Research article Special Issues

Using a finite difference scheme together with neural networks analysis for propagation of the long waves equation

  • Published: 12 January 2026
  • MSC : 26A33, 34A08

  • In this paper, we explored the Benjamin-Bona-Mahony-Burger (BBMB) equation in the context of the conformable fractional derivative. The major results are the existence, the uniqueness, and inaddition, the Ulam-Hyers (UH) stability of the solutions that are obtained, which guarantee the mathematical soundness of the proposed model. For the numerical study, the standard finite difference method (SFDM) and the non-standard finite difference method (NSFDM) were developed, and their performance was assessed through a comparison with the exact solution. The conclusions showed that NSFDM is more accurate and stable compared to SFDM. Additionally, a neural network (NN) scheme was used as a further validation tool, which was complemented by regression analysis and error distribution measures. The change of fractional order significantly affects the solution profiles, as shown by two or three-dimensional plots in numerical simulations. The fractional dynamics, therefore, play a crucial role in modifying wave propagation in more dimensions. The unique feature of this research is the joint use of conformable fractional calculus with NSFDM and neural computing for the BBMB equation, providing a new way for the treatment of nonlinear dispersive wave models.

    Citation: Thabet Abdeljawad, Kamal Shah, Israr Ahmad, Manel Hleili, Maryam Salem Alatawi. Using a finite difference scheme together with neural networks analysis for propagation of the long waves equation[J]. AIMS Mathematics, 2026, 11(1): 825-856. doi: 10.3934/math.2026036

    Related Papers:

  • In this paper, we explored the Benjamin-Bona-Mahony-Burger (BBMB) equation in the context of the conformable fractional derivative. The major results are the existence, the uniqueness, and inaddition, the Ulam-Hyers (UH) stability of the solutions that are obtained, which guarantee the mathematical soundness of the proposed model. For the numerical study, the standard finite difference method (SFDM) and the non-standard finite difference method (NSFDM) were developed, and their performance was assessed through a comparison with the exact solution. The conclusions showed that NSFDM is more accurate and stable compared to SFDM. Additionally, a neural network (NN) scheme was used as a further validation tool, which was complemented by regression analysis and error distribution measures. The change of fractional order significantly affects the solution profiles, as shown by two or three-dimensional plots in numerical simulations. The fractional dynamics, therefore, play a crucial role in modifying wave propagation in more dimensions. The unique feature of this research is the joint use of conformable fractional calculus with NSFDM and neural computing for the BBMB equation, providing a new way for the treatment of nonlinear dispersive wave models.



