Motivated by the growing interest in geometric structures defined through polynomial tensor identities, we investigated slant and semi-slant submanifolds of almost $(\alpha, p)$-golden Riemannian manifolds a generalized class encompassing golden, and complex golden structures. We introduced the notions of $(\alpha, p)$-slant and semi-slant submanifolds, established their characterizations and integrability conditions, and constructed illustrative examples. The results extend and unify existing theories in golden and complex golden geometry within a common framework.
Citation: Ayşe Torun, Mustafa Özkan. Characterizations of slant-type submanifolds in $ (\alpha, p) $-golden geometry[J]. AIMS Mathematics, 2026, 11(1): 1036-1049. doi: 10.3934/math.2026045
Motivated by the growing interest in geometric structures defined through polynomial tensor identities, we investigated slant and semi-slant submanifolds of almost $(\alpha, p)$-golden Riemannian manifolds a generalized class encompassing golden, and complex golden structures. We introduced the notions of $(\alpha, p)$-slant and semi-slant submanifolds, established their characterizations and integrability conditions, and constructed illustrative examples. The results extend and unify existing theories in golden and complex golden geometry within a common framework.
| [1] | B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135–147. https://doi.org/10.1017/S0004972700017925 |
| [2] | D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer, 2010. https://doi.org/10.1007/978-0-8176-4959-3 |
| [3] | B. Y. Chen, Pseudo-Riemannian geometry, delta-invariants and applications, World Scientific, 2011. https://doi.org/10.1142/8003 |
| [4] |
V. Khan, M. Khan, K. Khan, Slant and semi-slant submanifolds of a Kenmotsu manifold, Math. Slovaca, 57 (2007), 483–494. https://doi.org/10.2478/sl2175-007-0040-5 doi: 10.2478/sl2175-007-0040-5
|
| [5] | A. Carriazo, Bi-slant immersions, In: Proceedings of international conference on recent advances in mathematical science, Kharagpur, 2000, 88–97. |
| [6] |
S. Dirik, M. Atçeken, On the geometry of pseudo-slant submanifolds of a cosymplectic manifold, Int. Electron. J. Geom., 9 (2016), 45–56. https://doi.org/10.36890/iejg.591887 doi: 10.36890/iejg.591887
|
| [7] |
M. Crasmareanu, C. E. Hreţcanu, Golden differential geometry, Chaos Solitons Fract., 38 (2008), 1229–1238. https://doi.org/10.1016/j.chaos.2008.04.007 doi: 10.1016/j.chaos.2008.04.007
|
| [8] | C. E. Hreţcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Union Mat. Argentina, 54 (2013), 15–27. |
| [9] | M. Özkan, F. Yılmaz, Metallic structures on differentiable manifolds, J. Sci. Arts, 44 (2018), 645–660. |
| [10] |
C. E. Hreţcanu, M. Crasmareanu, The $(\alpha, p)$-golden metric manifolds and their submanifolds, Mathematics, 11 (2023), 3046. https://doi.org/10.3390/math11143046 doi: 10.3390/math11143046
|
| [11] |
C. E. Hreţcanu, S. L. Druţă-Romaniuc, On the geometry of semi-invariant submanifolds in $(\alpha, p)$-golden Riemannian manifolds, Mathematics, 12 (2024), 2227–7390. https://doi.org/10.3390/math12233735 doi: 10.3390/math12233735
|
| [12] |
C. E. Hreţcanu, A. M. Blaga, Slant and semi‐slant submanifolds in metallic Riemannian manifolds, J. Funct. Spaces, 2018 (2018), 2864263. https://doi.org/10.1155/2018/2864263 doi: 10.1155/2018/2864263
|
| [13] |
M. Gök, S. Keleş, E. Kılıç, Some characterizations of semi-invariant submanifolds of golden Riemannian manifolds, Mathematics, 7 (2019), 1209. https://doi.org/10.3390/math7121209 doi: 10.3390/math7121209
|
| [14] |
C. E. Hreţcanu, A. M. Blaga, Warped product submanifolds in locally golden Riemannian manifolds with a slant factor, Mathematics, 9 (2021), 2125. https://doi.org/10.3390/math9172125 doi: 10.3390/math9172125
|
| [15] |
A. Yadav, S. Kumar, Screen generic lightlike submanifolds of golden semi-Riemannian manifolds, Mediterr. J. Math., 19 (2022), 248. https://doi.org/10.1007/s00009-022-02122-2 doi: 10.1007/s00009-022-02122-2
|
| [16] |
M. A. Khan, S. Uddin, R. Sachdeva, Semi-invariant warped product submanifolds of cosymplectic manifolds, J. Inequal. Appl., 2012 (2012), 19. https://doi.org/10.1186/1029-242X-2012-19 doi: 10.1186/1029-242X-2012-19
|
| [17] | H. M. Taştan, S. G. Aydın, Hemi-slant and semi-slant submanifolds in locally conformal Kaehler manifolds, In: B. Y. Chen, M. H. Shahid, F. Al-Solamy, Complex geometry of slant submanifolds, Springer, 2022. https://doi.org/10.1007/978-981-16-0021-0_7 |
| [18] |
P. Alegre, A. Carriazo, Bi-slant submanifolds of para Hermitian manifolds, Mathematics, 7 (2019), 618. https://doi.org/10.3390/math7070618 doi: 10.3390/math7070618
|
| [19] | K. L. Duggal, B. Şahin, Differential geometry of lightlike submanifolds, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-0346-0251-8 |
| [20] |
S. Kazan, C. Yildirim, Screen almost semi-invariant lightlike submanifolds of indefinite Kaehler manifolds, Asian Eur. J. Math., 17 (2024), 2450016. https://doi.org/10.1142/S1793557124500165 doi: 10.1142/S1793557124500165
|
| [21] |
N. S. Al-Luhaibi, F. R. Al-Solamy, V. A. Khan, CR-warped product submanifolds of nearly Kaehler manifolds, J. Korean Math. Soc., 46 (2009), 979–995. 10.4134/JKMS.2009.46.5.979 doi: 10.4134/JKMS.2009.46.5.979
|
| [22] |
J. Yadav, G. Shanker, M. Polat, Clairaut slant Riemannian maps to Kähler manifolds, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450101. https://doi.org/10.1142/S0219887824501019 doi: 10.1142/S0219887824501019
|
| [23] |
K. S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26 (2015), 1550099. https://doi.org/10.1142/S0129167X15500998 doi: 10.1142/S0129167X15500998
|
| [24] |
S. K. Hui, J. Roy, T. Pal, Warped product pointwise bi-slant submanifolds of Kenmotsu manifolds, Asian Eur. J. Math., 14 (2021), 2150169. https://doi.org/10.1142/S1793557121501692 doi: 10.1142/S1793557121501692
|
| [25] |
M. A. Choudhary, K. S. Park, Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized $\delta$-Casorati curvatures, J. Geom., 111 (2020), 31. https://doi.org/10.1007/s00022-020-00544-5 doi: 10.1007/s00022-020-00544-5
|