This paper investigates the traveling wave solutions of the Broer-Kaup equation with distributed delay. Using geometric singular perturbation theory and the Melnikov function method, a qualitative analysis on the traveling wave equation is carried out. By restricting the system to a locally invariant manifold, the delayed traveling wave equation is reduced to a near-Hamiltonian system. A translation transformation is applied to simplify the near-Hamiltonian planar system. Through involution mapping criterion, the monotonicity of the ratio of two Abelian integrals is established, which ensures that the Melnikov function possesses a unique simple zero. Based on Poincaré and heteroclinic bifurcation theory, the sufficient conditions on the persistence of periodic and kink (anti-kink) wave solutions are derived. Moreover, we present numeric simulations to illustrate the given results.
Citation: Minzhi Wei, Feiting Fan, Xinxin Liu. Dynamics on traveling wave solutions for Broer-Kaup equation with distributed delay[J]. AIMS Mathematics, 2026, 11(1): 857-880. doi: 10.3934/math.2026037
This paper investigates the traveling wave solutions of the Broer-Kaup equation with distributed delay. Using geometric singular perturbation theory and the Melnikov function method, a qualitative analysis on the traveling wave equation is carried out. By restricting the system to a locally invariant manifold, the delayed traveling wave equation is reduced to a near-Hamiltonian system. A translation transformation is applied to simplify the near-Hamiltonian planar system. Through involution mapping criterion, the monotonicity of the ratio of two Abelian integrals is established, which ensures that the Melnikov function possesses a unique simple zero. Based on Poincaré and heteroclinic bifurcation theory, the sufficient conditions on the persistence of periodic and kink (anti-kink) wave solutions are derived. Moreover, we present numeric simulations to illustrate the given results.
| [1] |
W. Craig, J. Goodman, Linear dispersive equations of Airy type, J. Differ. Equations, 87 (1990), 38–61. https://doi.org/10.1016/0022-0396(90)90014-G doi: 10.1016/0022-0396(90)90014-G
|
| [2] | M. Wadati, Introduction to solitons, Pramana, 57 (2001), 841–847. https://doi.org/10.1007/s12043-001-0002-3 |
| [3] | N. J. Zabusky, M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240–243. |
| [4] |
L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377–395. https://doi.org/10.1007/BF00418048 doi: 10.1007/BF00418048
|
| [5] | M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scatting, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998 |
| [6] | J. Ahamad, M. Mushtaq, N. Sajjad, Exact solution of Whitha-Broer-Kaup shallow water equations, J. Sci. Arts, 1 (2015), 5–12. |
| [7] |
J. P. Ying, S. Y. Lou, Abundant coherent structures of the $(2+1)$-dimensional Broer-Kaup-Kupershmidt equation, Z. Naturforsch. A, 53 (2001), 619–625. https://doi.org/10.1515/zna-2001-0903 doi: 10.1515/zna-2001-0903
|
| [8] |
M. Wang, J. Zhang, X. Li, Application of the $\left(\frac{G}{G'}\right)$-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations, Appl. Math. Comput., 206 (2008), 321–326. https://doi.org/10.1016/j.amc.2008.08.045 doi: 10.1016/j.amc.2008.08.045
|
| [9] |
S. Guo, Y. Zhou, C. Zhao, The improved $\left(\frac{G}{G'}\right)$-expansion method and its applications to the Broer-Kaup equations and approximate long water wave equations, Appl. Math. Comput., 216 (2010), 1965–1971. https://doi.org/10.1016/j.amc.2010.03.026 doi: 10.1016/j.amc.2010.03.026
|
| [10] |
S. Malik, S. Kumar, P. Kumari, K. S. Nisar, Some analytic and series solutions of integrable generalized Broer-Kaup system, Alex. Eng. J., 61 (2022), 7067–7074. https://doi.org/10.1016/j.aej.2021.12.051 doi: 10.1016/j.aej.2021.12.051
|
| [11] |
C. M. Khalique, On the solutions and conservation laws of the $(1+1)$-dimensional higher-order Broer-Kaup system, Bound. Value Probl., 2013 (2013), 41. https://doi.org/10.1186/1687-2770-2013-41 doi: 10.1186/1687-2770-2013-41
|
| [12] |
S. Kumar, K. Singh, R. K. Gupta, Painlev$\rm \acute{e}$ analysis, Lie symmetries and exact solutions for $(2+1)$-dimensional variable coefficients Broer-Kaup equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1529–1541. https://doi.org/10.1016/j.cnsns.2011.09.003 doi: 10.1016/j.cnsns.2011.09.003
|
| [13] |
H. Zedan, M. M. Alshamrani, A novel class of solutions for the $(2+1)$-dimensional higher-order Broer-Kaup system, Comput. Math. Appl., 69 (2015), 67–80. https://doi.org/10.1016/j.camwa.2014.10.017 doi: 10.1016/j.camwa.2014.10.017
|
| [14] |
Z. Wen, New exact explicit nonlinear wave solutions for the Broer-Kaup equation, J. Appl. Math., 2014 (2014), 984791. https://doi.org/10.1155/2014/984791 doi: 10.1155/2014/984791
|
| [15] |
Q. Meng, W. Li, B. He, Smooth and peaked solitary eave solutions of the Broer-Kaup system using the approach of dynamical system, Commun. Theor. Phys., 62 (2014), 308–314. https://doi.org/10.1088/0253-6102/62/3/03 doi: 10.1088/0253-6102/62/3/03
|
| [16] |
L. Fan, T. Bao, Similarity wave solutions of Whitham-Broer-Kaup equations in the oceanic shallow water, Phys. Fluids, 36 (2024), 076613. https://doi.org/10.1063/5.0218157 doi: 10.1063/5.0218157
|
| [17] | T. Ogama, Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24 (1994), 401–422. |
| [18] |
X. Sun, M. Zhang, Dynamics of a quartic Korteweg-de Vries equation with multiple dissipations via an Abelian integral approach, Chaos, 35 (2025), 083118. https://doi.org/10.1063/5.0269545 doi: 10.1063/5.0269545
|
| [19] |
M. Wei, Y. Dai, R. Zou, Traveling waves in a generalized KdV equation with arbitrarily high-order nonlinearity and different distributed delays, Qual. Theo. Dyn. Syst., 24 (2025), 22. https://doi.org/10.1007/s12346-024-01179-6 doi: 10.1007/s12346-024-01179-6
|
| [20] |
S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differ. Equations, 232 (2007), 104–133. https://doi.org/10.1016/j.jde.2006.08.015 doi: 10.1016/j.jde.2006.08.015
|
| [21] |
X. Sun, P. Yu, Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms, Disc. Cont. Dyn. Syst. Ser. B, 24 (2019), 965–987. https://doi.org/10.3934/dcdsb.2018341 doi: 10.3934/dcdsb.2018341
|
| [22] |
Y. Dai, M. Wei, M. Han, Existence of periodic waves in a perturbed generalized BBM equation, Int. J. Bifurcat. Chaos, 33 (2023), 2350060. https://doi.org/10.1142/S0218127423500608 doi: 10.1142/S0218127423500608
|
| [23] |
M. Wei, L. He, Existence of periodic wave of a BBM equation with delayed convection and weak diffusion, Nonlinear Dyn., 111 (2023), 17413–17425. https://doi.org/10.1007/s11071-023-08743-w doi: 10.1007/s11071-023-08743-w
|
| [24] |
C. Hsu, T. Yang, C. Yang, Diversity of traveling wave solutions in FitzHugh-Nagumo type equations, J. Differ. Equations, 247 (2009), 1185–1205. https://doi.org/10.1016/j.jde.2009.03.023 doi: 10.1016/j.jde.2009.03.023
|
| [25] | S. Ji, X. Li, Solitary wave solutions of delayed coupled Higgs field equation, Acta Math. Sin. Engl. Ser. 38 (2022), 97–106. https://doi.org/10.1007/s10114-022-0268-6 |
| [26] |
J. Wang, L. Zhang, X. Huo, N. Ma, C. M. Khalique, Traveling wave solutions for two perturbed nonlinear wave equations with distributed delay, Qual. Theory Dyn. Syst., 23 (2024), 175. https://doi.org/10.1007/s12346-024-01035-7 doi: 10.1007/s12346-024-01035-7
|
| [27] |
M. Wei, F. Fan, X. Chen, Periodic wave solutions for a KP-MEW equation under delay perturbation, Phys. D, 462 (2024), 134143. https://doi.org/10.1016/j.physd.2024.134143 doi: 10.1016/j.physd.2024.134143
|
| [28] |
Z. Du, J. Li, X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988–1007. https://doi.org/10.1016/j.jfa.2018.05.005 doi: 10.1016/j.jfa.2018.05.005
|
| [29] |
Z. Du, J. Li, Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation, J. Differ. Equations, 306 (2022), 418–438. https://doi.org/10.1016/j.jde.2021.10.033 doi: 10.1016/j.jde.2021.10.033
|
| [30] |
H. Qiu, L. Zhong, J. Shen, Traveling waves in a generalized Camassa-Holm equation involving dual-power law nonlinearities, Commun. Nonlinear Sci. Numer. Simul., 106 (2022), 106106. https://doi.org/10.1016/j.cnsns.2021.106106 doi: 10.1016/j.cnsns.2021.106106
|
| [31] |
J. Llibre, X. Sun, Small-amplitude periodic solutions in the polynomial jerk equation of arbitrary degree, Phys. D, 476 (2025), 134628. https://doi.org/10.1016/j.physd.2025.134628 doi: 10.1016/j.physd.2025.134628
|
| [32] |
A. Chen, L. Guo, X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Differ. Equations, 261 (2016), 5324–5349. https://doi.org/10.1016/j.jde.2016.08.003 doi: 10.1016/j.jde.2016.08.003
|
| [33] |
A. Chen, C. Zhang, W. Huang, Monotonicity of limit wave speed of traveling wave solutions for a perturbed generalized KdV equation, Appl. Math. Lett., 121 (2021), 107381. https://doi.org/10.1016/j.aml.2021.107381 doi: 10.1016/j.aml.2021.107381
|
| [34] |
A. Chen, C. Zhang, W. Huang, Limit speed of traveling wave solutions for the perturbed generalized KdV equation, Disc. Cont. Dyn. Syst. Ser. S, 16 (2023), 379–402. https://doi.org/10.3934/dcdss.2022048 doi: 10.3934/dcdss.2022048
|
| [35] |
C. Liu, G. Chen, Z. Sun, New criteria for the monotonicity of the ratio of two Abelian integrals, J. Math. Anal. Appl., 465 (2018), 220–234. https://doi.org/10.1016/j.jmaa.2018.04.074 doi: 10.1016/j.jmaa.2018.04.074
|
| [36] |
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31 (1979), 53–98. https://doi.org/10.1016/0022-0396(79)90152-9 doi: 10.1016/0022-0396(79)90152-9
|
| [37] | C. K. R. T. Jones, Geometric singular perturbation theory, In: L. Arnold, C. K. R. T. Jones, K. Mischaikow, G. Raugel, Dynamical systems, Springer, 2006, 44–118. https://doi.org/10.1007/BFb0095239 |
| [38] | L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 2013. |