Research article Special Issues

New determinant expressions of Bernoulli, Euler & Tribonacci polynomials

  • Published: 13 January 2026
  • In 1875, Glaisher systematically found several interesting determinant expressions of numbers, including Bernoulli, Cauchy, and Euler numbers. In this paper, we identify several determinants that express Euler polynomials. Goy and Shattuck presented several determinantal expressions of some families of Toeplitz–Hessenberg matrices with Tribonacci number entries. However, a determinant expression of Tribonacci numbers has not been studied much. By using a similar form of determinants to Euler's, we also give some determinant representations of generalized Tribonacci numbers.

    Citation: Takao Komatsu, Fatih Yilmaz. New determinant expressions of Bernoulli, Euler & Tribonacci polynomials[J]. AIMS Mathematics, 2026, 11(1): 1021-1035. doi: 10.3934/math.2026044

    Related Papers:

  • In 1875, Glaisher systematically found several interesting determinant expressions of numbers, including Bernoulli, Cauchy, and Euler numbers. In this paper, we identify several determinants that express Euler polynomials. Goy and Shattuck presented several determinantal expressions of some families of Toeplitz–Hessenberg matrices with Tribonacci number entries. However, a determinant expression of Tribonacci numbers has not been studied much. By using a similar form of determinants to Euler's, we also give some determinant representations of generalized Tribonacci numbers.



    加载中


    [1] H. Belbachir, A. Belkhir, I.-E. Djellas, Permanent of Toeplitz-Hessenberg matrices with generalized Fibonacci and Lucas entries, Appl. Appl. Math., 17 (2022), 558–570.
    [2] A. T. Benjamin, N. T. Cameron, J. J. Quinn, Fibonacci determinants – a combinatorial approach, Fibonacci Quart., 45 (2007), 39–55. http://doi.org/10.1080/00150517.2007.12428242 doi: 10.1080/00150517.2007.12428242
    [3] D. Bozkurt, C. M. da Fonseca, F. Yilmaz, The determinants of circulant and skew-circulant matrices with Tribonacci numbers, Math. Sci. Appl. E-Notes, 2 (2014), 67–75.
    [4] P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89–102. http://doi.org/10.1016/0012-365X(89)90081-2 doi: 10.1016/0012-365X(89)90081-2
    [5] J. L. Cereceda, Determinantal representations for generalized Fibonacci and tribonacci numbers, Int. J. Contemp. Math. Sci., 9 (2014), 269–285.
    [6] E.-M. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math., 20 (2013), 207–221.
    [7] J. Feng, Hessenberg matrices on Fibonacci and Tribonacci numbers, Ars Comb., 127 (2016), 117–124.
    [8] J. W. L. Glaisher, Expressions for Laplace's coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger Math., 6 (1875), 49–63.
    [9] T. Goy, M. Shattuck, Determinant identities for Toeplitz-Hessenberg matrices with tribonacci entries, Trans. Comb., 9 (2020), 89–109.
    [10] T. Goy, M. Shattuck, Toeplitz-Hessenberg determinant formulas for the sequence $F_n - 1$, Online J. Anal. Comb., 19 (2024), 1.
    [11] V. E. Hoggatt Jr., M. Bicknell, Generalized Fibonacci Polynomials, Fibonacci Quart., 11 (1973), 457–465. http://doi.org/10.1080/00150517.1973.12430785 doi: 10.1080/00150517.1973.12430785
    [12] A. Ipek, K. Arı, On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers, Appl. Math. Comput., 229 (2014), 433–439. http://doi.org/10.1016/j.amc.2013.12.071 doi: 10.1016/j.amc.2013.12.071
    [13] X. Jiang, K. Hong, Explicit inverse matrices of Tribonacci skew circulant type matrices, Appl. Math. Comput., 268 (2015), 93–102.
    [14] N. K. Kanasri, T. Komatsu, V. Laohakosol, Cameron's operator in terms of determinants and hypergeometric numbers, Bol. Soc. Mat. Mex., 28 (2022), 9.
    [15] E. Karaduman, On determinants of matrices with general Fibonacci numbers entries, Appl. Math. Comput., 167 (2005), 670–676. http://doi.org/10.1016/j.amc.2004.06.139 doi: 10.1016/j.amc.2004.06.139
    [16] E. Kılıç, Tribonacci sequences with certain indices and their sums, Ars Comb., 86 (2008), 13–22. http://doi.org/10.1021/cen-v086n013.p022 doi: 10.1021/cen-v086n013.p022
    [17] E. Kılıç, The generalized Fibonomial matrix, Eur. J. Comb., 31 (2010), 193–209. http://doi.org/10.1016/j.ejc.2009.03.041 doi: 10.1016/j.ejc.2009.03.041
    [18] E. Kılıç, Some classes of tetradiagonal determinants via certain polynomial families, Math. Notes, 114 (2023), 825–844. http://doi.org/10.1134/S0001434623110184 doi: 10.1134/S0001434623110184
    [19] E. Kılıç, D. Taşcı, On the generalized Fibonacci and Pell sequences by Hessenberg matrices, Ars Comb., 94 (2010), 161–174.
    [20] E. Kılıç, D. Taşcı, P. Haukkanen, On the generalized Lucas sequences by Hessenberg matrices, Ars Comb., 95 (2010), 383–395.
    [21] C. Kizilateş, W. S. Du, F. Qi, Several determinantal expressions of generalized Tribonacci polynomials and sequences, Tamkang J. Math., 53 (2022), 277–291.
    [22] T. Komatsu, Complementary Euler numbers, Period. Math. Hung., 75 (2017), 302–314. http://doi.org/10.1007/s10998-017-0199-7 doi: 10.1007/s10998-017-0199-7
    [23] T. Komatsu, Fibonacci determinants with Cameron's operator, Bol. Soc. Mat. Mex., 26 (2020), 841–863. http://doi.org/10.1007/s40590-020-00286-z doi: 10.1007/s40590-020-00286-z
    [24] T. Komatsu, A parametric type of Cauchy polynomials, Miskolc Math. Notes, 23 (2022), 755–772. http://doi.org/10.18514/MMN.2022.3652 doi: 10.18514/MMN.2022.3652
    [25] T. Komatsu, Fibonacci determinants. Ⅱ, Lith. Math. J., 65 (2025), 564–584. http://doi.org/10.1007/s10986-025-09691-1 doi: 10.1007/s10986-025-09691-1
    [26] T. Komatsu, J. L. Ramirez, Some determinants involving incomplete Fubini numbers, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 26 (2018), 143–170. http://doi.org/10.2478/auom-2018-0038 doi: 10.2478/auom-2018-0038
    [27] T. Komatsu, H. Zhu, Hypergeometric Euler numbers, AIMS Mathematics, 5 (2020), 1284–1303. http://doi.org/10.3934/math.2020088 doi: 10.3934/math.2020088
    [28] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York: Wiley, 2001. http://doi.org/10.1002/9781118033067
    [29] T. Koshy, Fibonacci and Lucas numbers with Applications. Volume Two, Hoboke: John Wiley & Sons, 2019. http://doi.org/10.1002/9781118742297
    [30] J. Li, Z. Jiang, F. Lu, Determinants, norms, and the spread of circulant matrices with Tribonacci and generalized Lucas numbers, Abstr. Appl. Anal., 2014 (2014), 381829.
    [31] L. Liu, Z. Jiang, Explicit form of the inverse matrices of tribonacci circulant type matrices, Abstr. Appl. Anal., 2015 (2015), 169726.
    [32] A. Tangboonduangjit, T. Thanatipanonda, Determinants containing powers of generalized Fibonacci numbers, J. Integer Seq., 19 (2016), 16.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(218) PDF downloads(48) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog