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Abstract: This paper investigates the traveling wave solutions of the Broer-Kaup equation with
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qualitative analysis on the traveling wave equation is carried out. By restricting the system to a locally
invariant manifold, the delayed traveling wave equation is reduced to a near-Hamiltonian system.
A translation transformation is applied to simplify the near-Hamiltonian planar system. Through
involution mapping criterion, the monotonicity of the ratio of two Abelian integrals is established,
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kink) wave solutions are derived. Moreover, we present numeric simulations to illustrate the given
results.
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1. Introduction and main results

Nonlinear equations are essential to capturing complex phenomena in fields, including fluid
mechanics, optics, plasma physics, and geochemistry [1], with wave processes such as dispersion and
dissipation playing a key role. Among these, shallow water wave equations are of particular
importance, valued for their dynamic richness and practical utility. A fundamental concept in this area
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is the soliton, a solitary wave packet that maintains its profile while traveling at a constant
velocity [2, 3].

A popular dispersive equation is the Broer-Kaup equation [4], which has the formUt + Vx +
1
2

(U2)x = 0,

Vt + Ux + (UV)x + Uxxx = 0.
(1.1)

Equation (1.1) was first derived by Broer in 1975 to describe the bi-directional propagation of long
waves in an infinitely long, narrow channel of constant finite depth. The Broer-Kaup Eq (1.1) serves as
a fundamental model in nonlinear physics [5, 6], with U(x, t) representing the horizontal velocity and
V(x, t) denoting the water surface displacement. Ut represents horizontal velocity. Vx represents the
restoring force driven by the slope of the water surface, and (U2)x represents the convection term. Vt

describes the rate of change in water surface height. Ux is the divergence of speed. (UV)x describes
the nonlinear coupling and transport effects between wave and current while Uxxx is the dispersion
effect. Its applicability to fields from plasma physics to mathematical biology has driven scholars to
extensively study a wide spectrum of solutions for this equation and its generalized forms. Over the
years, the Broer-Kaup equation and its variants have been the subject of considerable investigation
through a diverse set of analytical and algebraic techniques. A substantial portion of the literature
has relied on various expansion methods, including the extended Painlevé expansion [7], the (G/G′)-
expansion method [8] and its improved version [9], as well as the tanh-expansion and Kudryashov
methods [10]. In parallel, symmetry-based frameworks, such as Lie group analysis and Lie symmetry
analysis, have been effectively applied to obtain exact and invariant solutions [11–13]. Furthermore,
bifurcation theory from dynamical systems offers another powerful avenue for deriving traveling wave
solutions [14]; notably, Meng et al. later employed the same methodology to construct solutions with
a profile distinct from those reported earlier [15]. Very recently, the homogeneous balance method and
Bäcklund transformation have also been applied to investigate solitary wave solutions [16].

The study of traveling wave persistence primarily focuses on nonlinear effects, including diffusion,
dissipation, dispersion, and delay, under common dynamical perturbations such as external forcing and
singular (or regular) terms. In practical scenarios, some small perturbations are often unavoidable. This
is particularly true for shallow water wave equations, where wave propagation is invariably subject to
influences from past states. The response at the current time t is jointly determined by its historical
states over a past period, and the influence from different historical moments varies, which is always
weighted by the delay kernel function. Therefore, it is necessary to incorporate distributed time-delay
perturbations into the model, especially in the convection term. However, research on traveling wave
solutions in the perturbed Broer-Kaup equation with distributed delay is notably absent, leaving the
question of their persistence open. Consequently, in this paper, we consider the delayed Broer-Kaup
equation as the form  Ut + Vx + a(( f ∗ U)U)x = 0,

Vt + Ux + b(UV)x + uxxx = 0,
(1.2)

where a, b are nonzero real numbers. The a represents the strength of delayed convection term, and
b represents the intensity of nonlinear interaction term in the entire dynamical system. The kernel
function

f = e−
t
τ /τ
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with 0 < τ ≪ 1 is the kernel function, satisfying f : [0,∞)→ [0,∞) and the normalization condition∫ ∞

0
f (t)dt = 1, t f (t) ∈ L1((0,∞),R),

then f ∗ u, represents a convolution that

( f ∗ U)(x, t) =
∫ t

−∞

f (t − s)U(x, s)ds.

We aim to investigate the traveling wave solutions of Eq (1.2) with 0 < τ ≪ 1. While the introduction
of convolution enriches the dynamics of shallow water wave equations, it also breaks integrability and
introduces analytical challenges. For the resulting singularly perturbed system, such as Eq (1.2),
geometric singular perturbation theory (GSPT) provides a powerful framework. This approach
establishes a locally invariant manifold, thereby reducing the singular problem to a regularly
perturbed one on the manifold. The efficacy of GSPT is evidenced by its successful application in
proving the existence of traveling waves for numerous perturbed nonlinear equations, including
Korteweg-de Vries type equations [17–19], Fisher equations [20], Benjamin-Bona-Mahoney
equations [21–23], FitzHugh-Nagumo equations [24, 25], Kadomtsev-Petviashvili modified equal
width equations [26, 27], Camassa-Holm equations [28–30], and jerk equations [31]. Partially,
Chebyshev criterion [21, 23], the Picard-Fuchs equation method [32–34], and involution mapping
criterion [19, 27] are employed to establish the monotonicity of the ratio of Abelian integrals, which
possesses a unique zero of the Melnikov function. In this paper, we utilize involution mapping
criterion to prove the uniqueness of zero of Melnikov function and then obtain the uniqueness of the
periodic wave solution of Eq (1.2).

For Eq (1.2), making traveling wave transformations

U(x, t) = u(x − ct) = u(ξ), V(x, t) = v(x − ct) = v(ξ),

where c is the wave speed, has following traveling wave equation: − cu′ + v′ + a(ηu)′ = 0,
− cv′ + u′ + b(uv)′ + u′′′ = 0,

(1.3)

where ′ is the derivative with respect to ξ and

η(ξ) :=
∫ +∞

0

1
τ

e−
t
τu(ξ + ct)dt (1.4)

satisfying that
τcη′ = η − u.

Integrating (1.3) twice to obtain  − cu + v + a(ηu) = g1,

− cv + u + buv + u′′ = g2,
(1.5)

where g1 and g2 are integral constants, we have the following statements.
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Theorem 1.1. When a > 8b/7 > 0, g1 = 0 and

g2 = −c(a + b)(c2 − 1 − 2c2(a + b)/9ab)/3ab,

the following statements hold for Eq (1.2):

(i) For any given parameter c∗ ∈ (0, c1), there exists a wave speed c defined by

c = c∗ + O(τ),

such that Eq (1.2) admits a unique periodic wave solution of the form

u(x − ct) = mµ((x − ct)/n) + c(a + b)/(3ab).

Here,
µ(z) = µ((x − ct)/n)

is a periodic function. The solution has the following asymptotic properties:

lim
(c∗,τ)→(0,0)

u(x − ct) = 0,

lim
(c∗,τ)→(c1,0)

u(x − ct) = mµkink
±

( x − ct
n

)
+

c(a + b)
3ab

with

µkink
±

( x − ct
n

)
=

e±
√

2( x−ct
n ) − 1

e±
√

2( x−ct
n ) + 1

.

Further, the amplitude of this solution converges to 2m as (c∗, τ) → (c1, 0) and diminishes to 0 as
(c∗, τ)→ (0, 0).

The parameters in the above expressions are defined as follows:

c1 =

√
9ab

7a2 − 8b2 + 8ab
, m =

√
1

ab

(
1 − c2 +

c2(a + b)2

3ab

)
, n =

√
3ab

3ab − 3abc2 + c2(a + b)2 .

Note that m and n depend on the wave speed c, which itself is a function of c∗ and τ.

(ii) For
c = c1 + O(τ),

Eq (1.2) admits a pair of kink and anti-kink wave solutions given by

u1,2(x − ct) = mµ1,2

( x − ct
n

)
+

c(a + b)
3ab

,

which satisfies

lim
τ→0

u1,2(x − ct) = mµkink
±

( x − ct
n

)
+

c(a + b)
3ab

.

Here, µkink
± (·) is defined in (i).
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To the best of our knowledge, the existence of traveling wave solutions for the BK equation
incorporating distributed delays remains unexplored in the existing literature. Therefore, this work
presents a novel investigation into this problem.

This paper is structured as follows: Some preliminaries including geometric singular perturbation
theory and near-Hamiltonian systems, are introduced in Section 2. Section 3 establishes the proof of
Theorem 1.1. The system is firstly reduced via GSPT and a translation transformation. Subsequently,
involution mapping criterion is employed to demonstrate the strict monotonicity of a ratio of Abelian
integrals, from which the uniqueness of a simple zero for the Melnikov function is concluded. The
persistence of periodic and kink (anti-kink) wave solutions is then established through Poincaré and
heteroclinic bifurcation theory, respectively. Finally, Section 4 provides a brief conclusion and presents
numerical simulations.

2. Preliminaries

In this section, we introduce the relevant definitions and lemmas of geometric singular perturbation
theory as well as near-Hamiltonian systems.

2.1. Geometric singular perturbation theory

Consider a system x′(t) = f (x, y, ε),
y′(t) = εg(x, y, ε),

(2.1)

where
′ =

d
dt
, 0 < ε ≪ 1

is a real and small parameter and

x = (x1, x2, . . . , xk)T ∈ Rk, y = (y1, y2, . . . , yl)T ∈ Rl.

Both f and g are C∞-smooth on U × I with U ⊂ Rk+l open and I being an open interval containing 0.
With a change of time scaling z = εt, system (2.1) can be written asεẋ = f (x, y, ε),

ẏ = g(x, y, ε),
(2.2)

where
˙=

d
dz
.

The time scale z is slow, and t is fast since 0 < ε ≪ 1. For non-zero ε, the systems (2.1) and (2.2) are
equivalent. This leads to the terminology where (2.1) is the so-called fast system and (2.2) is the slow
one. Letting ε→ 0 in (2.1) and it obtains the layer systemx′(t) = f (x, y, 0),

y′(t) = 0.
(2.3)
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In this context, x and y are referred to as the fast and slow variables, respectively. Let ε → 0 in (2.2),
the limit system is given by  f (x, y, 0) = 0,

ẏ = g(x, y, 0).
(2.4)

It only makes sense if

f (x, y, 0) = 0.

Assume that there is a given l-dimensional manifold M0, which is contained in the set

{ f (x, y, 0) = 0}.

Definition 2.1. The manifold M0 is called normally hyperbolic provided that, for every point on M0,
the linearization of the layer system (2.3) possesses precisely l eigenvalues with zero real parts (i.e.,
located on the imaginary axis).

Definition 2.2. A set M is said to be locally invariant under the flow given in (2.1) if, for every x ∈ M,
the following holds: Whenever the trajectory segment x · [0, t] remains within a certain neighborhood
V of M, it must in fact remain entirely in M. The same condition applies in reverse time for t < 0 with
the interval [0, t] replaced by [t, 0]. This means there exists a neighborhood V such that no trajectory
can exit M without first leaving V. Here, the notation x · t denotes the position at time t along the flow
starting from the initial condition x.

Assume that there is a C∞ function h0(y), for y ∈ K, with K being a compact domain in Rl, such that

M0 = {(x, y) : x = h0(y)}.

Thus, we establish the following lemmas pertaining to the geometric theory of singular perturbations.

Lemma 2.1. For ε > 0 is sufficiently small, there exists a manifold Mε lying within O(ε) of M0. Mε
is diffeomorphic to M0 and locally invariant under the flow of (2.1), and is Cr in x, y and ε, for any
0 < r < +∞.

Lemma 2.2. For ε > 0 is sufficiently small, there exists a function

x = hε(y)

defining on K such that the graph

Mε = {(x, y) : x = hε(y)}

is locally invariant under (2.1). Additionally, hε(y) is jointly Cr in y and ε for any 0 < r < +∞.
Furthermore, Mε admits locally invariant stable and unstable manifolds, denoted as W s(Mε) and
Wu(Mε). These lie within an O(ε) neighborhood and are Cr-diffeomorphic to their counterparts
W s(M0) and Wu(M0) associated with the critical manifold M0.
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2.2. Near-Hamiltonian system

Consider a C∞ system of the formx′(t) = Hy(x, y) + εp(x, y, ε),
y′(t) = −Hx(x, y) + εq(x, y, ε),

(2.5)

where H(x, y), p(x, y, ε) and q(x, y, ε) are C∞ functions and 0 < ε ≪ 1. For ε = 0, Eq (2.5) becomesx′(t) = Hy(x, y),
y′(t) = −Hx(x, y),

(2.6)

which is a Hamiltonian system. Thus, Eq (2.5) is called a near-Hamiltonian system. For Eq (2.6), we
suppose there exists a family of periodic orbits given by

Γh : H(x, y) = h, h ∈ (α, β),

such that Γh tends to an elementary center Γα as h → α and to an invariant curve Γβ as h → β. The
boundary Γβ typically forms either a homoclinic loop (comprising of a saddle and its connection) or a
heteroclinic loop (involving at least two saddles and their connecting orbits).

If (2.5) has a limit cycle Γh,ε, then the limit of the cycle as ε → 0 is either the center Γα, a periodic
orbit Γh with h ∈ (α, β), or the boundary Γβ. In this case, it is said that the limit cycle Γh,ε is generated
from Γh. In order to study the number of limit cycles, we usually consider the number of simple zero
of the Melnikov function

M(h) =
∮

H(x,y)=h
qdx − pdy, (2.7)

which is also called an Abelian integral. The Melnikov function M(h) can often be employed to
determine the cyclicity associated with a periodic orbit. The search for the maximum number of
isolated zeros of such integrals is called the weakened (or infinitesimal or tangential) Hilbert’s 16th
problem.

Lemma 2.3. (Poincaré-Pontryagin-Andronov) Suppose that M(h, δ) has different zeros for h ∈ J. The
following conclusions hold within the periodic annulus Γh:

(i) If there exists h∗ ∈ (α, β) such that

M1(h∗, δ) = 0 and M′1(h∗, δ) , 0,

then (2.5) admits a unique Γh∗,ε bifurcate from Γh∗ . Further, Γh∗,ε → Γh∗ as ε→ 0.

(ii) If
M′(h∗, δ) = M′′(h∗, δ) = · · · = M(k−1)(h∗, δ) = 0, M(k)(h∗, δ) , 0,

then (2.5) admits at most k limit cycles bifurcating from Γh∗ within the periodic annulus Γh.

(iii) The total number of limit cycles (counting multiplicities) of (2.5) that bifurcate from Γh∗ within Γh

is determined by the number of isolated zeros (counting multiplicities) of M(h∗, δ) for h∗ ∈ (α, β).

In the expressions above, the prime notation ′ denotes the derivative with respect to the variable h.
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2.3. The criteria

In this subsection, we introduce the criteria for the monotonicity of the ratio of two Abelian integrals
proposed by Liu et al. [35].

Consider the Hamiltonian system

ẋ = y, ẏ = −Ψ′(x), (2.8)

which has a Hamiltonian function in the form

H(x, y) =
1
2

y2 + Ψ(x),

where Ψ(x) ∈ C2(α, β) with α, β ∈ R. Assume that there is a number a ∈ (α, β) such that Ψ(a) = 0, and
the following hypothesis is satisfied:

(H̃1) : Ψ′(x)(x − a) > 0, for all x ∈ (α, β) \ {a}.

It is obvious that (a, 0) is a center of system (2.8) and Ψ(x) > 0 for x ∈ (α, β) \ {a}. Let

hs = Ψ(α) = Ψ(β) > hc = H(a, 0) = Ψ(a) = 0

and denote by
Γh = {(x, y) | H(x, y) = h}.

For any h ∈ (hc, hs), Γh includes a closed orbit. It is obvious that there exists an involution σ defined in
(α, β) such that

Ψ(x) = Ψ(σ(x)).

Here, a mapping σ: I → I is called an involution if

σ2 = Id and σ , Id.

Note that
σ(a) = a

and
(x − a)(σ(x) − a) < 0

for x ∈ (α, β) \ {a}.
Define two Abelian integrals

Ii(h) =
∫
Γh

fi(x)ydx, (2.9)

where fi ∈ C1(α, β) and i = 1, 2.
Assume that the following hypothesis is also satisfied:

(H̃2) :
f1(x)
Ψ′(x)

−
f1(σ(x))
Ψ′(σ(x))

> 0, for all x ∈ (a, β).
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Define two functions G1(x) and G2(x) as follows:

G1(x) =
∫ x

σ(x)
f1(t)dt, G2(x) =

∫ x

σ(x)
f2(t)dt. (2.10)

It follows from
Ψ(x) = Ψ(σ(x))

and hypothesis (H̃1) that
dσ(x)

dx
=
Ψ′(x)
Ψ′(σ(x))

< 0

for x ∈ (a, β). By direct calculation, we have

G′1(x) = f1(x) − f1(σ(x))σ′(x)

= f1(x) − f1(σ(x))
Ψ′(x)
Ψ′(σ(x))

= Ψ′(x)
(

f1(x)
Ψ′(x)

−
f1(σ(x))
Ψ′(σ(x))

)
.

(2.11)

Thus, under the hypothesis (H̃1), the hypothesis (H̃2) can be replaced by the following form

(H̃′2) : G′1(x) > 0, for all x ∈ (a, β).

Then, we have the following lemma, which is equivalent to [35, Theorem 2.1].

Lemma 2.4. Suppose that the hypotheses (H̃1) and (H̃′2) are satisfied. Let

ξ(x) =
G2(x)
G1(x)

and P(h) =
I2(h)
I1(h)
. (2.12)

Then ξ′(x) < 0 (resp. > 0) in (a, β) implies P′(h) < 0 (resp. > 0) in (hc, hs).

3. Proof of main results

According to the introduction on GSPT, a near-Hamiltonian system, we investigate the traveling
wave solutions of Eq (1.2). The persistence of both periodic and kink (anti-kink) wave solutions is
established by analyzing the corresponding traveling wave equation. Using GSPT, the singularly
perturbed system is regularized. To handle the complexity arising from multiple parameters, a
translation transformation is subsequently introduced. Finally, the uniqueness of the zero for the
Melnikov function is confirmed via involution mapping criterion.

From the first equation of system (1.5), it yields

v = cu − aηu,

and then substituting v into the second equation results in

(1 − c2)u + bcu2 + acηu − abηu2 + u′′ = g2. (3.1)
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To reformulate Eq (3.1), we introduce the variable

y = u′

and then
y′ = u′′ = g2 − ((1 − c2)u + bcu2 + acηu − abηu2),

which leads to an equivalent three-dimensional system.
u′ = y,

y′ = g2 + (c2 − 1)u − bcu2 − acηu + abηu2,

τη′ =
1
c

(η − u).

(3.2)

The autonomy of system (3.2) is evident. It possesses the characteristics of a singularly perturbed
system. Under the limit τ→ 0, it can be observed that η→ u. To analyze the case of τ , 0, we employ
the time-scale transformation

ξ = τs,

which converts the slow system (3.2) into its corresponding fast-time scale formulation

du
ds
= τy,

dy
ds
= τ

(
g2 + (c2 − 1)u − bcu2 − acηu + abηu2

)
,

dη
ds
=

1
c

(η − u).

(3.3)

For τ > 0, systems (3.2) and (3.3) are equivalent. In the limiting case τ = 0, they respectively reduce
to the following systems: 

u′ = y,

y′ = g2 + (c2 − 1)u − bcu2 − acηu + abηu2,

0 =
1
c

(η − u),

(3.4)

and 

du
ds
= 0,

dy
ds
= 0,

dη
ds
=

1
c

(η − u).

(3.5)

We designate system (3.4) as the reduced system and system (3.5) as the layer system. Since the set

M0 = {(u, y, η) ∈ R3 : η = u}

AIMS Mathematics Volume 11, Issue 1, 857–880.



867

defines a slow invariant manifold, the linearized matrix of system (3.5)|τ=0 is given as
0 0 0
0 0 0
−1/c 0 1/c

 .
The eigenvalues of the system are readily found to be 0, 0, and 1/c. Since the number of purely
imaginary eigenvalues equals dim(M0) and the remaining eigenvalue is hyperbolic, M0 is normally
hyperbolic. According to GSPT indicated in [36, 37], this guarantees, for sufficiently small τ > 0, the
existence of a locally invariant manifold Mτ for system (3.2) under the flow of (3.3). This manifold is
diffeomorphic to M0 and can be expressed as

Mτ = {(u, y, η) ∈ R3 : η = u +G(u, y, τ)},

with G(u, y, τ) being a smooth function and G(u, y, 0) = 0. Its Taylor expansion is

G(u, y, τ) = τG1(u, y) + O(τ2).

The manifold is
η = u + τG1(u, y) + O(τ2)

and then
η′ = y + O(τ).

Substitution into the third equation of (3.2) obtains

τη = τy + O(τ2) = τG1/c + O(τ),

which gives
τ(y + O(τ)) = τG1/c + O(τ2).

Matching the τ-coefficients determines
G1(u, y) = cy,

leading to a regularly perturbed system on Mτ as the formu′ = y,

y′ = g2 + (c2 − 1)u − (bc + ac)u2 + abu3 + acτ(−cuy + bu2y) + O(τ2),
(3.6)

which is a planar near-Hamiltonian system. Introducing

u = ϕ + c(a + b)/(3ab)

and setting
g2 = −c(a + b)/(3ab)(c2 − 1 − 2c2(a + b)2/9ab),

Eq (3.6) is changed into
ϕ′ = y,

y′ =
(
c2 − 1 −

c2(a + b)2

3ab

)
ϕ + abϕ3 + acτR1(ϕ)y + O(τ2),

(3.7)
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where

R1(ϕ) = −
c2(a + b)

3ab

(
1 −

a + b
3a

)
−

(
c −

2c(a + b)
3a

)
ϕ + bϕ2.

By introducing the new variables

ϕ = mµ, ξ = nz, and ν := dµ/dz,

system (3.7) is converted to 
dµ
dz
= ν,

dν
dz
= −µ + µ3 + εR2(µ)ν + O(ε2),

(3.8)

where m, n are defined in Theorem 1.1 and ε = acnτ, and

R2(µ) = −
c2(a + b)

3ab

(
1 −

a + b
3a

)
−

(
c −

2c(a + b)
3a

)
mµ + bm2µ2.

When ε→ 0, Eq (3.8) reduces to a Hamiltonian system
dµ
dz
= ν,

dν
dz
= −µ + µ3,

(3.9)

which has an energy function

H(µ, ν) =
ν2

2
+
µ2

2
−
µ4

4
. (3.10)

The potential energy function and the configuration of its equilibrium points dictate the dynamics
of system (3.9). The system possesses three equilibria: a center at E0(0, 0) and two saddles at E1(1, 0)
and E2(−1, 0). The corresponding energy levels are

H(0, 0) = 0 and H(±1, 0) = 1/4.

At the energy h = 1/4, there exist two heteroclinic orbits, denoted Γ+1/4 and Γ−1/4, which connect the
saddles E1 and E2. For energies h ∈ (0, 1/4), the level set

H(µ, ν) = h

defines a family of periodic orbits Γh, enclosed by the heteroclinic loop

Γ1/4 = Γ+1/4 ∪ Γ−1/4 ∪ E1,2,

as illustrated in Figure 1.
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Figure 1. Phase portrait.

The period of Γh is denoted by T (h). For h ∈ (0, 1/4), it has

ν = (µ2 − a2
1)(µ2 − a2

2)/2,

where
a1 = (1 −

√
1 − 4h)1/2, a2 = (1 +

√
1 − 4h)1/2.

Combining (3.10) with an elliptic integral formula, we can get the exact explicit expression of Γh as
the form

µ
peri
1 (z) = a1a2

(
sn2(ωz, k) − 1

a2
2sn2(ωz, k) − a2

1

) 1
2

, (3.11)

where sn(·, ·) is the Jacobian elliptic function,

ω := a2/
√

2, k := a1/a2,

and the exact expressions of L± are given as

µkink
± (z) =

e±
√

2z − 1

e±
√

2z + 1

via direct computations.
Bifurcation theory is employed to analyze the heteroclinic and periodic orbits in system (3.8). For

an energy level h ∈ (0, 1/4), the point A(h) corresponds to the rightmost µ-axis intersection of the
periodic orbit Γh at z = 0. When perturbed by a small ε and a slight energy shift hε, the orbit segment
Γhε is defined as the trajectory starting at A(h) and ending at the next positive µ-axis intersection B(hε),
reached at time

z = z(ε).

