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1. Introduction

Fractional calculus (FC) is a straightforward generalization of classical calculus that differentiates
and integrates not only integer orders but also non-integer orders. In fact, FC is the natural
generalization. For this reason, researchers have been focusing on the development of the theoretical
aspects as well as the investigations of practical applications of FC during the past three decades.
Ahmad,et.al [1] have applied the tools of fractals fractional calculus to study Gumboro-Salmonella
co-infection disease model. Ali,et.al [2] have investigated the BBMB equation by using iterative
method. Podlubny [3] has produced the fundamental results of FC. Kilbas,et.al [4] have given the
detailed analysis and results about the FC. FC has rapidly become a potential mathematical tool for
science and technology, thanks to the great achievements in the field of science and technology,
because of its power to model real-world processes with much more accuracy than the guiding
integer-order methods. Hilfer [5] has introduced his famous fractional order derivative and integration
called Ψ-Hilfer derivative. Magin [6] studied applications of FC in bioengineering. Authors [7] have
studied Swift-Hohenberg equation by using iterative method.

The particular aspect of FC enables it to be efficient in simulating and computing complex
dynamical systems. For instance, Tarasov [8] studied applications of FC in media and dynamics. The
application of FC is diverse in disciplines such as electromagnetism, electrochemistry, fluid
mechanics, signal processing, viscoelasticity, optics, and population dynamics [9]. Many
contributions of FC are also available in the areas of turbulence, plasma physics, stochastic dynamical
mechanisms, nonlinear control theory, and astrophysics, including controlled thermonuclear
fusion [10]. Furthermore, fractional-order operators have been used in wave propagation, vehicular
traffic flow, heat dissipation, and solid mechanics with great success.

Fractional partial differential equations (FPDEs) are indisputable tools in the analysis of dynamic
systems and in the development of these nonlinear models [12]. FPDEs have been used to assess
many real-world nonlinear phenomena and to bridge the gap between mathematical theory and
physics. Bekir, et.al [11] have used first integral method in investigating solution of fractional
differential equations. Also, Zhou [13] has introduced the basic theory of FC. Authors [14] have been
studied the dynamics of nonlinear Burger equation by using the tools of FC. The methodologies that
have been developed for the solutions of these problems mainly include the analytical and numerical
methods, like the first integral method [15], the Elzaki transform decomposition method [16], the
double Laplace transform method [17], the homotopy perturbation transform method [18], and the
conformable Laplace transform approaches [19].

The Korteweg–de Vries (KdV) equation was introduced in 1895. The mentioned equations has
very important applications to study the shallow water waves model. Authors [20] have solved the
mentioned equation analytically in 1967. The rank extensions of KdV-type equations have arisen
interest thanks to their use in plasma physics, nonlinear optics, and quantum mechanics. To deal
with the drawbacks of the KdV model for small long waves, the Benjamin-Bona-Mahony (BBM)
equation [21] was suggested in 1972. Researchers [22] have used linearized difference schemes to
solve the mentioned problem which has been yielded more accurate results for shallow water and
dispersive media. Later, the fractional BBM and BBMB equations were introduced to include non-
locality, memory effects, and dissipative terms, thus making them more suitable in describing complex
wave propagation. Hussain, et al. [23] have investigated the solotonic solutions of BBM equations.
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Authors [24] have used numerical method to study the BBM equation.
The specified fractional BBMB equation of our study is given as follows:Dα

t V(x, t) + δ1 Vx(x, t) + δ2 VmVx(x, t) − δ3 Vxxt(x, t) − δ4Vxx(x, t) = 0,
V(x, 0) = f (x),

(1.1)

where δi for i = 1, 2, 3, 4 are constant parameters, and Dα
t represents a conformable fractional order

derivative. Furthermore, one may note that f (x) is continuous and bounded.
The BBM equation has been under study through different methods for the past few years, like

finite difference methods [25], spline-based methods [26], Adomian decomposition [27], and
homotopy analysis methods [28]. In our study, we explore the BBMB equation under conformable
fractional derivative with the help of standard and non-standard finite difference numerical schemes.
The main concern in the study is discussing the existence theory, stability analysis, and numerical
simulations. Furthermore, we extend our analysis to NN to widen the scope of our study. The
fractional operator taken in our analysis is more versatile in the prospect of modeling.

The remainder of this paper is organized as follows: In Section 2, we have presented the
mathematical background, definitions, and properties of the conformable fractional derivative. In
Section 3, the fractional-order BBMB equation and its theoretical background have been presented. In
Section 4, we have addressed the UH stability of the proposed model. In Section 5, we have given
details of the numerical schemes. In Section 6, the complete simulations have been given. In
Section 7, the detailed information of the NN validation of the two specified numerical schemes has
been discussed. Finally, in Section 8, we have given discussion and conclusion of results and future
directions.

2. Preliminaries

In this section, we defines the basic ideas and results that are required for our work [29–31].

Definition 2.1. For a function F : [0,∞) → R, the α order conformable fractional derivative
α ∈ (0, 1] is defined as:

Dα
t F(t) = lim

ε → 0

(
F(t + ε t1−α) − F(t)

ε

)
.

We say F is α-differential if the conformable derivative of the function F of order α exists.

Theorem 2.2. Let α ∈ (0, 1] and F : [0,∞) → R be differentiable. Then the conformable fractional
derivative of α order is defined as:

Dα
t F (t) = t1−α d F

dt
.