    加载中


    [1] I. Ahmad, Z. Ali, B. Khan, K. Shah, T. Abdeljawad, Exploring the dynamics of Gumboro-Salmonella co-infection with fractal fractional analysis, Alex. Eng. J., 117 (2025), 472–489, http://doi.org/10.1016/j.aej.2024.12.119 doi: 10.1016/j.aej.2024.12.119
    [2] G. Ali, I. Ahmad, K. Shah, T. Abdeljawad, Iterative analysis of nonlinear BBM equations under nonsingular fractional order derivative, Advances in Mathematical Physics, 2020 (2020), 3131856. http://doi.org/10.1155/2020/3131856 doi: 10.1155/2020/3131856
    [3] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
    [5] R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: World Scientific, 2000.
    [6] R. L. Magin, Fractional Calculus in Bioengineering, New York: Begell House, 2006.
    [7] H. Alrabaiah, I. Ahmad, K. Shah, I. Mahariq, G. U. Rahman, Analytical solution of non-linear fractional order Swift-Hohenberg equations, Ain Shams Eng. J., 12 (2021), 3099–3107. http://doi.org/10.1016/j.asej.2020.11.019 doi: 10.1016/j.asej.2020.11.019
    [8] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Berlin: Springer, 2011.
    [9] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Soliton. Fract., 7 (1996), 1461–1477. http://doi.org/10.1016/0960-0779(95)00125-5 doi: 10.1016/0960-0779(95)00125-5
    [10] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Singapore: World Scientific, 2012.
    [11] A. Bekir, Ö. Güner, Ö. Ünsal, The first integral method for exact solutions of nonlinear fractional differential equations, J. Comput. Nonlinear Dyn. 10 (2015), 021020–5. http://doi.org/10.1115/1.4028065 doi: 10.1115/1.4028065
    [12] E. A. Az-Zo'bi, Q. M. M. Alomari, K. Afef, M. Inc, Dynamics of generalized time-fractional viscous-capillarity compressible fluid model, Opt. Quant. Electron., 56 (2024), 629. http://doi.org/10.1007/s11082-023-06233-2 doi: 10.1007/s11082-023-06233-2
    [13] Y. Zhou, Basic theory of fractional differential equations, Singapore: World scientific, 2023.
    [14] E. Hussain, Z. Li, S. A. A Shah, E. A. Az-Zo'bi, M. Hussien, Dynamics study of stability analysis, sensitivity insights and precise soliton solutions of the nonlinear (STO)-Burger equation, Opt. Quant. Electron., 55 (2023), 1274. http://doi.org/10.1007/s11082-023-05588-w doi: 10.1007/s11082-023-05588-w
    [15] M. A. Al Zubi, K. Afef, E. A. Az-Zo'bi, Assorted spatial optical dynamics of a generalized fractional quadruple nematic liquid crystal system in non-local media, Symmetry, 16 (2024), 778. http://doi.org/10.3390/sym16060778 doi: 10.3390/sym16060778
    [16] J. H. He, Homotopy perturbation technique, Comput. Math. Appl., 57 (1999), 410–412. http://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [17] R. Khalil, M. Al Horani, A. Yousef, M. A. Sababheh, New definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. http://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [18] H. U.Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using Sardar subequation method, Mathematics, 10 (2022), 3377.
    [19] H. U. Rehman, I. Iqbal, M. Mirzazadeh, S. Haque, N. Mlaiki, W. Shatanawi, Dynamical behavior of perturbed Gerdjikov-Ivanov equation through different techniques, Bound. Value Prob., 2023 (2023), 105. http://doi.org/10.1186/s13661-023-01792-5 doi: 10.1186/s13661-023-01792-5
    [20] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19 (1967), 1095. http://doi.org/10.1103/PhysRevLett.19.1095 doi: 10.1103/PhysRevLett.19.1095
    [21] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. T. R. Soc. A, 272 (1972), 47–78. http://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [22] C. Li, Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term, Appl. Math. Comput., 311 (2017), 240–250. http://doi.org/10.1016/j.amc.2017.05.022 doi: 10.1016/j.amc.2017.05.022
    [23] A. Saadatmandi, M. A. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. http://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
    [24] E. Hussain, S. A. A. Shah, A. Bariq, Z. Li, M. R. Ahmad, A. E. Ragab, et al., Solitonic solutions and stability analysis of Benjamin Bona Mahony Burger equation using two versatile techniques, Sci. Rep., 14 (2024), 13520. http://doi.org/10.1038/s41598-024-60732-0 doi: 10.1038/s41598-024-60732-0
    [25] M. Kamran, M. Abbas, A. Majeed, H. Emadifar, T. Nazir, Numerical simulation of time fractional BBM-Burger equation using cubic B-spline functions, J. Function Spaces, 2022 (2022), 2119416. http://doi.org/10.1155/2022/2119416 doi: 10.1155/2022/2119416
    [26] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. http://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [27] Z. Yan, J. Li, S. Barak, S. Haque, N. Mlaiki, Delving into quasi-periodic type optical solitons in fully nonlinear complex structured perturbed Gerdjikov-Ivanov equation, Sci. Rep., 15 (2025), 8818. http://doi.org/10.1038/s41598-025-91978-x doi: 10.1038/s41598-025-91978-x
    [28] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, New York: Chapman & Hall/CRC, 2003.
    [29] A. R. Appadu, A. S. Kelil, N. W. Nyingong, Solving a fractional diffusion PDE using some standard and nonstandard finite difference methods with conformable and Caputo operators, Front. Appl. Math. Stat., 10 (2024), 1358485. http://doi.org/10.3389/fams.2024.1358485 doi: 10.3389/fams.2024.1358485
    [30] Y. Zou, Y. Cui, Uniqueness criteria for initial value problem of conformable fractional differential equation, Electron. Res. Arch., 31 (2023), 4077–4087. http://doi.org/10.3934/era.2023207 doi: 10.3934/era.2023207
    [31] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. http://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [32] H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M. U. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Mathematics, 8 (2023), 6609–6625. http://doi.org/10.3934/math.2023334 doi: 10.3934/math.2023334
    [33] E. A. Az-Zo'bi, R. Shah, H. A. Alyousef, C. G. L. Tiofack, S. A. El-Tantawy, On the feed-forward neural network for analyzing pantograph equations, AIP Adv., 14 (2024), 025042. http://doi.org/10.1063/5.0195270 doi: 10.1063/5.0195270
    [34] A. R. Appadu, G. N. de Waal, C. J. Pretorius, Nonstandard finite difference methods for a convective predator-prey pursuit and evasion model, J. Differ. Equ. Appl., 30 (2024), 1808–1841. http://doi.org/10.1080/10236198.2024.2361115 doi: 10.1080/10236198.2024.2361115
    [35] R. E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore: World Scientific, 2000.
    [36] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. http://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
    [37] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nat. Mach. Intell., 3 (2021), 218–229. http://doi.org/10.1038/s42256-021-00302-5 doi: 10.1038/s42256-021-00302-5
    [38] H. S. Alruhaili, A. S. Hussain, A. Ajlouni, F. Türk, E. A. Az-Zo'bi, M. Tashtoush, Solving Time-Fractional Nonlinear Variable-Order Delay PDEs Using Feedforward Neural Networks, Iraqi J. Comput. Sci. Math., 6 (2025), 12. http://doi.org/10.52866/2788-7421.1284 doi: 10.52866/2788-7421.1284
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(188) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(23)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog