Research article Special Issues

Characterizations of slant-type submanifolds in $ (\alpha, p) $-golden geometry

  • Published: 14 January 2026
  • MSC : 53B20, 53B25, 53C15, 53C42

  • Motivated by the growing interest in geometric structures defined through polynomial tensor identities, we investigated slant and semi-slant submanifolds of almost $(\alpha, p)$-golden Riemannian manifolds a generalized class encompassing golden, and complex golden structures. We introduced the notions of $(\alpha, p)$-slant and semi-slant submanifolds, established their characterizations and integrability conditions, and constructed illustrative examples. The results extend and unify existing theories in golden and complex golden geometry within a common framework.

    Citation: Ayşe Torun, Mustafa Özkan. Characterizations of slant-type submanifolds in $ (\alpha, p) $-golden geometry[J]. AIMS Mathematics, 2026, 11(1): 1036-1049. doi: 10.3934/math.2026045

    Related Papers:

  • Motivated by the growing interest in geometric structures defined through polynomial tensor identities, we investigated slant and semi-slant submanifolds of almost $(\alpha, p)$-golden Riemannian manifolds a generalized class encompassing golden, and complex golden structures. We introduced the notions of $(\alpha, p)$-slant and semi-slant submanifolds, established their characterizations and integrability conditions, and constructed illustrative examples. The results extend and unify existing theories in golden and complex golden geometry within a common framework.



    加载中


    [1] B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135–147. https://doi.org/10.1017/S0004972700017925
    [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer, 2010. https://doi.org/10.1007/978-0-8176-4959-3
    [3] B. Y. Chen, Pseudo-Riemannian geometry, delta-invariants and applications, World Scientific, 2011. https://doi.org/10.1142/8003
    [4] V. Khan, M. Khan, K. Khan, Slant and semi-slant submanifolds of a Kenmotsu manifold, Math. Slovaca, 57 (2007), 483–494. https://doi.org/10.2478/sl2175-007-0040-5 doi: 10.2478/sl2175-007-0040-5
    [5] A. Carriazo, Bi-slant immersions, In: Proceedings of international conference on recent advances in mathematical science, Kharagpur, 2000, 88–97.
    [6] S. Dirik, M. Atçeken, On the geometry of pseudo-slant submanifolds of a cosymplectic manifold, Int. Electron. J. Geom., 9 (2016), 45–56. https://doi.org/10.36890/iejg.591887 doi: 10.36890/iejg.591887
    [7] M. Crasmareanu, C. E. Hreţcanu, Golden differential geometry, Chaos Solitons Fract., 38 (2008), 1229–1238. https://doi.org/10.1016/j.chaos.2008.04.007 doi: 10.1016/j.chaos.2008.04.007
    [8] C. E. Hreţcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Union Mat. Argentina, 54 (2013), 15–27.
    [9] M. Özkan, F. Yılmaz, Metallic structures on differentiable manifolds, J. Sci. Arts, 44 (2018), 645–660.
    [10] C. E. Hreţcanu, M. Crasmareanu, The $(\alpha, p)$-golden metric manifolds and their submanifolds, Mathematics, 11 (2023), 3046. https://doi.org/10.3390/math11143046 doi: 10.3390/math11143046
    [11] C. E. Hreţcanu, S. L. Druţă-Romaniuc, On the geometry of semi-invariant submanifolds in $(\alpha, p)$-golden Riemannian manifolds, Mathematics, 12 (2024), 2227–7390. https://doi.org/10.3390/math12233735 doi: 10.3390/math12233735
    [12] C. E. Hreţcanu, A. M. Blaga, Slant and semi‐slant submanifolds in metallic Riemannian manifolds, J. Funct. Spaces, 2018 (2018), 2864263. https://doi.org/10.1155/2018/2864263 doi: 10.1155/2018/2864263
    [13] M. Gök, S. Keleş, E. Kılıç, Some characterizations of semi-invariant submanifolds of golden Riemannian manifolds, Mathematics, 7 (2019), 1209. https://doi.org/10.3390/math7121209 doi: 10.3390/math7121209
    [14] C. E. Hreţcanu, A. M. Blaga, Warped product submanifolds in locally golden Riemannian manifolds with a slant factor, Mathematics, 9 (2021), 2125. https://doi.org/10.3390/math9172125 doi: 10.3390/math9172125
    [15] A. Yadav, S. Kumar, Screen generic lightlike submanifolds of golden semi-Riemannian manifolds, Mediterr. J. Math., 19 (2022), 248. https://doi.org/10.1007/s00009-022-02122-2 doi: 10.1007/s00009-022-02122-2
    [16] M. A. Khan, S. Uddin, R. Sachdeva, Semi-invariant warped product submanifolds of cosymplectic manifolds, J. Inequal. Appl., 2012 (2012), 19. https://doi.org/10.1186/1029-242X-2012-19 doi: 10.1186/1029-242X-2012-19
    [17] H. M. Taştan, S. G. Aydın, Hemi-slant and semi-slant submanifolds in locally conformal Kaehler manifolds, In: B. Y. Chen, M. H. Shahid, F. Al-Solamy, Complex geometry of slant submanifolds, Springer, 2022. https://doi.org/10.1007/978-981-16-0021-0_7
    [18] P. Alegre, A. Carriazo, Bi-slant submanifolds of para Hermitian manifolds, Mathematics, 7 (2019), 618. https://doi.org/10.3390/math7070618 doi: 10.3390/math7070618
    [19] K. L. Duggal, B. Şahin, Differential geometry of lightlike submanifolds, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-0346-0251-8
    [20] S. Kazan, C. Yildirim, Screen almost semi-invariant lightlike submanifolds of indefinite Kaehler manifolds, Asian Eur. J. Math., 17 (2024), 2450016. https://doi.org/10.1142/S1793557124500165 doi: 10.1142/S1793557124500165
    [21] N. S. Al-Luhaibi, F. R. Al-Solamy, V. A. Khan, CR-warped product submanifolds of nearly Kaehler manifolds, J. Korean Math. Soc., 46 (2009), 979–995. 10.4134/JKMS.2009.46.5.979 doi: 10.4134/JKMS.2009.46.5.979
    [22] J. Yadav, G. Shanker, M. Polat, Clairaut slant Riemannian maps to Kähler manifolds, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450101. https://doi.org/10.1142/S0219887824501019 doi: 10.1142/S0219887824501019
    [23] K. S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26 (2015), 1550099. https://doi.org/10.1142/S0129167X15500998 doi: 10.1142/S0129167X15500998
    [24] S. K. Hui, J. Roy, T. Pal, Warped product pointwise bi-slant submanifolds of Kenmotsu manifolds, Asian Eur. J. Math., 14 (2021), 2150169. https://doi.org/10.1142/S1793557121501692 doi: 10.1142/S1793557121501692
    [25] M. A. Choudhary, K. S. Park, Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized $\delta$-Casorati curvatures, J. Geom., 111 (2020), 31. https://doi.org/10.1007/s00022-020-00544-5 doi: 10.1007/s00022-020-00544-5
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(237) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog