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Abstract: Motivated by the growing interest in geometric structures defined through polynomial tensor
identities, we investigated slant and semi-slant submanifolds of almost (a, p)-golden Riemannian
manifolds a generalized class encompassing golden, and complex golden structures. We introduced the
notions of (a, p)-slant and semi-slant submanifolds, established their characterizations and integrability
conditions, and constructed illustrative examples. The results extend and unify existing theories in
golden and complex golden geometry within a common framework.
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1. Introduction

Slant submanifolds have attracted continuous interest in differential geometry since their
introduction by Chen in the early 1990s [1]. They generalize both invariant and anti-invariant
submanifolds by permitting the angle between the structure tensor field and the tangent space to be
constant but nontrivial that is, neither O nor 7. This generalization provides greater flexibility in
submanifold theory while preserving essential structural symmetries.

Over the past few decades, slant and semi-slant submanifolds have been extensively investigated
across diverse geometric contexts. Early studies concentrated on almost Hermitian and Sasakian
manifolds [2, 3], where the underlying structure tensors naturally induce nontrivial angles between
tangent and image spaces. Subsequent work extended these ideas to Kenmotsu [4],
para-Hermitian [5], and cosymplectic manifolds [6], demonstrating that the slant condition provides
an effective tool for analyzing both the geometry of the submanifolds and the properties of their
ambient spaces. The versatility of the slant concept has further inspired numerous generalizations,
including pointwise slant and semi-slant submanifolds, as well as lightlike and warped product

constructions in both Riemannian and semi-Riemannian settings.
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To accommodate a broader spectrum of curvature behaviors and to generalize the interactions
between structure tensors and submanifolds, several new types of structures have been introduced.
Among the most prominent are golden and metallic structures, which arise from polynomial relations
imposed on the associated (1, 1)-tensor fields. A golden structure is defined by the identity

Q> =0 +1,

where @ is a (1, 1)-tensor field and 7 is the identity map [7]. This relation mirrors the defining equation
of the classical golden ratio and serves as a starting point for modeling geometric patterns that exhibit
repetitive or structured behavior. Metallic structures extend this idea by adopting the more general
identity

®* = ad + bl,

where a,b € Z*, thus incorporating a wider class of deformation parameters [8,9]. These structures
have been effectively employed to define submanifolds with distinct curvature behavior and to develop
new geometric interpretations of classic curvature constraints. From a geometric perspective, such
polynomial structures provide a natural framework for controlling the interaction between the tangent
and normal components of submanifolds. This makes them particularly suitable for the study of slant-
type geometries, where the behavior of projection operators plays a central role.

Roughly speaking, a slant submanifold is characterized by the fact that the angle between the image
of a tangent vector under the structure tensor and the tangent space itself remains constant. Semi-slant
and hemi-slant submanifolds arise as natural mixed configurations, where invariant, anti-invariant, and
slant directions coexist through orthogonal distributions. These distributions describe how the tangent
bundle decomposes into geometrically meaningful components. More recently, further generalizations
have been introduced, such as the (a, p)-golden structure, defined by the polynomial identity

Sa -1

2
(I)(l/,p = p(D(Y,P +

Pl

have been introduced to provide a more flexible framework for geometric modeling [10]. This
two-parameter structure allows interpolation between various well-known configurations, including
the classical golden case. The additional freedom offered by @ and p makes this framework suitable
for investigating new types of slant and semi-slant submanifolds that may be difficult to characterize
under more restrictive structures. More recently, Hretcanu and Drutd-Romaniuc [11] conducted a
detailed study of semi-invariant submanifolds in almost (a, p)-golden Riemannian manifolds,
establishing integrability conditions and mixed totally geodesic characterizations that broaden the
geometric understanding of these structures.

Slant and semi-slant submanifolds in golden and metallic manifolds have been widely studied,
with substantial contributions from several researchers. Blaga and Hrefcanu [12] examined their
integrability and curvature properties, while Gok et al. [13] focused on their characterizations in the
golden setting. Further investigations into warped product constructions [14], lightlike
geometries [15], and semi-invariant warped product submanifolds [16] have demonstrated the depth
and versatility of this field. Prior to the formalization of almost (e, p)-golden manifolds in [10],
slant-type geometries had already been explored in extended contexts, including hemi-slant [17] and
bi-slant configurations [18]. These earlier developments provided a rich foundation that naturally
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motivated the study of such structures within the (a, p) framework, where both theoretical and
structural aspects have since been investigated.

Recent studies have explored lightlike and screen semi-invariant submanifolds under golden-type
metrics [19, 20], highlighting the adaptability of these structures in pseudo-Riemannian contexts.
Other investigations have introduced CR-warped product submanifolds [21], examined Clairaut-type
Riemannian maps [22], and analyzed pointwise slant [23], pointwise bi-slant [24], and Casorati-type
curvature properties [25]. Collectively, this line of research reflects the ongoing development of slant
geometry in connection with broader areas of modern differential geometry. In contrast to these
studies, which primarily address invariant, semi-invariant, or warped product configurations, the
present paper is devoted to the systematic investigation of slant and semi-slant submanifolds in the
setting of almost (@, p)-golden Riemannian manifolds. Specifically, we establish new characterization
results formulated directly in terms of the tangential and normal components of the (a, p)-golden, and
we present explicit examples in R* to illustrate the theoretical results.

Despite these advances, explicit examples of slant and semi-slant submanifolds in almost (e, p)-
golden Riemannian manifolds remain relatively scarce. While many theoretical results have been
established, there is still a need for concrete constructions that illustrate how these structures operate in
practice. The explicit construction of such submanifolds not only validates the theoretical conditions
but also provides valuable insight into the geometric behavior of the manifold under the influence of
the (a, p)-tensor.

In this paper, we aim to address this gap by constructing detailed examples of slant and semi-slant
submanifolds within almost («, p)-golden Riemannian manifolds. We define specific immersions in
R* equipped with the appropriate tensor field and verify the slant conditions directly. In doing so, we
illustrate how the interaction between the algebraic identity

Sa—1
D, = pD,, + ——p°l

and the differential structure of M determines the geometry of the submanifold. These constructions not
only extend known results from classical golden geometry but also highlight the enhanced flexibility
offered by the (a, p) framework.

2. Preliminaries

The basic identities, decompositions, and properties of the (a, p)-golden structure presented below
are adapted from [10], the standard reference that first introduced this generalization. They are included
here for completeness and clarity without reproducing detailed proofs.

Let (M, g) be a Riemannian manifold and let ®, , be a (1,1)-tensor field on an even-dimensional
manifold M. The triple (M, ®,,, g) is called an almost (a, p)-golden Riemannian manifold if the
structure tensor satisfies the polynomial identity

Sa -1

2] 2.1
4 p b ( )

D, , = pD,,, +
and the Riemannian metric g on M, satisfies the following equalities for any y, T € ['(T M):

8 (@epp: T) = g (1. @0, ¥) + £1 - g1 T), 2.2)
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¢ (Papi. @,y Y) = g(g (@apits 1) + & (1. @ T)) + P8 (1. ), 2.3)

where @ € {—1, 1}, p € R\ {0}, and I is the identity transformation.
If the structure tensor @, , is parallel with respect to the Levi-Civita connection V, i.e.,

vo,, =0,
then the manifold is called a locally decomposable almost («, p)-golden Riemannian manifold.

Let M C M be an isometrically immersed submanifold with the induced metric and Levi-Civita
connection V. For each y € I'(T M), the tensor field @, , can be decomposed as a sum of tangential
and normal components, i.e.,

D, x =Tx + Ny, 2.4)
where Ty € I'(TM) and Ny € I'(T+M) . Similarly, we can write each U € T'(T*+M) as

®,,U =7U +nU,
where TU € I'(TM) and nU € I'(T+M). These decompositions induce four linear operators T, N, 7, 1,
satisfying the following metric compatibility relations:

1 _
8Ty = g 7+ 2 gy ),

1 _
s V) = ag(U ) + 2D g v),

gNx, U) = ag(x, tU).
Moreover, the standard Gauss and Weingarten formulas hold:
V, T =V, T+ h(y,T), (2.5)
VU =-Ayx + Vi U (2.6)

Here, h is the second fundamental form, Ay is the shape operator associated with U € I'(T+M), and
V+ is the induced normal connection. Together, they satisfy the equation

g(h(x, 1), U) = g(Ayx, T).
We now summarize a set of structural identities satisfied by the induced operators.

Proposition 2.1. Let M C M be a submanifold of an almost («, p)-golden Riemannian manifold. Then,
the following relations hold for all y € T'(TM), U € I (T+M):

-1
Ty = pTx + Py —T(Ny),
N(Tx) = pNx — n(Nyx),
-1
772U = pnU + > pZU—N(TU),

T(nU) = ptU - T(7U).
Corollary 2.1. If the condition

TNY) =0
holds for all y € I'(T M), then the tangential operator T satisfies the golden identity
Sa—1
T2 = pT + “4 Pl
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3. Slant submanifolds

Definition 3.1. A submanifold M of an almost («, p)-golden Riemannian manifold is called a slant
submanifold if there exists a constant angle 6 € [0, /2] such that

IT x| = cos 8 ||Dy, pxl
for every nonzero y € I'(TM). Equivalently, M is slant if and only if there exists a constant
A =cos’6

such that
8(Tx, Tx) = A8 (PapX> Papx ). 3.1)

To clarify how the (@, p)-golden structure influences the geometry of a submanifold, we begin with
a basic characterization of slant submanifolds in this setting. The following result establishes a concise
algebraic condition that captures the essence of the slant angle in terms of the structure tensor.

Proposition 3.1. Let M be a slant submanifold of an almost («a, p)-golden Riemannian manifold
(M, D, , g) with slant angle 6. Then, for any x,"( € T(T M), we have the following:

e fora=1

g(Tx. T) = cos 6| g, TY) + pg(x, )] (32)
gNY, N'T) = sin’ 0 pg(, T) + p*g(x, 1)) (3.3)
o Fora =-1
g(Tx,TY) = cos* 0 %ngcv, 1), (3.4)
g(Nx, NT) = sin’* 6 % p*e(x, ). (3.5)

Proof. Since M is a slant submanifold with slant angle 6, substituting y + Y for y in (3.1) yields

c0s” 0 g (Do x> oy T) = g(Tx. TT). (3.6)

From Eqgs (2.3) and (3.6), we obtain

2(Ty, TT) = cos’ 6 (g (8 (s 1) + g (1. @y T)) + T))

Next, combining the last equation with (2.2), we get

5
g(Tx, TY) = cos* 6 (g(a + l)g()(, TT) + ) ang()(, T)) . (3.7
In Eq (3.7), the case @ = 1 yields Eq (3.2), while @ = —1 yields Eq (3.4).

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.
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On the other hand, using (2.4), we can write

gNY,NY) = sin” (g (g ((Da,p)(, T) +g ()(, (I)W,T)) + ng()(, T)) )

Combining this with (2.2) leads to

5
Ny, NT) = sin 0 (g(a + Dg(x. T7) + - L ps( ,’I’)). (3.8)
Similarly, in Eq (3.8), the case @ = 1 yields Eq (3.3), and @ = —1 yields Eq (3.5).
This completes the proof. O

Theorem 3.1. Let M be a submanifold of an almost (a, p)-golden Riemannian manifold (M, ®, ,, 8).
Then M is a slant submanifold with slant angle 6, if and only if there exists A € [0, 1] such that

o fora=1
7% = A(pT + p’I), (3.9)
o fora=-1
3
T? = pT - AL (3.10)

Proof. Since M is a slant submanifold, it follows from Eqs (2.2) and (3.2) that

g(T2 , ‘I’) = a/g(T)(, TT) + g(l - a/)pg(T)(, ‘I’)

5—-«

= acos’ @ (g(l + a)g(X, TT) + p2g( , ‘Y’)) + g(l - a)g(T)(, ‘Y’)

for any y, T € I'(TM). This implies that the tangential operator 7 satisfies the identity

p S—a

T2:5(00520(1+a)+(1—a))T+ pPcos’O 1.

For a € {1, 1}, setting
A=cos’0

yields Eqgs (3.9) and (3.10).
Conversely, assume that there exists a constant that satisfies (3.9). Then for any y € I'(T M), we
have

2T ) = A(pe(Tx.x) + P'8(x-x)).
Utilizing Egs (3.2) and (2.3), we obtain

(T, Tx) = 48 (P> Pa ) -

Hence, we have
ITxXIP = A DPa,pxI,
which implies
ITxIl = cos & ||y, pxl

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.



1042

for the constant

0 = cos™( \//_l).
Consequently, M is a slant submanifold. The converse direction for @ = —1 is proved by repeating the
steps above, substituting (3.10) for (3.9). O

This theorem offers a straightforward criterion for determining whether a submanifold is slant by
analyzing how the square of the projection interacts with the (a, p)-golden tensor. The constant A serves
as a direct algebraic encoding of the slant angle, rendering the result both elegant and computationally
practical.

We now turn to a structural property associated with the slant distribution. The following theorem
establishes a symmetry condition involving the covariant derivative of the tangential operator, which in
turn yields a geometric consequence for the behavior of the structure tensor along the tangent bundle.

Theorem 3.2. Let M be a slant submanifold of an almost (@, p)-golden Riemannian manifold
(M, ®,,, 8). If the tangential operator T satisfies

(V, (") = (VT)(x),

then,
Ny, YD =0

forall y, € I'(TM). That is, the normal component of ®, ,([x, 1) vanishes.

Proof. Since _
Vo, , =0,

for all y, Y € I'(T M), we have
0=(V,®,) (") =V, (P, 1) - Dy, (V, 7).
By using the Eqs (2.4)—(2.6), considering only the tangential components, we obtain
(VeT) (1) = Aprx + (@aphiy. 1))

Interchanging y and 7, and utilizing the symmetry of the second fundamental form, the subtraction of
these expressions yields

(VT)(T) = (VoT)(x) = Anrx — Any Y-

Consequently, the assumption that VT is symmetric implies
Anrx = ANXT
for all y, Y € I'(T M). Finally, since [y, 1] € I'(T M), the decomposition
Qo (Dxs TD = Ty, TD + N[, 1D
indicates that the normal component of @, ,([x, Y]) is precisely N'([y, Y]). This leads to
N(x,Y]) =0.
This completes the proof. O

This result establishes a direct connection between the algebraic properties of the (a, p)-golden
structure and the covariant behavior of the tangential operator 7. As a consequence, the symmetry of
VT imposes a geometric restriction on the normal component of @, ,([y, T1).

AIMS Mathematics Volume 11, Issue 1, 1036-1049.
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4. Semi-slant submanifolds

Definition 4.1. Let M be a submanifold of an almost (a, p)-golden Riemannian manifold (M, @, ,, 8).
We say that M is a semi-slant submanifold if its tangent bundle TM admits an orthogonal
decomposition

TM = D& D,,

where D is an invariant distribution under ®, ,, and Dy is a slant distribution such that the angle
0 € [0, /2] between @, ,x and the tangent space T M is constant for all nonzero y € Dy. This constant
angle 0 is referred to as the slant angle of M.

We now present a detailed characterization of the geometric behavior of semi-slant submanifolds in
the (@, p)-golden setting. The following theorem describes the interaction of the structure tensor with
both the slant and invariant distributions.

Theorem 4.1. Suppose M is a semi-slant submanifold of an almost («, p)-golden Riemannian manifold
(M, ®,,, g), with an orthogonal decomposition of the tangent bundle

TM = D& D,,

where D is an invariant distribution, i.e., ®, ,(D) C D, and Dy is a proper slant distribution with
constant slant angle 0 € (0,/2). Then, the following properties hold:

(1) For any vector field y € I'(Dy), we have
(PT)’y = AD,, x,

where P is the orthogonal projection on Dy, and

A = cos? 6.
(2) For any vector field (' € I'(D), we have
TY = ®,,T
and
NT =0

Proof. Since M is a semi-slant submanifold, its tangent bundle can be decomposed orthogonally as
TM =D ® D,

where D is invariant under @, , and Dy is a slant distribution with slant angle 6 € (0,7/2). With this
in mind, let us prove the first property. For any y € I'(Dy), the constant slant condition immediately
establishes the relationship between the norms:

g(PTy,PTy) = cos’ 6 g ((1)(,,1,)(, (I)Q,p)() .
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As a direct consequence of the slant distribution definition, the structure tensor 7 on Dy satisfies the
algebraic identity

(PT)’x = A9}, x ,

where
A = cos? 6.

Next, we prove the second property. Since D is invariant under @, ,, we have ®, ,, we have @, ,T" €
(D) cI'(TM) for T € I'(D). As ®, ,( is tangent to M, the decomposition

®,, =TT+ NT

requires
NY =0 and T7 =d,,T.

This completes the proof. O

Theorem 4.2. Let M be a semi-slant submanifold of an almost (a, p)-golden Riemannian manifold
with tangent bundle decomposition
TM = D@ D,.

Then, we have the following
(1) The distribution D is integrable if and only if

[x, Y1 e I(D)
for all y, " € I'(D). Equivalently,
N(lx, YD = 0.
(2) The distribution Dy is integrable if and only if
(V, 1)) = (Ve T)(x) (4.1)

for all y, Y € T'(Dy).

Proof. (1) Since D is invariant, we have @, ,y, ®, ,T € I'(D) for any y,T € I'(D). If [y, Y] € I'(D),
then D is integrable. Moreover, since
®,,Z=TZ

for any Z € I'(D), it follows that NZ = 0. Thus, the implication
O, ,(x, YD =Ty, YD = N([x, YD =0

provides the equivalent condition.
(2) For Dy, the argument parallels the slant case. Using the characterization of integrability via the
tangential component 7', we consider the condition:

(VYY) = (V+T)(x) = T([x, T]) € (T M).

This equality implies that T'([y, T]) € I'(TM). So, [x,T] € I'(TM). Since these hold for any y, T €
I'(Dy), it establishes the integrability of D. O

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.
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Theorem 4.3. Let M be a semi-slant submanifold of an almost (a, p)-golden Riemannian manifold
such that the invariant distribution D is totally geodesic in M. Then,

h(x, ) =0
for all y,C € I'(D). Furthermore, if Dy is also integrable and totally geodesic, then M is totally
geodesic in M.

Proof. If D is totally geodesic in M, then V,I" € I'(D) and
— 1
hy. ™) = (7,7) =0

for all y, T € I'(D). Similarly, if Dy is also totally geodesic, then any y, T € I'(T M) can be decomposed
as

X =X1t X2

and
T=T+7,,

where y1, Ty € I'(D) and x>, T» € I'(Dy). Using the bilinearity of the second fundamental form and the
fact that the components vanish on the respective distributions, we have

h(x,T) = h(x1, T1) + h(x1, T2) + h(x2, T1) + h(x2, T2) = 0.

It follows that M is totally geodesic in M. O
5. Examples

In the examples, the parameter « is retained in symbolic form to emphasize consistency with the
general (a, p)-golden tensor structure. However, all explicit numerical computations are carried out
under the choice @ = 1.

5.1. Slant Submanifold
Let
M=R*

be the Euclidean 4-space equipped with the standard Riemannian metric g and the diagonal tensor field

1+ V5a 1+ V5a 1- V5a 1- V5a
) X1, D 5 X2, D 5 X3, D ) X4 |,

(Da,p(xl» X2, X3, X4) = (P

which satisfies the (a, p)-golden condition

Sa -1

2
1.
4 p

q)fw = p®d,, +

Define the 2-dimensional submanifold M c R* by the immersion:

r:UcR?>—> R r(u,v) = (u,0,u,v),
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where u and v are the local coordinates on M. So, the tangent vectors are

P 0
X===(1,0,1,0) and T == =(0,0,0,1).
01/[ av
Then,
1+ Ve . 1-Vs5a
D, ,(x) = (p 5 0,p 2 ,0] )

and the projection of @, ,(y) onto T'M is given by

(@000 p

Ty = TwE X2t
since
1+ V5a L1 V5a .
2 2 '
Therefore,
ITxIl p/V2

0sf = = .
|Pe pxl p\/(%s—a)z .\ (%%)2

Since the angle 6 is constant at all points on M, it follows that M is indeed a proper slant submanifold.

5.2. Semi-slant submanifold
Let
M=R!

carry the same (@, p)-golden structure as in the previous example, defined by

1+ V5a 1+ V5a 1 - V5a 1 - V5a
2 X1, P 2 X2, P 2 X3, P 2 X4 1.

(D(l,p(xl» X2, X3, X4) = (P

Consider the 2-dimensional submanifold M c R* defined by the immersion:
r:UcR?* > R*: r(u,v) = (u,v,0,v),

where u and v are the local coordinates on M. Then, the tangent space of the submanifold M is spanned
by the vectors

0 0
x=22(1,0,0,00 and Y=< =(0,1,0,1).
ou ov
Since
1+ V5
D,,(x) = @%,o, 0, o) eTM,

D is an invariant distribution. On the other hand,

1+ V5a 1 - V5a
;0P

D, (1) = (0, D ] ¢ TM

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.
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implies Dy is a slant distribution. By projecting @, () onto 7'M, we obtain the tangential component:
T'T = proj,(®a,(1) = £0,1,0,1).

