify the computational process of the Freshet derivatives, we rewrite them in their natural form.
Specifically, we need to identify an explicit function R(x) such that Q′(Θ0, Θ1) · (ψ0, ψ1) = (R, ψ).

For this, we replace the term
∫

Ω

[Θ(x,T ) − Θobs(x)]ψ(x,T ) dx with a function of x.

Thus, we introduce the following adjoint problem:
RLDα

t Ξ = −(−∆)sΞ + [Θ(x,T ) − Θobs(x)] δ(t − T ), (x, t) ∈ Ω × (0,T ],
Ξ = 0, (x, t) ∈ ∂Ω × (0,T ),

lim
t→T−

I2−α
t Ξ = lim

t→T−

∂

∂t
I2−α
t Ξ = 0, (x, t) ∈ Ω × {T }.

(4.3)

Here, δ(t − T ) is the Dirac delta function centered on t = T . The weak formulation of the adjoint
problem is as follows: Find Ξ ∈ Hα((0,T ); H̃ s(Ω)) ∩ H s+η(Ω) such that I2−α

t Ξ = 0 in Ω × {T }, and∫ T

0

∫
Ω

RLDα
t Ξ(x, t)ψ(x, t)dxdt +

∫ T

0
Bs(Ξ(., t), ψ(., t)) dt =

∫
Ω

(Θ(x,T ) − Θobs(x))ψ(x,T ) dx, (4.4)

for any test function ψ ∈ Wα,s(0,T ; Ω) with ψ(., 0) = 0 =
∂ψ

∂t
(., 0) in Ω.

On the other hand, from Eq (4.1) and using integration by parts, we get the following:∫ T

0

∫
Ω

ψ(x, t) RLDα
t φ(x, t) dx dt +

∫ T

0
Bs(ψ(·, t), φ(·, t)) dt

=

∫
Ω

[
∂ψ

∂t
(x, 0)I2−α

t φ(x, 0) − ψ(x, 0)
∂

∂t
I2−α
t φ(x, 0)

]
dx,

(4.5)
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From these considerations, we can express Ξ and φ as mutual test functions using identities Eqs (4.4)
and (4.5). This yields∫

Ω

[Θ(x,T ) − Θobs(x)]ψ(x,T ) dx =

∫
Ω

[
ψ1(x)I2−α

t Ξ(x, 0) − ψ0(x)
∂

∂t
I2−α
t Ξ(x, 0)

]
dx. (4.6)

Thus, the Freshet derivative becomes

Q′(Θ0, Θ1) · (ψ0, ψ1) =

∫
Ω

[
ψ1(x)I2−α

t Ξ(x, 0) − ψ0(x)
∂

∂t
I2−α
t Ξ(x, 0)

]
dx

+ η 〈Θ0(x), ψ0(x)〉Hs
0(Ω) + η 〈Θ1(x), ψ1(x)〉L2(Ω) .

(4.7)

To minimize Q, the optimality condition is
I2−α
t Ξ(x, 0) + ηΘ1(x) = 0,

∂

∂t
I2−α
t Ξ(x, 0) − ηΘ0(x) = 0.

(4.8)

Then, the optimal solution, 
Θ∗1(x) =

−1
η

I2−α
t Ξ(x, 0),

Θ∗0(x) =
1
η

∂

∂t
I2−α
t Ξ(x, 0).

(4.9)

The numerical algorithm that we propose is based on the conjugate gradient method and Morozov’s
discrepancy principle (see, e.g., [17]). Let Θk

0 and Θk
1 be the approximate solution of k − th to Θ0 and

Θ1. Denote  Θk+1
0 = Θk

0 + µkd
(0)
k ,

Θk+1
1 = Θk

1 + µkd
(1)
k ,

k = 0, 1, ..., (4.10)

where the initial guess Θ0
0 and Θ0

1 is given, the term µk is the step size, d(0)
k and d(1)

k are the descent
directions in the kth iteration.

The conjugate gradient method uses the following iteration formula to update the descent direction.
The descent direction at the k-th step is updated as follows:

d(0)
k = −

∂Q
∂Θk

0

,

d(1)
k = −

∂Q
∂Θk

1

,
(4.11)

and for k ≥ 1:

d(i)
k = −

∂Q
∂Θk

i

+ θ(i)
k d(i)

k−1, i = 0, 1, (4.12)

where

θ(i)
k =

‖
∂Q
∂Θk

i

(Θk
0, Θk

1)‖2L2(Ω)

‖
∂Q
∂Θk

i

(Θk−1
0 , Θk−1

1 )‖2
L2(Ω)

. (4.13)
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The step size µk is determined by minimizing

Q(Θk+1
0 ,Θk+1

1 ) = Q(Θk
0 + µkd

(0)
k ,Θk

1 + µkd
(1)
k ).

The condition
∂Q
∂µk

= 0 provides an explicit formula for µk.

µk = −

∫
Ω

(
Λ(Θk

0,Θ
k
1) − Θobs

)
Λ(d(0)

k , d(1)
k ) dx + η

(
〈∇Θk

0,∇d(0)
k 〉L2(Ω) + 〈Θk

1, d(1)
k 〉L2(Ω)

)
∫

Ω

∣∣∣Λ(d(0)
k , d(1)

k )
∣∣∣2 dx + η

(
‖d(0)

k ‖
2
H1(Ω) + ‖d(1)

k ‖
2
L2(Ω)

) . (4.14)

5. Numerical results

In this section, we will apply the conjugate gradient algorithm established in the previous section
to the numerical treatment of problem (3.4) in cases of one and two spatial dimensions , that is, the
reconstruction of the pair (Θ0,Θ1) for the problem (2.4).

For the Caputo fractional derivative of order (α), we discretize the time variable using the classical
L1 scheme on a uniform grid with step size (∆t). At the time level (tn), the Caputo derivative is
approximated by

∂αt Θ(x, tn) ≈
1

Γ(2 − α)∆tα

n−1∑
k=0

an−k,
(
Θ(x, tk+1) − Θ(x, tk)

)
,

where the convolution weights are given by

a j = ( j + 1),1−α − j,1−α, j ≥ 0.

The L1 method delivers first-order accuracy in time for sufficiently smooth solutions, and retains key
properties of the continuous problem, such as stability and monotonicity. Because of these features, it
is widely used in numerical simulations of time-fractional diffusion and scattering models.

In our computations (see [7]), this L1 approximation is coupled with a Nyström discretization for
the spatial fractional Riesz Laplacian. The combination leads to a fully discrete system that, at each
time level, reduces to solving a linear system for spatial degrees of freedom.

To simulate noise, a random perturbation is added to the data:

Θε
obs = Θobs + εΘobs.(2.rand(size(Θobs) − 1),

where ε = ‖Θε
obs − Θobs‖L2(Ω) specifies the equivalent noise level.

To evaluate the precision of the numerical solution produced by the proposed methods, we compute
the error as follows:

ek
i = ‖Θk

i − Θi‖L2(Ω), i = 0, 1.

Here, Θi represents the exact solution, while Θk
i denotes the initial conditions reconstructed in the k-th

iteration.
The application also requires a stopping criterion. In our numerical experiments, defining criteria

that apply to both synthetic and measured test data proved challenging. Since the changes in the
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reconstruction of each iteration step became imperceptible in our case, the iterative process was
monitored interactively and halted accordingly. Subsequently, the calculated relative error is expressed
as follows:

Err(Θk
i ) =

ek
i

‖Θi‖
. (5.1)

For the k-th iteration, the residual Rk takes the form

Rk = ‖Θk(x,T ) − Θobs‖L2(Ω). (5.2)

Morozov’s discrepancy principle is widely recognized as a leading method for this type of problem,
and it relies on choosing the number of iterations k such that the inequality below is valid:

Rk ≤ τε ≤ Rk−1.

The constant (τ > 1) is used as a leniency factor in the stopping criterion and is usually chosen with
the value (τ = 1.01).

5.1. One-dimensional case

Without loss of generality, the space domain is taken as Ω = [−1, 1], T = 1. In this case, the grid
size for the time and space variable is fixed as ∆t = 1/200 and ∆x = 1/200, respectively, the order
of the fractional time derivative α, and the order of the fractional Laplacian s are chosen as α = 1.5,
s = 0.5, respectively. To stabilize the inverse problem, the regularization parameter is fixed at a small
value η = 10−6 in all numerical tests.

In this case, we present two tests to show the effectiveness of the suggested methods. The results of
the estimation of two initial values Θ0,Θ1 are provided for these Examples, which can be categorized
into two types: regular Examples (Examples 5.1) and complex Examples (Examples 5.2).

Example 5.1. In this experiment, our algorithm is used to reconstruct two unidentified initial values
described as follows:

Θ0(x) = (1 − x2)
[
sin

(π(x + 1)
2

)
+ 1

2 cos
(π(x + 1)

2

)]
,Θ1(x) = (1 − x2)

[
0.4 + 0.3 sin

(
π(x + 1)

)]
,

from the final data measured Θ(.,T ). The correspondence reconstruction results with various noise
levels are shown in Figure 1.
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Figure 1. Reconstruction results for Example 5.1: (a) Θ0(x) and (b) Θ1(x).
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Example 5.2. In this specific case, we assess the performance of our algorithm in reconstructing
unknown initial conditions that exhibit nonsmooth properties. The parameters Θ0 and Θ1 are
determined using the measured final data and are defined as follows:

Θ0(x) = (1 − x2) max
(
0, 1 − 1.2 |x + 0.15|

)
, Θ1(x) = (1 − x2) χ[0.25, 0.75](x).

The reference solution was calculated numerically using a very fine spatial and temporal
discretization because the fractional Laplacian of the nonsmooth beginning condition in Example 5.2
is not available analytically. The precise profile for error assessment is then derived from this high-
resolution solution.

From Figures 1 and 2, we can see that the numerical results for Examples 5.1 and 5.2 are quite
accurate up to 5% noise added in the exact final data Θ(x,T ). Moreover, one can deduce the following
remarks:

• The numerical results of nonsmooth initial values Example 5.2 are less accurate compared to the
numerical results of smooth functions Example 5.1.
• The efficiency and accuracy of our algorithm decrease with an increase in noise level.
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Figure 2. Reconstruction results for Example 5.2: (a) Θ0(x) and (b) Θ1(x).

5.2. Convergence and stability results

This paragraph is concerned with the convergence and stability of the proposed algorithm. The
approximation errors (Err(Θ0,Θ1) for Example 5.1 with various noise levels are shown in Figure 3. It
can be observed that the approximation errors become smaller as the noise levels decrease, after a few
iterations, the computed errors have slightly increased, so we have to stop at a suitable step.

Figure 3 depicts the exponential decay of the relative errors Err(Θ0(x)), and Err(Θ1(x)), for a
log-type function, which is steadily converging toward zero. The results indicate a clear trend of
decreasing relative errors, highlighting exponential convergence. This behavior reflects the progressive
improvement in accuracy with each iteration. The decreasing error values emphasize the efficiency
of the estimation techniques in approximating the true initial values. These findings validate the
robustness and reliability of the proposed methods, demonstrating their ability to accurately reconstruct
Θ0(x) and Θ1(x),, through iterative refinement.
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Figure 3. Relative error for Example 5.2: (a) Err(Θ0(x)) and (b) Err(Θ1(x)).

Figure 4 shows that during the initial iterations, the residuals Rk(Θ0) and Rk(Θ1) show a rapid
decrease, followed by a stabilizing phase at noise-dependent values. The Morozov discrepancy
principle ensures the stability of the reconstructions and offers an automatic halting condition.
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Figure 4. The residual Rk for Example 5.2: (a) Rk(Θ0(x)) and (b) Rk(Θ1(x)).

5.3. Two-dimensional case

Now we proceed to the more challenging two-dimensional case, where we divide the space-time
region Ω × [0,T ] := [−1, 1]2 × [0, 1] into 60 × 60 × 50 equidistant meshes. Similarly to the one-
dimensional examples, we will test the numerical performance of Algorithm 1 in the reconstruction of
an example in the cases of η = 10−6, α = 1.5 and s = 0.5.
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Algorithm 1 Conjugate gradient method.

1: Initialization: Choose Θ0
0, Θ0

1.

2: Gradient computation: Solve the direct and adjoint problems to obtain the gradients
∂Q
∂Θk

0

and

∂Q
∂Θk

1

.

3: Descent direction: Update the directions d(0)
k and d(1)

k .
4: Step size: Compute µk.
5: Update:

Θk+1
0 = Θk

0 + µkd
(0)
k ,

Θk+1
1 = Θk

1 + µkd
(1)
k .

6: Repeat until convergence.

Let us consider the following functions:

Example 5.3.

Θ0(x, y) = (1 − x2)(1 − y2) sin
(π(x + 1)

2

)
sin

(π(y + 1)
2

)
,

Θ1(x, y) = (1 − x2)(1 − y2)
(
0.5 + 0.3 cos

(π(x + 1)
2

)
cos

(π(y + 1)
2

))
.

The 3D surface of these functions is plotted in Figure 5.
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Figure 5. 3D surface of the Example 5.3.

The results in Figures 6 and 7 show that, in the absence of noise, the reconstructed solutions almost
perfectly coincide with the true ones. When noise is added, the reconstructions gradually deviate
from the exact solution, which is expected given the strong ill-posedness of the problem. However, the
overall shape is still captured correctly. Together, these observations demonstrate that the proposed
method performs well both in ideal conditions and at different noise levels.

AIMS Mathematics Volume 11, Issue 1, 1050–1070.



1066

−1.0
−0.5

0.0
0.5

1.0
x −1.0

−0.5
0.0

0.5
1.0

y

0.0

0.2

0.4

0.6

0.8

Reconstructed Θ0(x, y)

(a)

−1.0
−0.5

0.0
0.5

1.0
x −1.0

−0.5
0.0

0.5
1.0

y

0.0

0.1

0.2

0.3

0.4

Reconstructed Θ1(x, y)

(b)

Figure 6. The numerical results for Example 5.3 with ε = 0.
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Figure 7. The numerical results for Example 5.3 with ε = 0.05.

Figures 8 and 9 clearly demonstrate the effect of noise. In the noise-free state (Figure 8), the error
remains very small within the domain, and the contour lines appear smooth and regular, indicating
that the reconstruction is very close to the true solution.

However, when noise is added at a rate of 0.05 (Figure 9), the error increases and the contour lines
become less regular, which is expected in such sensitive problems. Nevertheless, the error remains
within an acceptable level and the overall shape of the solution is preserved, demonstrating that the
method remains stable despite the presence of noise.
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Figure 8. Absolute error for Example 5.3 with ε = 0.
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Figure 9. Absolute error for Example 5.3 with ε = 0.05.

6. Conclusions

This paper investigates an inverse problem related to a space-time fractional diffusion-wave
equation, aiming to reconstruct two initial values from terminal time observations. First, we establish
the validity of the forward problem by proving the existence and uniqueness of its solution. Since
the corresponding inverse problem has a severely ill-posed problem, it is reformulated as a Tikhonov
regularized problem, and the existence, uniqueness, and stability of the orderly solution are analyzed.
The numerical solution of the resulting optimization problem is obtained using a conjugate gradient
method.

A series of numerical experiments were conducted to evaluate the performance of the proposed
approach by reconstructing several one-dimensional and two-dimensional test examples. The evolution
of reconstruction errors and residuals was monitored during iterations. In particular, Morozov’s
variance principle was incorporated as a data-driven automatic stop criterion for the iterative ordering
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process. The numerical results show that the proposed method produces accurate and stable
reconstructions even in the presence of noise, confirming its effectiveness and robustness.

Although this study highlights several important theoretical and numerical results, some aspects still
require further investigation in order to obtain a complete understanding of the problem. A detailed
analysis of the convergence properties of the numerical scheme, its sensitivity to the regularization
coefficient, and the influence of the initial conjecture remains essential. From a computational point of
view, the extension of the current algorithm to larger or more distant domains is a promising prospect.
In addition, the adaptation of the proposed method to more complex frameworks such as nonlinear
problems or coupled systems of fractional partial differential equations represents a stimulating avenue
of research for our future work.
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