By continuity, we have

lim
ε→0
Γhε = Γh, lim

ε→0
B(hε) = A(h), lim

ε→0
z(ε) = T (h).
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The displacement function between B(hε) and A(h) is

d(h, ε) =
∫

ÂB
dH =

∫
ÂB

Hµdµ + Hνdν

=

∫
ÂB

(−µ + µ3)dµ + νdν

=

∫ z(ε)

0

{
(−µ + µ3)ν +

(
µ − µ3 + ε(R2(µ) + O(ε))ν2

)}
dz

= ε

∫ z(ε)

0
(R2(µ)ν2 + O(ε))dz

≜ ε𭟋(h, ε),

where

𭟋(h, ε) =
∫ T

0
R2(µ)ν2dz + O(ε)

=

∮
Γh

R2(µ)νdµ + O(ε).

Given the symmetry of Γh (Figure 1), we have∮
Γh

µνdµ ≡ 0,

leading to
𭟋(h, ε) = M(h) + O(ε),

where

M(h) = −
c2(a + b)

3ab

(
1 −

a + b
3a

)
J0(h) + bm2J2(h)

= J0(h)
(
−

c2(a + b)
3ab

(
1 −

a + b
3a

)
+ bm2 J2(h)

J0(h)

) (3.12)

is called the first-order Melnikov function. Here,

J0(h) :=
∮
Γh

νdµ =
"

intΓh

dµdν > 0, J2(h) :=
∮
Γh

µ2νdµ

for h ∈ (0, 1/4). Define the ratio function as

P(h) := J2(h)/J0(h).

According to Poincaré bifurcation theory, the limit cycles of system (3.8) are in one-to-one
correspondence with the isolated zeros of the displacement function d(h, ε). Consequently,
establishing the monotonicity of P(h) plays a crucial role in uniqueness of the root for

M(h) = 0.

The properties of P(h) are detailed in the following lemma.
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Lemma 3.1. Over the interval h ∈ (0, 1/4), P(h) increases monotonically from 0 to 1/5.

Proof. First, we consider P(h) in a small neighborhood of the endpoints of (0, 1/4). When 0 < h ≪ 1,
setting

µ = r cos θ, ν = r sin θ,

it follows from
H(µ, ν) − h = 0

that
−

1
4

r4 cos4 θ +
1
2

r2 − h = 0.

Define a function

Φ(r, h, θ) :=
r
√

2

√
1 −

1
2

r2 cos4 θ −
√

h, (3.13)

which satisfies that

Φ(0, 0, θ) = 0,
∂Φ̃(r, h, θ)
∂r

∣∣∣∣∣∣
(r,h)=(0,0)

=
1
√

2
, 0.

By implicit function theorem, for (r, h) near (0, 0), there exists an analytic r(h, θ) such that

Φ(r(h, θ), h, θ) = 0.

Thus, from (3.13), we obtain the expression of r(h, θ) as form

r(h, θ) =
√

2h +

√
2h

3
2

2
cos4 θ + o(h3/2). (3.14)

From Green’s formula, it can be derived that

Jn(h) =
∮
Γh

µnνdµ =
"
intΓh

µndµdν =
∫ 2π

0
dθ

∫ r(h,θ)

0
(r cos θ)nrdr. (3.15)

Substituting (3.14) into (3.15), we obtain

J0(h) = 2πh +
3
4
πh2 +

35
256
πh3 + O

(
h4

)
, J2(h) = πh2 +

5
4
πh3 + O

(
h4

)
,

for 0 < h ≪ 1. Thus,

lim
h→0

P(h) = lim
h→0

J2(h)
J0(h)

= 0,

and then
lim
h→0

P(h) = 0

holds.
For

0 < 1/4 − h ≪ 1,

Eq (3.10) gives
ν = ±(1 − µ2)/

√
2.
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Performing a direct computation on this result shows

lim
h→1/4

J0 (h) =
∮
Γ1/4

νdµ =
√

2
∫ 1

−1
(1 − µ2)dµ =

4
√

2
3
,

lim
h→1/4

J2 (h) =
∮
Γ1/4

µ2νdµ =
√

2
∫ 1

−1
µ2(1 − µ2)dµ =

4
√

2
15
.

Consequently, it has
lim

h→1/4
P(h) = 1/5.

We now prove the strict monotonicity of P(h) on h ∈ (0, 1/4) by involution mapping criterion. From
the relation

H(µ, ν) = h,

we can express
ν = ν(µ, h) =

√
2h − µ2 + µ4/2

for h ∈ (0, 1/4). Differentiating this expression with respect to h to yields

∂ν/∂h = 1/ν.

Thus, we have

J′i (h) =
∮
Γh

µi ∂ν

∂h
dµ =

∮
Γh

µi

ν
dµ,

which implies

J′0(h) =
∮
Γh

1
ν

dµ =
∫ T (h)

0
dz = T (h) > 0.

Thus, J0(h) is strictly increasing for h ∈ (0, 1/4). As h → 0, the orbit Γh approaches the point (1, 0)
implying that ν→ 0. Consequently, we obtain

J0(0) = lim
h→0

∮
Γh

νdµ = lim
h→0

∫ T (h)

0
ν2dz = 0.

Combining with J′0(h) > 0 to obtain J0(h) > 0 for h ∈ (0, 1/4), the potential energy function of (3.9) is
denoted as

W(µ) := (2µ2 − µ4)/4,

and a discriminant equation is defined as

C(µ) := µ2/3.

Since
µW ′(µ) = µ2(1 − µ2) > 0, µ ∈ (−1, 0) ∪ (0, 1)

always holds, it can be inferred from [35, Theorem 2.1] that the monotonicity of P(h) is consistent with
the monotonicity of C(µ). Obviously,

C′(µ) = 2µ/3 , 0, µ ∈ (−1, 0) ∪ (0, 1),

which implies that P′(h) , 0 on h ∈ (0, 1/4). The proof is finished.
□
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Proof of Theorem 1.1. Equation (3.12) shows that a necessary and sufficient condition for

M(h) = 0

is

−
c2(a + b)

3ab

(
1 −

a + b
3a

)
+ bm2P(h). (3.16)

Notice that

m2 =
1

ab

(
1 − c2 +

c2(a + b)2

3ab

)
,

when a > 8b/7. It follows from (3.16) that

c(h) =

√
9abP(h)

(a + b)(2a − b) − 3(a + b)2P(h) + 9abP(h)
.

Applying the conclusions of Lemma 3.1 yields

c′(h) =
P′(h)[9ab(1 − c2) + 3c2(a + b)2]

(a + b)(2a − b) − 3(a + b)2P(h) + 9abP(h)
> 0,

which implies that c(h) is strictly increasing for h ∈ (0, 1/4). Here, we assume that a > 0 and b > 0. In
order to find out the bound of c(h), a > 8b/7 is restricted. Therefore, we obtain

lim
h→0

c(h) = 0, c1 := lim
h→1/4

c(h) =

√
9ab

7a2 − 8b2 + 8ab
< 1.

Therefore, for any given c∗ ∈ (0, c1) and h ∈ (0, 1/4), there exists a unique h∗ satisfying

M(h∗) = 0.

Moreover, since
∂M(h, δ)
∂h

|h=h∗ , 0,

this root is simple. An application of the implicit function theorem guarantees that, for sufficiently
small τ > 0, there corresponds a wave speed

c = c∗ + O(ε),

such that the displacement function d(h, ε) possesses one zero at

h = h∗ + O(ε).

This implies that system (3.8) admits a unique limit cycle Γh∗,ε, which in turn establishes the existence
of a unique periodic wave solution

u(x − ct) = mµ((x − ct)/n) + c(a + b)/(3ab)
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for Eq (1.2). Here, µ(z) with
z = (x − ct)/n

is the solution profile corresponding to Γh,ε. Furthermore, the limit cycle Γh∗,ε exhibits the expected
asymptotic behavior: It contracts to the center (0, 0) as (ε, c) → (0, 0), and it approaches the
heteroclinic loop Γ±1/4 as (ε, c)→ (0, c1). This completes the proof of Theorem 1.1 (i).

We remark that a > 8b/7 is limited to ensure the radicand in the expression for c1 is positive. Since
the radicands in the expressions for n and m contain c, they must likewise be positive. Therefore, we
restrict to guarantee a > 8b/7 that all numerical calculations remain well-defined.

We now proceed to prove Theorem 1.1 (ii). As established in the analysis of system (3.9), the
energy level

h = 1/4

corresponds to the heteroclinic loop Γ±1/4, whose profile satisfies

ν = ±(1 − µ2)/
√

2

according to (3.10). For a small perturbation 0 < ε ≪ 1, let E1,ε and E2,ε denote the saddles near
E1 and E2, respectively. We then consider the unstable manifold of E2,ε, denoted Γu

+,ε, and the stable
manifold of E1,ε, denoted Γs

+,ε. Suppose these manifolds intersect the ν-axis at ν1 and ν2, respectively.
The distance between ν1 and ν2 is then expressed as

d+(1/4, ε, c) = εM+(1/4, c) + O(ε2),

where M+(1/4, c) is the Melnikov function for system (3.8). By [38], M+(1/4, c) has the form

M+(1/4, c) =
∫ 1

−1

(
2c2 + 2αµ2

)
νdµ

=
√

2
∫ 1

−1
(c2 + αµ2)(1 − µ2)dµ

= 4
(
c2

3
+
α

15

)
.

Consequently, we have
M+(1/4, c) = 0

at c = c1. It can be further verified that

∂M+(1/4, c)
∂c

, 0

at this point. By the implicit function theorem, there exists a wave speed

c = c1 + O(ε)

for which Γu
+,ε and Γs

+,ε intersect transversely, implying the existence of a unique heteroclinic orbit Γ+,ε
for system (3.8) near Γ+1/4 , with Γ+,ε → Γ+,ε as ε → 0. A parallel argument establishes the existence
of another unique heteroclinic orbit Γ−,ε near Γ−1/4 satisfying the same asymptotic condition. Given
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the correspondence between kink (anti-kink) wave solutions and heteroclinic orbits, we conclude that
Eq (1.2) admits one kink and one anti-kink wave solution of the form

u(x − ct) = mµ((x − ct)/n) + c(a + b)/(3ab)

with the wave speed
c = c1 + O(ε),

where
µ((x − ct)/n) = µ(z)

is the solution of Γ±1/4. This completes the proof of Theorem 1.1 (ii). □

4. Conclusions and simulations

This paper establishes the existence of traveling wave solutions for the Broer-Kaup equation with
distributed delay, a model for bi-directional long wave propagation. The analysis proceeds by first
employing GSPT to construct a locally invariant manifold near the critical manifold, thereby reducing
the singularly perturbed system to a regularly perturbed one. To simplify the resulting
near-Hamiltonian system, a translation transformation is applied to remove the quadratic term, and a
variables transformation is further introduced to normalize the coefficients of the unperturbed terms.
The crux of the proof lies in demonstrating the existence and uniqueness of a zero of the Melnikov
function, which is achieved by proving the monotonicity of a ratio of Abelian integrals via involution
mapping criterion. Under specific parametric conditions, this ensures the existence and uniqueness of
periodic wave solutions, for which the admissible wave speed range is determined. For kink
(anti-kink) solutions, the analysis leverages the explicit form of the Melnikov function to identify the
condition for a unique zero, leading to the persistence criteria for these kink (anti-kink) solutions.
These mathematical results have direct hydrodynamic interpretations: Periodic waves represent
oscillatory surface patterns, while kink (anti-kink) waves describe transition fronts between distinct
steady states. The distributed delay models the retarded waveform evolution due to viscosity, memory
effects, or multi-path scattering, aligning the model more closely with physical wave propagation.

A numerical study of system (3.8) is conducted to verify the theoretical findings. In particular,
the unique periodic orbit identified in the analysis serves as the counterpart to the unique periodic
wave solution of Eq (1.2). To analyze the behavior of the function P(h), we plot its profile over the
interval h ∈ (0, 1/4) by using Maple-2021. The resulting graph is presented in Figure 2a. This graph
demonstrates the strict monotonicity of the ratio of Abelian integrals. We take a = 2 and b = 1, then

c1 = 1/
√

2 ≈ 0.0707106781, m = 0.075, n ≈ 0.9428090414.

Thus, we take c = 0.5 and then obtain the coefficients of J0(h) and J2(h) to derive

M(h) = −0.0625J0(h) + 0.5625J2(h).

We plot M(h) in Figure 2b, where a unique zero is observable at h∗ ≈ 0.1781. From

µ4/2 − µ2 + 2h∗ = 0,
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we obtain two roots
µ1 ≈ −0.6809673215 and µ2 ≈ 0.6809673215

in (−1, 1). With the parameter fixed at τ = 0.01, the time interval z ∈ (0, 300), and the initial value
set to (0.6, 0), the resulting trajectory is observed to converge to a unique limit cycle, as depicted in
Figure 3a. The profile of the corresponding periodic wave solution, which oscillates between µ1 and
µ2, is shown in Figure 3b. This numerical result is consistent with the statement of Theorem 1.1 (i).

(a) (b)

Figure 2. Taking a = 2, b = 1, c = 0.5, and τ = 0.01 in system (3.8): (a) the graph of P(h)
for h ∈ (0, 1/4), which is strictly increasing; (b) the graph of M(h) with a unique zero for
h ∈ (0, 1/4).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

µ

ν

(a) (b)

Figure 3. Taking a = 2, b = 1, c = 0.5, and τ = 0.01 in system (3.8): (a) a trajectory
approaching to a unique limit cycle; (b) periodic wave corresponding to the unique limit
cycle.

To numerically confirm the existence of the kink (anti-kink) wave solutions stated in Theorem 1.1
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(ii), a series of simulations were conducted with the parameters fixed at a = 2, b = 1, and τ = 0.01. For
this purpose, the wave speed c was first set to a value slightly above the critical speed c1, specifically

c = c1 + 10−4.

The system was then integrated with initial conditions chosen near the expected saddle points,
namely (0,±

√
2 − 10−4). The phase trajectories obtained from these simulations are presented in

Figure 4a, which clearly depicts orbits connecting the unstable and stable manifolds in the vicinity
of (0, 1/

√
2) and (0,−1/

√
2). Conversely, when the wave speed is set just less than c1, that is,

c = c1 − 10−4,

and the initial points are taken as (0,±
√

2 + 10−4), the resulting trajectories are shown in Figure 4b.
Collectively, these numerical findings demonstrate that for wave speeds within the narrow interval c ∈
(c1−10−4, c1+10−4), there exists a unique heteroclinic orbit passing near (0, 1/

√
2) and another unique

heteroclinic orbit near (0,−1/
√

2). Consequently, the simulations offer direct numerical confirmation
of the analytical results, showing perfect alignment with Theorem 1.1 (ii).

−1 −0.5 0 0.5 1
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(a)
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(b)

Figure 4. Orbits of system (3.8) with a = 2, b = 1, and τ = 0.01 connecting the saddles
near (0, 1/

√
2) and (0,−1/

√
2), which correspond to the kink (anti-kink) wave solutions

stated in Theorem 1.1 (ii): (a) c = c1 + 10−4, (µ0, ν0) = (
√

2 − 10−4, 0); (b) c = c1 − 10−4,
(µ0, ν0) = (

√
2 + 10−4, 0).
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