We then compute the slant angle 6. Using the norms

1+2@)2+(1—2@)2’

p
ITY = = and [|®,,Y]=p (
V2 :

we find that )

VI (5 (=5

This confirms that M is a proper semi-slant submanifold embedded in M.

cosfO =

6. Conclusions

In this paper, we investigated slant and semi-slant submanifolds within the framework of
(@, p)-golden Riemannian manifolds, which generalize classical golden and complex golden
structures through a two-parameter polynomial identity. By analyzing the tangential and normal
components of the structure tensor, we derived characterization results for slant and semi-slant
submanifolds that extend and unify known identities in the literature.

In particular, we derived explicit algebraic conditions involving the tangential operator T that
describe the slant geometry in terms of the constant

A = cos’ 0,

and we clarified how these conditions depend on the choice of @ € {-1,1}. We also analyzed
integrability related properties and demonstrated how symmetry conditions on the covariant derivative
of T influence the geometric behavior of the associated distributions.

To complement the theoretical results, we constructed explicit examples of slant and semi-slant
submanifolds in Euclidean spaces equipped with suitable (a, p)-golden structures. These examples
demonstrate the applicability of the derived conditions and confirm that the slant angle remains constant
along the corresponding distributions.

The results presented here provide a systematic extension of slant-type submanifold theory to the
(@, p)-golden setting and may serve as a foundation for further investigations within this generalized
geometric framework.

Author contributions

Ayse Torun: conceptualization, investigation, methodology, validation, writing-original draft,
review and editing, funding acquisition; Mustafa Ozkan: conceptualization, investigation,
methodology, validation, review and editing. All authors have read and approved the final version of

the manuscript for publication.

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.



1048

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

This paper is supported by the Eskisehir Technical University Research Fund under Contract
No: 24ADP190. The authors would like to thank Gazi University Academic Writing Application and
Research Center for proofreading the article.

Conflict of interest

The authors declare that they have no conflicts of interest in this paper.

References

1. B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc., 41 (1990), 135-147.
https://doi.org/10.1017/S0004972700017925

2. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer, 2010.
https://doi.org/10.1007/978-0-8176-4959-3

3. B. Y. Chen, Pseudo-Riemannian geometry, delta-invariants and applications, World Scientific,
2011. https://doi.org/10.1142/8003

4. V. Khan, M. Khan, K. Khan, Slant and semi-slant submanifolds of a Kenmotsu manifold, Math.
Slovaca, 57 (2007), 483—494. https://doi.org/10.2478/s12175-007-0040-5

5. A. Carriazo, Bi-slant immersions, In: Proceedings of international conference on recent advances
in mathematical science, Kharagpur, 2000, 88—97.

6. S. Dirik, M. Atceken, On the geometry of pseudo-slant submanifolds of a cosymplectic manifold,
Int. Electron. J. Geom., 9 (2016), 45-56. https://doi.org/10.36890/iejg.591887

7. M. Crasmareanu, C. E. Hretcanu, Golden differential geometry, Chaos Solitons Fract., 38 (2008),
1229-1238. https://doi.org/10.1016/j.chaos.2008.04.007

8. C. E. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Union Mat.
Argentina, 54 (2013), 15-27.

9. M. Ozkan, F. Yilmaz, Metallic structures on differentiable manifolds, J. Sci. Arts, 44 (2018), 645—
660.

10. C. E. Hretcanu, M. Crasmareanu, The (a, p)-golden metric manifolds and their submanifolds,
Mathematics, 11 (2023), 3046. https://doi.org/10.3390/math11143046

11. C. E. Hretcanu, S. L. Drutd-Romaniuc, On the geometry of semi-invariant submanifolds
in (@, p)-golden Riemannian manifolds, = Mathematics, 12 (2024), 2227-7390.
https://doi.org/10.3390/math12233735

12. C. E. Hretcanu, A. M. Blaga, Slant and semi-slant submanifolds in metallic Riemannian manifolds,
J. Funct. Spaces, 2018 (2018), 2864263. https://doi.org/10.1155/2018/2864263

AIMS Mathematics Volume 11, Issue 1, 1036—-1049.


https://dx.doi.org/https://doi.org/10.1017/S0004972700017925
https://dx.doi.org/https://doi.org/10.1007/978-0-8176-4959-3
https://dx.doi.org/https://doi.org/10.1142/8003
https://dx.doi.org/https://doi.org/10.2478/sl2175-007-0040-5
https://dx.doi.org/https://doi.org/10.36890/iejg.591887
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2008.04.007
https://dx.doi.org/https://doi.org/10.3390/math11143046
https://dx.doi.org/https://doi.org/10.3390/math12233735
https://dx.doi.org/https://doi.org/10.1155/2018/2864263

1049

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

@ AIMS Press

. M. Gok, S. Keles, E. Kilig, Some characterizations of semi-invariant submanifolds of golden
Riemannian manifolds, Mathematics, 7 (2019), 1209. https://doi.org/10.3390/math7121209

C. E. Hrefcanu, A. M. Blaga, Warped product submanifolds in locally golden Riemannian
manifolds with a slant factor, Mathematics, 9 (2021), 2125. https://doi.org/10.3390/math9172125

A. Yadav, S. Kumar, Screen generic lightlike submanifolds of golden semi-Riemannian manifolds,
Mediterr. J. Math., 19 (2022), 248. https://doi.org/10.1007/s00009-022-02122-2

M. A. Khan, S. Uddin, R. Sachdeva, Semi-invariant warped product submanifolds of cosymplectic
manifolds, J. Inequal. Appl., 2012 (2012), 19. https://doi.org/10.1186/1029-242X-2012-19

H. M. Tastan, S. G. Aydin, Hemi-slant and semi-slant submanifolds in locally conformal Kaehler
manifolds, In: B. Y. Chen, M. H. Shahid, F. Al-Solamy, Complex geometry of slant submanifolds,
Springer, 2022. https://doi.org/10.1007/978-981-16-0021-0_7

P. Alegre, A. Carriazo, Bi-slant submanifolds of para Hermitian manifolds, Mathematics , 7 (2019),
618. https://doi.org/10.3390/math7070618

K. L. Duggal, B. Sahin, Differential geometry of lightlike submanifolds, Springer Science &
Business Media, 2011. https://doi.org/10.1007/978-3-0346-0251-8

S. Kazan, C. Yildirim, Screen almost semi-invariant lightlike submanifolds of indefinite Kaehler
manifolds, Asian Eur. J. Math., 17 (2024), 2450016. https://doi.org/10.1142/S1793557124500165

N. S. Al-Luhaibi, F. R. Al-Solamy, V. A. Khan, CR-warped product submanifolds of nearly Kaehler
manifolds, J. Korean Math. Soc., 46 (2009), 979-995. 10.4134/JKMS.2009.46.5.979

J. Yadav, G. Shanker, M. Polat, Clairaut slant Riemannian maps to Kidhler manifolds, Int. J. Geom.
Methods Mod. Phys., 21 (2024), 2450101. https://doi.org/10.1142/S0219887824501019

K. S. Park, Pointwise almost h-semi-slant submanifolds, Int. J. Math., 26 (2015), 1550099.
https://doi.org/10.1142/S0129167X15500998

S. K. Hui, J. Roy, T. Pal, Warped product pointwise bi-slant submanifolds of Kenmotsu manifolds,
Asian Eur. J. Math., 14 (2021), 21501609. https://doi.org/10.1142/S1793557121501692

M. A. Choudhary, K. S. Park, Optimization on slant submanifolds of golden Riemannian
manifolds using generalized normalized o-Casorati curvatures, J. Geom., 111 (2020), 31.
https://doi.org/10.1007/s00022-020-00544-5

©2026 the Author(s), licensee AIMS Press. This
i1s an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 1036-1049.


https://dx.doi.org/https://doi.org/10.3390/math7121209
https://dx.doi.org/https://doi.org/10.3390/math9172125
https://dx.doi.org/https://doi.org/10.1007/s00009-022-02122-2
https://dx.doi.org/https://doi.org/10.1186/1029-242X-2012-19
https://dx.doi.org/https://doi.org/10.1007/978-981-16-0021-0_7
https://dx.doi.org/https://doi.org/10.3390/math7070618
https://dx.doi.org/https://doi.org/10.1007/978-3-0346-0251-8
https://dx.doi.org/https://doi.org/10.1142/S1793557124500165
https://dx.doi.org/10.4134/JKMS.2009.46.5.979
https://dx.doi.org/https://doi.org/10.1142/S0219887824501019
https://dx.doi.org/https://doi.org/10.1142/S0129167X15500998
https://dx.doi.org/https://doi.org/10.1142/S1793557121501692
https://dx.doi.org/https://doi.org/10.1007/s00022-020-00544-5
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Slant submanifolds
	Semi-slant submanifolds
	Examples
	Slant Submanifold
	Semi-slant submanifold

	Conclusions

