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Abstract: In 1875, Glaisher systematically found several interesting determinant expressions of
numbers, including Bernoulli, Cauchy, and Euler numbers. In this paper, we identify several
determinants that express Euler polynomials. Goy and Shattuck presented several determinantal
expressions of some families of Toeplitz—Hessenberg matrices with Tribonacci number entries.
However, a determinant expression of Tribonacci numbers has not been studied much. By using a
similar form of determinants to Euler’s, we also give some determinant representations of generalized
Tribonacci numbers.
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1. Introduction

Historically, Glaisher [8] appears to have been among the first to systematically derive several
interesting determinant expressions for various number sequences, including Bernoulli, Cauchy, and
Euler numbers. These are results where these numbers are represented in terms of determinants. We
can see the Fibonacci determinants in [28, 29] where the Fibonacci numbers are elements of the
determinants. Several results such that Fibonacci numbers are expressed in terms of determinants can
be seen in [14,23].

In [24, Corollary 2], a determinant expression of Cauchy polynomials ¢, (x), defined by
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(x), = x(x=1)---(x—n+ 1) is the falling factorial with (x), = 1, and [:1] is the Stirling number of the
first kind defined by
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When x = 0, we have an expression of Cauchy numbers ( [8, p.50]):
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Euler polynomials E,(x) are defined by
2 Xt
. ZE (x)—. (1.1)
Euler numbers E, = 2"E, (1/2) are given by
1 L
= E,—. 1.2
cosh ¢t nzz(; n! (1.2

A determinantal expression of Euler numbers is given by
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( [8, p-52]). It is generalized in terms of hypergeometric Euler numbers ( [27]). Notice that a
determinantal expression of Euler numbers of the second kind E,, defined by

t o = 1
= > E,—, 1.3
sinh ¢ nZ:o: ! (1.3)
is given by
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Ey, = (=1)"n! % 0 (1.4)
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2n+D)! 750 3

( [22, Corollary 2.2]).

In this paper, we give a determinantal expression of Euler polynomials, which is given as in
Theorem 1. From the relationship with Euler polynomials, we can also provide a determinant
expression for Bernoulli polynomials.

On the other hand, determinants related to Fibonacci numbers are also fascinating. There are many
references to matrices or determinants that have Fibonacci numbers as elements (see, e.g., [1, 2, 10,
12,15,17, 19, 20], [28, Ch. 33], [29, Ch. 39], [32]). Nevertheless, many of the results so far have
dealt with cases involving Fibonacci numbers or numbers related to them as elements, and there have
been relatively few results directly giving Fibonacci numbers themselves. In [25], several determinants
expressing Fibonacci and related polynomials are given, motivated by the results in [14,23]. The results
related to Tribonacci are even scarcer (see, e.g., [3,5-7,9,13,16,18,21,29-31]), but we have found a
determinant representation that gives generalized Tribonacci polynomials.

The determinants discussed in this paper are of a type of Hessenberg matrices, and this type of
lower triangular matrices not only allows for the transformation between the outer and inner elements
using the inversion formula ( [26]), but also has the advantage of being able to express the elements
using a summation formula. See propositions in Section 2.

2. Euler determinants

Theorem 1.
x+(x—1)
e 1 0 . 0
(-2 x+(x-1)
22! 21!
— B+(x-1) ..
E,(x) =n! o . 0
: x+(x—1) 1
: 21!
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When x = 1/2, that of Euler numbers can be reduced.
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Corollary 1.
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Note that E,, = 0 when 7 is odd.

In order to prove this result, there are several methods to find the determinantal representations.

One of them is due to the generating function method presented in [14,23]. This method is due to
Cameron’s operator [4].

Lemma 1. We have

= C
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where c is the constant independent of h,, n, and t.

Proof of Theorem 1. By the generating function in (1.1),
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Hence, by Lemma 1, we have the desired determinant. m]
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A different determinantal expression from (1.4) of Euler numbers of the second kind given in
Corollary 2, below. To this end, we consider the representation of Bernoulli polynomials. Bernoulli
polynomials B,(x) are defined by

t ext © tn
1:§:ng;r @2.1)

t
e
n=0

A determinant expression of Bernoulli polynomials is given as follows.

Theorem 2. , .
# 1 0 e 0
X —(x=1)} X—(x-1) :
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Euler numbers of the second kind are given by En = 2"B,(1/2). When x = 1/2 in Theorem 2, a
different determinant expression from (1.4) of Euler numbers of the second kind can be reduced. Note

that En = 0 when #n is odd.

Corollary 2.
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4 (n+ 1) (n+1)!
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Hence, by Lemma 1, we get the desired result.

2.1. More identities

By applying the inversion relation (see, e.g., [26]) to Theorem 2, we can have the determinant value

whose elements are Bernoulli polynomials.

Proposition 1. We have
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Proof. By using the inversion relation

R(1) 1 0 a1
= k@) < R0 = @2
: . . 1 :
R(n) --- R(2) R(1) a,,

we obtain the desired result.

Proposition 2. We have
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From Corollary 2, we also have the following.

Proposition 3. We have
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Proposition 4. We have
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3. Tribonacci determinants

In [9], several determinantal expressions of some families of Toeplitz—Hessenberg matrices are
presented with Tribonacci number entries. These determinant formulas may also be expressed
equivalently as identities that involve sums of products of multinomial coefficients and Tribonacci
numbers. However, as was the case in their paper, there are not many studies expressing Tribonacci

numbers in other papers either. Here, Tribonacci numbers 7, ( [29, Ch. 49]) are defined by

I,=T,.1+T,2+T,3 (n>3), Ty=0, T\ =T,=1.

(3.1

Note that some more different Tribonacci numbers are defined with different initial values. One of
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the simplest expressions is

1 1 0 0
-1 1
1 -1 5
Ty = : (3.2)
0 . 1 0
: -1 1 1
o -~ 0 1 -11

Notice that Tribonacci polynomials #,,(x) ( [11], [29, Sec. 49.3]) are defined by

tn(-x) = xztn—l ()C) + XIn—Z(-x) + tn—3(-x) (l’l > 3)’
h(x) =0, H(x)=1, Hx) =x>.

For fixed real numbers a, b, ¢ with (a, b,c) # (0,0,0), consider more general Tribonacci numbers
Tn = Tu(a,b,c), defined by the recurrence relation

Tn=aTu1+bT,2+cTy3 (n23), T9=0, T =7,=1. (3.3)

Then we have the following determinant expression.

Theorem 3. Forn > 3,

1 1 0 0
l—-a-»b 1 1
D l—-a-b 1
To1=| (1—a)D D
(1-a)’D 1 1 0
: D l—-a-b 1 1
(1-a)3D (1-a?D (1-a)D D l—-a-b 1

where D=(a—1)a+b—-1)+c.
Remark. When a = b = ¢ = 1 in Theorem 3, the determinant expression of (3.2) is reduced.

Proof of Theorem 3. By the definition of (3.3), we get the generating function

S 1—(a-1)t
Tonl" =
Z;+l 1 —at — b2 — cf?

1
l-t—(a+b-1D2 =D —(a—1)Dt* —(a— 1)’Dt5 — - .-

By Lemma 1, we have the desired result. O

We shall introduce the inversion relation, which is to interchange the outer and inner elements of
the determinant. A simple version can be seen in [26].
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Lemma 2. For two sequences {a,},>0 and {8,},>0, we have for n > 3

cc 1 0 --- 0
¢ C :
@ = B3 0
: i
B By ¢
n-3
= @, = + Oy + Z(—l)jﬁjan—3 + (=1)"?B,a(ci — ¢2)
=3
+(=1)""Bucicr + (=1)'B, = 0
ol 1 0 ‘e 0
c% —c, ¢ 1
= pBu= 3 0
c 1
a, @ - ¢

By using the inversion relation of Lemma 2, we have a determinantal expression with Tribonacci
number entries. Note that the simplest case where a = b = ¢ = 1 is shown in [9, (3.4)]".

Theorem 4. Forn > 3,

Proof. Applying Lemma 2 withc; =1=75, ¢, =1-a—-b,a, = (1 —a)">D (with D = (a — 1)(a +
b—1)+c)and B, = T,+1. By c% — ¢y = a+ b =73, we get the desired result.

7 1 0 0
T3 T2
(1-a((a-a+b-D+c)=]| 7, 0
: 75 1
T ns1 Ta T3 T2

3.1. More determinantal representations of Tribonacci numbers

Theorem 5.
T4 1 0 0
U, T 1
U, U, T4
T2 =| (@ -b+c)U, U,

(ab—-b +c)*U, 1 O
: U, U T4 1

(ab—b+c)"3U, (ab-=b+c) Uy, (ab-b+c)U, U, U, T

*Since our definition and theirs are off by one number, their result in [9, (3.4)] is not a special case of ours.
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where T4 = a* +ab+b +c¢, Uy = (ab + c)(@® + ab + ¢) — a(ab + 2¢) = 7742—7‘6, and U, =
(ab+c)*((a—-1)a+b—-1)+c).

When a = b = ¢ = 1 in Theorem 5, we have the following.

Corollary 3.
4 0 0
4 :
Tono=|4 3 " 0
: 4 1
4 .- 4 3 4

In order to prove Theorem 5, we need the following relation.

Lemma 3. Forn > 0,
Tuve = (@ + 2b)T s + ac — b*)T iz + T,

In particular, whena = b = c = 1,

Thie =3Tpes+Tyir +T,.

Proof. By the definition (3.3), we have

Tnie = AT nis + DT pia + T i3
= a(aT pia + bT 53 + T pi2) + bT s + (@7 iz + DT i1 + cT5)
= (@ + D)bT 3 + (aTpas + bT i + ¢Toit) + (2ac — b)Y T ua + T,
= (a® + 2b)T 4 + (2ac — BTy + T, .

O

Proof of Theorem 5. 1t is clear that the identity is valid for n = 1. For convenience, put @ = ab — b + c.
We shall prove that for n > 2,

n-2
Tons2 = TaTon — UiTop—2 + Uy Z(_Q)iTZH—Qi—Al- (3.4)

i=0

Whenn = 2,by U; = 77 — T, (3.4) is valid.
Assume that the relation (3.4) is valid for some n. By Lemma 3, with the fact that 73 — « = a® + 2b,
a7, — U, = 2ac — b, and U, — aU, = c?, we get

Tonsa = (Ta— )T ans2 + (@T 4 = U1)T 2 + (Uz — U )T 202 (3.5)

By using the assumption of mathematical induction and the relation (3.5), we have

n—1 n-2

U, Z(_a')iTZn—Zi—Z =Uy| T2~ Z(—G)iTzn—zi—4
i=0

i=0
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= UsTon-2 — (T o2 = TaT2n + U1 T24-2)
= Topsa — TaT o2 + Ui T2y

Hence, (3.4) is also valid for n + 1.
Now, expanding the determinant in Theorem 5 along the first row repeatedly, we get

U, 1 o - 0
U, T2 1
QUZ U]
7.;17’211 - CL’ZUZ U2
: .1 0
"4 U, U, 74 1
(l’n_3U2 Qn_SUz ce Q’Uz U2 U1 7-4
U, 1 o -- 0
alU, T2 1
2
=TT~ U | 02U
: .10
0/"4U2 U1 7—4 1
a"‘3U2 (l'n_6U2 e Uy Uy T4
= T4T 20 — Ui Ton-a + UsTops — @UsT oy + @ UsT g — - -
n—4
_ n—4 (0 U2 1
+ ( 1) a,n—3U2 7"4
n-2
=T4T 20— UiT2n2+ Us Z(—a)szn—zi—zt =T ons2 -
i=0
We used the relation (3.4) in the final part. O

By using the inversion formula, we have a determinantal expression with Tribonacci entries.

Proposition 5. Forn > 3,

T 1 O --- 0
Te Ta 1

(ab-b+cy Ur=| 74 T4 . 0

: Ty 1

Tonsz =+ Ts Te Ta

When a = b = ¢ = 1 in Proposition 5, we have the following. See [9, Theorem 3.2]".

"Note that our definition of Tribonacci numbers and theirs are off by one number.
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Corollary 4.
T, 1 0 0
Te T 1 :
Ts T 0 |=4.
: T, 1
Tonsn Ts Te T

3.2. A determinantal expression of T 2,41

The results mentioned above may seem to be straightforward and can be applied easily to any other
cases. It is a completely different problem whether an elegant or clean expression can be obtained.
In [9, Theorem 3.2], the following is presented for n > 3. However, its generalization has not been

found yet.

T; 1 0 0
Ts Ts
T, Ts 0 [=4-=D""
: 7; 1
Top I; Ts T;
By Lemma 2, its inverse relation is given by
2 1 0 0
-3 2
L= + 7
-4 0
: 2 1
4(-1)~! -4 4 -3 2

By brute force, we can still obtain the determinantal representation by using the generating function
method ( [14,23]), which is presented to find the determinantal representations.
By the recurrence relation in Lemma 3, we have

i 7 T1+ (T3 — (@ +2b)T )t + (Ts — (a® + 2b)T5 — (ac — b*)T )t
2n+1
n=0

1 —(a? +2b)t — 2ac — bH)i2 — P

1 -(@-a+by-cla-r
1 —=(a +2b)t — Qac - b2 — 23

Hence, we obtain that

) -1
[Z ‘7~2n+1tn) =1-zit+ zth - z3t3 + Z4l4 —
n=0
where
zi1=a+b,
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n=da+b-1+(@+1)c,

3 =—(a*(a+b-1)a*—a+b)+aa+2)a-1)+2ab+c)),

w=aa+b- 1) -a+b)
+cla(a+2)a—-1)>+Qab+c)2a*> —a+b-1)),

Then, by Lemma 1, we get

2 1 0 e 0
Z a-+ b 1 :

Tone1 =c| 23 22 0
a+b 1

23 22 21

However, this is not an elegant expression at all different from that of 75,;,.
4. Concluding remarks

The results presented in this paper contribute to the broader field of matrix theory, particularly those
associated with specialized number sequences and their determinant representation.
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