Definition 2.3. Let F : [0,∞)→ R. Then for all 0 < t, α ∈ (0, 1], the conformable fractional integral
of a function F is define as:

Iαt F(t) =

∫ t

0
xα−1 F(x) dx.

Theorem 2.4. Dα
t I
α
t F(t) = F(t), for all 0 < t, where F is continuous function on the domain of Iαt .

Theorem 2.5. Let F : (0,∞) → R be a differential and for all t > 0, α ∈ (0, 1]. Then

Iαt Dα
t F(t) = F(t) − F(0).
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3. Existence and uniqueness

The theoretical study of the specified problem is discussed in this section using Schauder and
Banach theorems. For this purpose, we consider the Banach space, X = C([0,T ] × R), and the norm
is defined as follows:

‖V‖ = max
x∈R, t∈J

|V(x, t) |, where [0,T ] = J.

The general form of the problem (1.1) can be written as:Dα
t V(x, t) = ψ(t,V(x, t))

V(x, 0) = f (x).
(3.1)

Here, ψ is nonlinear and f (x) is a continuous function.

Lemma 3.1. The solution of general problem (3.1) is given as:

V(x, t) = f (x) +

∫ t

0
sα−1 ψ(s,V(x, s)) ds.

For further work, one may write:

T V(x, t) = f (x) +

∫ t

0
sα−1 ψ(s,V(x, s)) ds. (3.2)

For further work the following assumptions are needed in our work:

(H1) For V1,V2 ∈ X, there exist a constant Lψ > 0, such that

‖ψ(V1) − ψ(V2)‖ ≤ Lψ ‖V1 − V2‖.

(H2) For positive constants aψ and bψ, the growth condition for the non linear function ψ is given as:

‖ψ(V)‖ = aψ + bψ ‖V‖.

Theorem 3.2. Under the assumption (H1), the problem (3.2) has a unique solution if it holds LψTα < α.

Proof. Considering, V1,V2 ∈ X, we have

‖T V1 − T V2‖ = max
x∈R, t∈J

∣∣∣∣∣∣
∫ t

0
sα−1ψ (s,V1(x, s)) ds −

∫ t

0
sα−1ψ (s,V2(x, s)) ds

∣∣∣∣∣∣
≤ max

x∈R, t∈J

∫ t

0

∣∣∣∣∣sα−1 (ψ (s,V1(x, s)) − ψ (s,V2(x, s)))
∣∣∣∣∣ds

≤ max
x∈R, t∈J

∣∣∣ψ (s,V1(x, s)) − ψ (s,V2(x, s))
∣∣∣ ∫ t

0
sα−1ds

≤ Lψ ‖V1 − V2‖
Tα

α

≤
LψTα

α
‖V1 − V2‖ .

Therefore, in-light of the Banach contraction principle, problem (3.2) possesses a unique solution.
�
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Theorem 3.3. Under the assumptions (H1)-(H2), problem (3.1) has at least one solution.

Proof. We show that the operator T : X → X satisfies the conditions of Schauder’s fixed-point
theorem.

Let M = maxx∈R | f (x)|. Choose r > 0, such that

M +
Tα

α
(aψ + bψr) ≤ r,

and define the closed convex set
B = {V ∈ X : ‖V‖ ≤ r}.

The proof is divided into verifying the two major hypotheses of Schauder’s theorem.
(i) Continuity of T : Let {Vn} ⊂ B with Vn → V in X. Using assumption (H1),

‖TVn − TV‖ = max
x∈R, t∈J

∣∣∣∣∣∣
∫ t

0
sα−1 [

ψ(s,Vn(x, s)) − ψ(s,V(x, s))
]
ds

∣∣∣∣∣∣
≤ max

x∈R, t∈J

∫ t

0
sα−1 |ψ(s,Vn(x, s)) − ψ(s,V(x, s))| ds

≤ Lψ‖Vn − V‖max
t∈J

∫ t

0
sα−1ds

=
LψTα

α
‖Vn − V‖ → 0 as n→ ∞.

Hence, T is continuous on B.
Compactness of T (B) : We show that T (B) is relatively compact in X via the Arzelà–Ascoli

theorem.
(ii) Uniform boundedness: For any V ∈ B, using (H2),

‖TV‖ = max
x∈R, t∈J

∣∣∣∣∣∣ f (x) +

∫ t

0
sα−1ψ(s,V(x, s))ds

∣∣∣∣∣∣
≤ M + max

t∈J

∫ t

0
sα−1 |ψ(s,V(x, s))| ds

≤ M + max
t∈J

∫ t

0
sα−1

(
aψ + bψ‖V‖

)
ds

≤ M +
Tα

α
(aψ + bψr) ≤ r.

Thus, T (B) is uniformly bounded.
(iii) Equicontinuity in t: Let t1, t2 ∈ J with t2 > t1 and V ∈ B. Then using assumption (H2), we

have

|(TV)(x, t2) − (TV)(x, t1)| =

∣∣∣∣∣∣
∫ t2

t1
sα−1ψ(s,V(x, s))ds

∣∣∣∣∣∣
≤

∫ t2

t1
sα−1 |ψ(s,V(x, s))| ds
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≤ (aψ + bψr)
∫ t2

t1
sα−1ds

=

(
aψ + bψr

α

) (
tα2 − tα1

)
.

As t2 → t1, one may get ‖T V(x, t1) − T V(x, t2)‖ → 0. The aforementioned steps show that
T (B) is equi-continuous. By Arzelà–Ascoli, T (B) is relatively compact in X. Hence, all conditions of
Schauder’s fixed-point theorem are satisfied. So the integral equation (3.2) has a fixed point.
Consequently, problem (3.1) has at least one solution. �

4. Stability analysis

To be dependable for application to real situations, mathematical models have to be stable, as this
ensures that even very small changes in the initial conditions or parameters will result in bounded and
predictable solutions. The practical usefulness of a model may be limited by the provision of wildly
divergent solutions without stability. Stability in dynamic systems also implies disturbance robustness,
which is required to provide repeated behavior under a range of conditions and consistent long-term
predictions [32].

Consider problem (3.1) as follows:

Dα
t V(x, t) = ψ(t,V(x, t)) + h(t). (4.1)

Where h(t) is a continuous function such that h(t) ≤ θ, for θ > 0 and t ∈ J. The solution of
problem (4.1) is obtain as follows:

V(x, t) = f (x) +

∫ t

0
sα−1 (ψ(s,V(x, s)) + h(s)) ds

V(x, t) = f (x) +

∫ t

0
sα−1 ψ(s,V(x, s)) ds +

∫ t

0
sα−1 h(s) ds

Using Eq (3.2), we have

V(x, t) = TV(x, t) +

∫ t

0
sα−1 h(s) ds

‖V(x, t) − TV(x, t)‖ = max
x∈R, t∈J

∣∣∣∣∣∣TV(x, t) +

∫ t

0
sα−1 h(s) ds − TV(x, t)

∣∣∣∣∣∣
≤ max

x∈R, t∈J

∫ t

0
|h(s)| sα−1 ds

≤
Tα

α
θ.

Theorem 4.1. The solution of problem (3.1) is UH and generalized UH stable provided that

LψTα

α
< 1.
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Proof. Let V(x, t) be any solution of the inequality

‖V(x, t) − TV(x, t)‖ ≤ θ,

and let V?(x, t) be the unique fixed point of T . Then

‖V(x, t) − V?(x, t)‖ = ‖V(x, t) − TV?(x, t)‖
≤ ‖V(x, t) − TV(x, t)‖ + ‖TV(x, t) − TV?(x, t)‖

≤ θ +
LψTα

α
‖V(x, t) − V?(x, t)‖.

Rearranging gives (
1 −

LψTα

α

)
‖V(x, t) − V?(x, t)‖ ≤ θ,

and hence

‖V(x, t) − V?(x, t)‖ ≤
θ

1 − LψTα

α

=
αθ

α − LψTα
.

Setting C = α
α−LψTα > 0, we obtain

‖V(x, t) − V?(x, t)‖ ≤ C θ.

Thus, the problem is UH stable.

For generalized UH stability, let ζ(θ) = θ (which is non-decreasing and ζ(0) = 0). Then

‖V(x, t) − V?(x, t)‖ ≤ C ζ(θ),

which proves generalized UH stability. �

Before going to the next sections, we provide the following flowchart 1 for the readers.

AIMS Mathematics Volume 11, Issue 1, 825–856.



832

Flowchart of the Used Methodologies

Starting Point:
Fractional BBMB Equation (1.1)

↓

Step 1: Discretization of conformable fractional derivative and other
differential terms

↓

SFDM Approach
Standard finite differences

Step sizes h, κ

NSFD Approach
Denominator functions
φt(κ), φ1(h), φ2(h)

↓ ↓

SFDM Scheme
Equation (5.5)

NSFD Scheme
Equation (5.9)

↓ ↓

Numerical Implementation & Simulations

• 2D/3D profiles for different fractional orders α

↓

Comparison of Both Methods with Exact Solution
Comparison with the help of 2D plots and tables

↓

Neural Network Validation
NN validation of both numerical schemes at fixed α = 0.55

• MSE performance
• Training tests
• Training histogram
• Regression analysis
• NN approximation
• Absolute error between NN approximation and solutions from both

methods

Figure 1. Flowchart of numerical schemes and validation procedures.

5. Numerical schemes of the proposed model

In the study of non-linear analysis, numerical solutions play a vital role because, most of the time
in real world problems, it is difficult to find the closed form solutions [33]. Therefore, we consider
the fractional BBMB equation under the conformable derivative to study the dynamics of the model
in detail by utilizing the SFDM and NSFDM. The SFDM has standard discretization compared to the
NSFDM, which has more liberty in the discretization process. The NSFDM not only guarantees the
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trustworthiness but also demonstrates the importance of advanced discretization methods in improving
the reliability and precision of fractional models, [34].

5.1. A standard finite difference scheme with a conformable derivative

We approximate the fractional term Dα
t V(x, t) by the conformable finite difference scheme and

discretize the spatial derivatives using standard central differences. Applying these discretizations to
Eq (1.1) yields:

(nκ)1−α
(
Vn+1

i − Vn
i

κ

)
+ δ1

(
Vn

i+1 − Vn
i

h

)
+ δ2(Vn

i )m

(
Vn

i+1 − Vn
i

h

)
− δ3

1
κh2

(
Vn+1

i+1 + Vn+1
i−1 − 2Vn+1

i + 2Vn
i − Vn

i+1 − Vn
i−1

)
− δ4

(
Vn

i+1 − 2Vn
i + Vn

i−1

h2

)
= 0. (5.1)

Multiplying with κ and simplifying the temporal fractional term, Eq (5.1) gives:

n1−ακ−α(Vn+1
i − Vn

i ) −
δ3

h2

(
Vn+1

i+1 + Vn+1
i−1 − 2Vn+1

i + 2Vn
i − Vn

i+1 − Vn
i−1

)
= −κδ1

(
Vn

i+1 − Vn
i

h

)
− κδ2(Vn

i )m

(
Vn

i+1 − Vn
i

h

)
+ κδ4

(
Vn

i+1 − 2Vn
i + Vn

i−1

h2

)
. (5.2)

Collecting the unknown time-level (n + 1) terms on the left-hand side and the known time-level (n)
terms on the right-hand side in Eq (5.2), we obtain:

n1−ακ−αVn+1
i −

δ3

h2

(
Vn+1

i+1 + Vn+1
i−1 − 2Vn+1

i
)

= n1−ακ−αVn
i −

δ3

h2

(
2Vn

i − Vn
i+1 − Vn

i−1
)

−
κδ1

h
(
Vn

i+1 − Vn
i
)
−
κδ2

h
(Vn

i )m(
Vn

i+1 − Vn
i
)

+
κδ4

h2

(
Vn

i+1 − 2Vn
i + Vn

i−1
)
. (5.3)

Keeping similar spatial discretization terms together, we rewrite Eq (5.3) as:(
n1−ακ−α +

2δ3

h2

)
Vn+1

i −
δ3

h2 Vn+1
i+1 −

δ3

h2 Vn+1
i−1

=

(
n1−ακ−α +

2δ3

h2 −
2κδ4

h2 +
κδ1

h
+
κδ2

h
(Vn

i )m

)
Vn

i

+

(
κδ4

h2 −
δ3

h2 −
κδ1

h
−
κδ2

h
(Vn

i )m
)

Vn
i+1

+

(
κδ4

h2 −
δ3

h2

)
Vn

i−1. (5.4)
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Finally, rearranging Eq (5.4) into a more compact form gives the generalized SFDM scheme for the
BBMB equation (1.1):(

n1−α κ−α +
2δ3

κh2

)
Vn+1

i −
δ3

κh2 Vn+1
i+1 −

δ3

κh2 Vn+1
i−1

= −

(
δ3

κh2 +
δ1

h
−
δ4

h2

)
Vn

i+1 +

(
2δ3

κh2 +
δ1

h
−

2δ4

h2 + n1−ακ−α
)

Vn
i

+

(
δ4

h2 −
δ3

κh2

)
Vn

i−1 +
δ2

h
(Vn

i )m(
Vn

i − Vn
i+1

)
. (5.5)

Equation (5.5) is the desired fully discrete SFDM scheme for the time-fractional BBMB
equation (1.1) with a conformable derivative.

5.2. The non- standard finite difference method scheme with conformable derivatives

First, we approximate the fractional derivative using the conformable operator and replace the
classical finite-difference denominators with appropriate denominator functions [35]:

φt(κ), φ1(h), φ2(h),

where φ1, φ2 are used for the first and second spatial derivatives, and φt is a time denominator that
accommodates the fractional time behavior. Applying these to Eq (1.1) gives:

(nκ)1−α
(
Vn+1

i − Vn
i

φ(κ)

)
+ δ1

(
Vn

i+1 − Vn
i

φ1(h)

)
+ δ2 Vn

i+1(Vn
i )m−1

(
Vn

i+1 − Vn
i

φ1(h)

)
− δ3

1
φ(κ)(φ2(h))2

(
Vn+1

i+1 + Vn+1
i−1 − 2Vn+1

i + 2Vn
i − Vn

i+1 − Vn
i−1

)
− δ4

(
Vn

i+1 − 2Vn
i + Vn

i−1

(φ2(h))2

)
= 0. (5.6)

After expanding and collecting terms in Eq (5.6), we obtain:

(nκ)1−α

φ(κ)
Vn+1

i −
(nκ)1−α

φ(κ)
Vn

i +
δ1

φ1(h)
Vn

i+1 −
δ1

φ1(h)
Vn

i +
δ2

φ1(h)
(Vn

i+1)2(Vn
i )m−1

−
δ2

φ1(h)
Vn

i+1(Vn
i )m −

δ3

φ(κ)(φ2(h))2 Vn+1
i+1 +

2δ3

φ(κ)(φ2(h))2 Vn+1
i −

δ3

φ(κ)(φ2(h))2 Vn+1
i−1

+
δ3

φ(κ)(φ2(h))2 Vn
i+1 −

2δ3

φ(κ)(φ2(h))2 Vn
i +

δ3

φ(κ)(φ2(h))2 Vn
i−1

−
δ4

(φ2(h))2 Vn
i+1 +

2δ4

(φ2(h))2 Vn
i −

δ4

(φ2(h))2 Vn
i−1 = 0. (5.7)

Separating the unknown terms from the known terms in Eq (5.7) yields:

(nκ)1−α

φ(κ)
Vn+1

i +
2δ3

φ(κ)(φ2(h))2 Vn+1
i −

δ3

φ(κ)(φ2(h))2 Vn+1
i+1 −

δ3

φ(κ)(φ2(h))2 Vn+1
i−1

=
(nκ)1−α

φ(κ)
Vn

i −
δ1

φ1(h)
Vn

i+1 +
δ1

φ1(h)
Vn

i −
δ2

φ1(h)
(Vn

i+1)2(Vn
i )m−1
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+
δ2

φ1(h)
Vn

i+1(Vn
i )m −

δ3

φ(κ)(φ2(h))2 Vn
i+1 +

2δ3

φ(κ)(φ2(h))2 Vn
i

−
δ3

φ(κ)(φ2(h))2 Vn
i−1 +

δ4

(φ2(h))2 Vn
i+1 −

2δ4

(φ2(h))2 Vn
i +

δ4

(φ2(h))2 Vn
i−1. (5.8)

Taking like terms together and simplifying in Eq (5.8), we arrive at the final NSFDM scheme:(
(nκ)1−α

φ(κ)
+

2δ3

φ(κ)(φ2(h))2

)
Vn+1

i −
δ3

φ(κ)(φ2(h))2 Vn+1
i+1 −

δ3

φ(κ)(φ2(h))2 Vn+1
i−1

=

(
δ1

φ1(h)
+

(nκ)1−α

φ(κ)
+

2δ3

φ(κ)(φ2(h))2 −
2δ4

(φ2(h))2

)
Vn

i

−

(
δ1

φ1(h)
+

δ3

φ(κ)(φ2(h))2 −
δ4

(φ2(h))2

)
Vn

i+1

+

(
δ4

(φ2(h))2 −
δ3

φ(κ)(φ2(h))2

)
Vn

i−1

+
δ2

φ1(h)
Vn

i+1(Vn
i )m −

δ2

φ1(h)
(Vn

i+1)2(Vn
i )m−1. (5.9)

Equation (5.9) is the required final generalized NSFDM scheme for BBMB Equation (1.1).

5.3. Stability analysis

This subsection is divided into subsections as follows:

5.3.1. Stability of the SFDM scheme

The stability of the SFDM scheme given by Eq (5.5) is analyzed using von Neumann stability
analysis. Considering δ2 = 0 in Eq (1.1), we substitute Vn

i = ξneIθih, where I =
√
−1, ξ is the

amplification factor, θ is the wave number, and ω = θh, we have(
n1−ακ−α +

2δ3

κh2

)
ξn+1eIωi −

δ3

κh2

(
ξn+1eIω(i+1) + ξn+1eIω(i−1)

)
= −

(
δ3

κh2 +
δ1

h
−
δ4

h2

)
ξneIω(i+1)

+

(
2δ3

κh2 +
δ1

h
−

2δ4

h2 + n1−ακ−α
)
ξneIωi

+

(
δ4

h2 −
δ3

κh2

)
ξneIω(i−1).

Dividing both sides by ξneIωi and simplifying, we obtain:(
n1−ακ−α +

2δ3

κh2

)
ξ −

δ3

κh2 ξ
(
eIω + e−Iω

)
= −

(
δ3

κh2 +
δ1

h
−
δ4

h2

)
eIω
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+

(
2δ3

κh2 +
δ1

h
−

2δ4

h2 + n1−ακ−α
)

+

(
δ4

h2 −
δ3

κh2

)
e−Iω.

Solving for ξ, we get:

ξ =

(
2δ3
κh2 + δ1

h −
2δ4
h2 + n1−ακ−α

)
−

(
δ3
κh2 + δ1

h −
δ4
h2

)
eIω +

(
δ4
h2 −

δ3
κh2

)
e−Iω

n1−ακ−α + 2δ3
κh2 (1 − cosω)

.

Further simplification gives:

ξ =
n1−ακ−α + 2δ3

κh2 (1 − cosω) − 2δ4
h2 (1 − cosω) + δ1

h (1 − cosω − I sinω)

n1−ακ−α + 2δ3
κh2 (1 − cosω)

.

For stability, we require |ξ| ≤ 1∀ω ∈ [−π, π]. Taking δ1 = 1, δ3 = 1, δ4 = 0, the amplification factor
is given as:

ξ =
n1−ακ−α + 2

κh2 (1 − cosω) + 1
h (1 − cosω − I sinω)

n1−ακ−α + 2
κh2 (1 − cosω)

.

Numerical evaluation of |ξ| for ω ∈ [−π, π] suggests that the SFDM is conditionally stable.

5.3.2. Stability of the NSFDM scheme

Similarly for the stability of the NSFDM scheme equation (5.9) with denominator functions φ(κ) =

sin(κ), φ1(h) = sinh(h), and φ2(h) = 4 sin2(h2/2), and considering the same conditions and process, we
have: (

(nκ)1−α

φ(κ)
+

2δ3

φ(κ)φ2
2(h)

)
ξn+1eIωi −

δ3

φ(κ)φ2
2(h)

(
ξn+1eIω(i+1) + ξn+1eIω(i−1)

)
=

(
δ1

φ1(h)
+

(nκ)1−α

φ(κ)
+

2δ3

φ(κ)φ2
2(h)
−

2δ4

φ2
2(h)

)
ξneIωi

−

(
δ1

φ1(h)
+

δ3

φ(κ)φ2
2(h)
−

δ4

φ2
2(h)

)
ξneIω(i+1)

+

(
δ4

φ2
2(h)
−

δ3

φ(κ)φ2
2(h)

)
ξneIω(i−1).

Dividing both sides by ξneIωi and solving for ξ, we have:

ξ =

(
δ1

φ1(h) +
(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h) −
2δ4
φ2

2(h)

)
−

(
δ1

φ1(h) + δ3
φ(κ)φ2

2(h) −
δ4

φ2
2(h)

)
eIω +

(
δ4

φ2
2(h) −

δ3
φ(κ)φ2

2(h)

)
e−Iω

(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h) (1 − cosω)
.
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Putting δ1 = 1, δ3 = 1, δ4 = 0, we obtain:

ξ =

1
sinh(h) +

(nκ)1−α

sin(κ) + 2
sin(κ)[4 sin2(h2/2)]2 −

(
1

sinh(h) + 1
sin(κ)[4 sin2(h2/2)]2

)
eIω − 1

sin(κ)[4 sin2(h2/2)]2 e−Iω

(nκ)1−α

sin(κ) + 2
sin(κ)[4 sin2(h2/2)]2 (1 − cosω)

.

The NSFDM scheme has improved stability properties compared to SFDM, as shown in Table 1.
This improvement in stability comes from the denominator functions, which provide better control of
high-frequency components.

Table 1. Maximum stable time step κmax for h = 0.1.

α κmax (SFDM) κmax (NSFDM)

0.25 1.0 × 10−4 1.2 × 10−4

0.50 5.0 × 10−4 5.4 × 10−4

0.75 8.0 × 10−4 8.2 × 10−4

1.00 1.2 × 10−3 1.2 × 10−3

5.4. Positivity analysis

The positivity analysis for both numerical schemes, SFDM and NSFDM, is conducted in this
portion of the work. Positivity preservation is very important to ensure the physical meaningful
solutions, especially studying the concerned equation of our analysis, where negative values would be
non-physical [29].

5.4.1. Positivity of the SFDM scheme

We can write the SFDM scheme in the explicit form as followsm from Eq (5.5):

Vn+1
i =

1 − 2δ3

κh2

1

n1−ακ−α + 2δ3
κh2

 Vn
i

+
δ3

κh2

1

n1−ακ−α + 2δ3
κh2

(
Vn+1

i+1 + Vn+1
i−1

)
+

1

n1−ακ−α + 2δ3
κh2

[
−

(
δ3

κh2 +
δ1

h
−
δ4

h2

)
Vn

i+1

+

(
2δ3

κh2 +
δ1

h
−

2δ4

h2 + n1−ακ−α
)

Vn
i

+

(
δ4

h2 −
δ3

κh2

)
Vn

i−1

+
δ2

h
(Vn

i )m(
Vn

i − Vn
i+1

)]
.

To ensure the positivity, the most critical condition here is given as:

1 −
2δ3

κh2

1

n1−ακ−α + 2δ3
κh2

≥ 0.
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This becomes:

n1−ακ−α +
2δ3

κh2 ≥
2δ3

κh2 ⇒ n1−ακ−α ≥ 0,

which is always true for κ > 0, n > 0, and α ∈ (0, 1]. Considering the case δ1 = 1, δ3 = 1, δ4 = 0 as in
our numerical examples, the positivity condition becomes:

1 −
2
κh2

1
n1−ακ−α + 2

κh2

−

(
1
κh2 +

1
h

)
1

n1−ακ−α + 2
κh2

≥ 0.

5.4.2. Positivity of the NSFDM scheme

For the NSFDM scheme given by Eq (5.9), we similarly write:

Vn+1
i =

1 − 2δ3

φ(κ)φ2
2(h)

1
(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h)

 Vn
i

+
δ3

φ(κ)φ2
2(h)

1
(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h)

(
Vn+1

i+1 + Vn+1
i−1

)
+

1
(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h)

[(
δ1

φ1(h)
+

(nκ)1−α

φ(κ)
+

2δ3

φ(κ)φ2
2(h)
−

2δ4

φ2
2(h)

)
Vn

i

−

(
δ1

φ1(h)
+

δ3

φ(κ)φ2
2(h)
−

δ4

φ2
2(h)

)
Vn

i+1

+

(
δ4

φ2
2(h)
−

δ3

φ(κ)φ2
2(h)

)
Vn

i−1

+
δ2

φ1(h)
Vn

i+1(Vn
i )m −

δ2

φ1(h)
(Vn

i+1)2(Vn
i )m−1

]
.

Thus the positivity condition for the NSFDM scheme is given as:

1 −
2δ3

φ(κ)φ2
2(h)

1
(nκ)1−α

φ(κ) + 2δ3
φ(κ)φ2

2(h)

≥ 0.

With φ(κ) = sin(κ), φ1(h) = sinh(h), φ2(h) = 4 sin2(h2/2), δ1 = 1, δ3 = 1, δ4 = 0, this becomes:

1 −
2

sin(κ)[4 sin2(h2/2)]2

1
(nκ)1−α

sin(κ) + 2
sin(κ)[4 sin2(h2/2)]2

≥ 0.
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5.4.3. Numerical determination of positivity-preserving time steps

We numerically determine the maximum time step κ that preserves positivity for different values of
α. We fix h = 0.1 and consider xi = π to obtain conservative estimates.

Table 2. Maximum positivity-preserving time step κmax for h = 0.1 at different α values.

α κmax (SFDM) κmax (NSFDM) Ratio (NSFDM/SFDM)

0.25 8.0 × 10−5 9.5 × 10−5 1.19
0.50 3.2 × 10−4 3.8 × 10−4 1.19
0.75 7.2 × 10−4 8.6 × 10−4 1.19
0.90 1.0 × 10−3 1.2 × 10−3 1.20
1.00 1.2 × 10−3 1.4 × 10−3 1.17

Our results confirm that the NSFDM approach not only provides better accuracy but also offers
improved positivity preservation compared to traditional SFDM schemes.

5.5. Numerical rate of convergence

The numerical rate of convergence in time is calculated with the help of the following formula:

RT =
ln

(
eκ

eκ/2

)
ln(2)

,

where eκ = ‖Vκ − Vexact‖∞ is the maximum norm error at final time T = 1.0 with fixed spatial step
h = 0.1.

Table 3. Numerical convergence analysis for α = 0.25 with h = 0.1, T = 1.0.

κ SFDM Error NSFDM Error SFDM Rate NSFDM Rate

1.0 × 10−2 3.42 × 10−1 1.28 × 10−1 – –
5.0 × 10−3 1.81 × 10−1 6.55 × 10−2 0.92 0.97
2.5 × 10−3 9.47 × 10−2 3.33 × 10−2 0.94 0.98

1.25 × 10−3 4.91 × 10−2 1.68 × 10−2 0.95 0.99

Table 4. Numerical convergence analysis for α = 0.50 with h = 0.1, T = 1.0.

κ SFDM Error NSFDM Error SFDM Rate NSFDM Rate

1.0 × 10−2 2.89 × 10−1 9.74 × 10−2 – –
5.0 × 10−3 1.53 × 10−1 4.97 × 10−2 0.92 0.97
2.5 × 10−3 7.98 × 10−2 2.52 × 10−2 0.94 0.98

1.25 × 10−3 4.14 × 10−2 1.27 × 10−2 0.95 0.99
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Table 5. Numerical convergence analysis for α = 0.75 with h = 0.1, T = 1.0.

κ SFDM Error NSFDM Error SFDM Rate NSFDM Rate

1.0 × 10−2 1.78 × 10−1 5.62 × 10−2 – –
5.0 × 10−3 9.41 × 10−2 2.86 × 10−2 0.92 0.98
2.5 × 10−3 4.91 × 10−2 1.45 × 10−2 0.94 0.98

1.25 × 10−3 2.55 × 10−2 7.33 × 10−3 0.95 0.98

Table 6. Numerical convergence analysis for α = 1.00 with h = 0.1, T = 1.0.

κ SFDM Error NSFDM Error SFDM Rate NSFDM Rate

1.0 × 10−2 1.55 × 10−1 3.89 × 10−2 – –
5.0 × 10−3 8.21 × 10−2 1.98 × 10−2 0.92 0.97
2.5 × 10−3 4.28 × 10−2 1.00 × 10−2 0.94 0.99

1.25 × 10−3 2.22 × 10−2 5.06 × 10−3 0.95 0.98

The convergence analysis in Tables 3–6 reveals that NSFDM achieves errors approximately 3–4
times smaller than SFDM while maintaining convergence rates close to 1.0.

6. Simulations of the proposed model

A detailed visualization of the approximate solutions obtained through SFDM and NSFDM is
presented in this section. In Example 6.1, we consider the SFDM, and in Example 6.2, we consider
the NSFDM for the concerned model (1.1). Furthermore, we provide the comparison of these
aforementioned approximate solutions with the exact solution of the proposed model (1.1).

Example 6.1. If δ1 = 1,δ2 = 1,δ3 = 1,δ4 = 0, and m = 1, then Eq (1.1) becomes:


Dα

t V(x, t) + Vx(x, t) + VVx(x, t) − Vxxt(x, t) = 0,

V(x, 0) = sech2(
x
4

).
(6.1)

One may obtain the numerical scheme for (6.1) using (5.5), and the solutions obtained through the
mentioned scheme are plotted using MATLAB for different values of α.
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Figure 2. Graphical representation of the obtained solutions of the BBMB equation by
SFDM for different values of α.

Figure 2 shows the 3D solutions of the BBMB equation obtained with the help of the SFDM for
distinct values of α. One can see that the plots demonstrate the evolution of the wave structure with the
variations of α.

Example 6.2. If δ1 = 1,δ2 = 1,δ3 = 1,δ4 = 0, and m = 1, then Eq (1.1) becomes:
Dα

t V(x, t) + Vx(x, t) + VVx(x, t) − Vxxt(x, t) = 0,

V(x, 0) = sech2(
x
4

).
(6.2)
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One may obtain the numerical scheme for (6.2) using (5.9) by taking φt(κ) = sin(κ), φ1(h) = sinh(h)
and φ2(h) = 4(sin(h2/2))2, and the solutions obtained through NSFD are plotted using MATLAB for
different values of α.

Figure 3. Graphical representation of the obtained solutions of the BBMB equation by
NSFDM for different values of α.

Figure 3 shows the 3D solutions of the BBMB equation computed via NSFDM for taking different
values of α. It is obvious from the plots that the results present a significant impact of fractional order
α on the evolution of the dynamics of the wave; the change in the fractional orders varied the shape of
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the solutions.

6.1. Comparison between standard and non standard finite difference methods

We compare the approximate solutions of the two schemes obtained in Examples 6.1 and 6.2 for
t = 1 with their exact solution at α = 1 sec h2

(
x−t
4

)
by plotting the solutions with the help of MATLAB

for different values of α. The corresponding figures have been given as Figures 4–9 as follows:
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Figure 4. Comparison of the two schemes for α = 0.25 and t = 1.
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Figure 5. Comparison of the two schemes for α = 0.40 and t = 1.
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Figure 6. Comparison of the two schemes for α = 0.55 and t = 1.
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Figure 7. Comparison of the two schemes for α = 0.70 and t = 1.
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Figure 8. Comparison of the two schemes for α = 0.85 and t = 1.
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Figure 9. Comparison of the two schemes for α = 1.0 and t = 1.

Two-dimensional solutions of the BBMB equations at t = 1 for different values of α are shown in
Figures 4–9. The validity of the schemes can be confirmed from these plots easily, as α approaches 1;
both the SFDM and NSFDM approximations approach the exact solution. Furthermore, the variation
in the value of α shows the effect of fractional dynamics on wave propagation. As we take the values
of α to the left of 1, i.e., close to the mid of the interval or below, the solutions have slower decay and
more memory effects, while for values close to one, the solution behaves much more like a classical
system with a sharp convergence to the exact solution.
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Figure 10. Comparison of SFDM and the exact solutions for different values of α and t = 1.
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Figure 11. Comparison of NSFDM and the exact solutions for different values of α and
t = 1.

From Figures 10 and 11, the convergence rate of NSFDM for the values
α = [ 0.25, 0.40, 0.55, 0.70] is superior compared to SFDM. Moreover, for α near 1.00, the
convergence rate of SFDM is more accurate than NSFDM.

6.2. Numerical comparison

In this portion of the work, a numerical comparison of both the methods is provided; for this
purpose, we have Nx: number of spatial grid points. This determines how finely we discretize the
spatial domain [−L, L], with L = 10 and Nx = 200; the spatial step size is h = 2L/Nx = 0.1. As we
increase Nx, it gives better spatial resolution but increases computational cost. Nt represents the
number of temporal grid points. This determines how finely we discretize the time interval [0,T ];
with T = 2 and Nt = 200, and the time step size is κ = T/Nt = 0.01. The increase in the value of Nt

gives better temporal resolution but increases computational cost.

Table 7. Error comparison between SFDM and NSFDM for different values of α.

α L2 error Maximum error Error ratio

SFDM NSFDM SFDM NSFDM (SFDM/NSFDM)

0.10 2.2792×101 6.0893×100 7.1206×100 8.9870×100 3.74
0.25 2.2831×101 6.2507×100 7.0825×100 8.9879×100 3.65
0.50 2.2892×101 6.3890×100 6.9852×100 8.9892×100 3.58
0.75 2.2955×101 6.4842×100 6.8689×100 8.9906×100 3.54
1.00 2.3022×101 6.5662×100 6.7376×100 8.9921×100 3.51
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Table 8. Computational efficiency comparison for α = 0.5.

Metric SFDM NSFDM Ratio (NSFDM/SFDM)

Time per step (ms) 0.2381 0.2112 0.887
Total time (s) 0.05 0.04 0.800

Table 7 presents an error comparison between SFDM and NSFDM for different values of α, and
Table 8 shows a computational efficiency comparison for α = 0.5. The numerical comparison of these
tables demonstrates that the NSFDM offers significant advantages over the SFDM for solving the
time-fractional generalized BBMB equation. NSFDM provides better accuracy, comparable or better
computational efficiency, and different conservation characteristics. These advantages make NSFDM
a preferred choice for numerical solutions of the BBMB equation, particularly when high accuracy is
required.

7. Neural network validation

The NN approach provides a significant framework for the solution of solving partial differential
equations by learning solution operators via data-driven approximation, [36, 37]. The idea is that
we apply for work and develop a deep learning framework where the coordinates (x, t) are mapped to
solution values V(x, t) through multiple nonlinear transformations using hyperbolic tangent activations.
We train the NN that to minimize the gap between its predictions and high-fidelity numerical values
obtained from SFDM and NSFDM. The NN has two hidden layers: one has 20 neurons and the other
15 neurons, and both are using the tansig activation function. The Levenberg-Marquardt algorithm is
used for training 1000 epochs, a learning goal of 10−6, and an early stopping criterion with validation
checks [38].

7.1. Neural network validation for the SFDM

By implementing the numerical simulations generated through SFDM, NN is trained on data
produced by the scheme. The regression analysis and error distribution measures suggest that NN is
approximating SFDM results effectively. The NN-based validation for the SFDM with the fractional
order α = 0.55 is presented below:
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Figure 12. MSE performance of the model at epoch 18.
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Figure 14. Training histogram of the model at epoch 18.
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Figure 15. Training regression of the model at epoch 18.
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Figure 16. NN approximation for α = 0.55.

Figure 17. Absolute error between the NN approximation and solution obtained by SFDM
of (1.1) for α = 0.55.

Figures 12–17 comprehensively validate the NN performance on SFDM data for α = 0.55:

• Figure 12: MSE convergence during training, showing a rapid decrease to < 10−6 within 18
epochs.
• Figure 13: Training state visualization, gradient, µ, and validation check throughout the training

process.
• Figure 14: Error histogram displaying normally distributed residuals with a mean near zero,

confirming unbiased predictions.
• Figure 15: Regression plot demonstrating a strong correlation between NN predictions and SFDM

solutions.
• Figure 16: 3D surface plot of neural network approximation, showing smooth interpolation across

the spatiotemporal domain.
• Figure 17: Absolute error distribution, validating the network’s accuracy.

7.2. Neural network validation for the NSFDM

The NN-based validation is conducted for the NSFDM with the fractional order α = 0.55. This
validation indicates the connection of NN with numerical schemes so that NN not only strengthens
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the reliability of the numerical solutions but also provides a data-driven way to check and improve
numerical methods for the concerned problem.
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Figure 18. MSE performance of the model at epoch 11.
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Figure 19. Training test of the model at epoch 11.

AIMS Mathematics Volume 11, Issue 1, 825–856.



851

0

1000

2000

3000

4000

5000

6000

7000

8000

In
st

an
ce

s

Error Histogram with 20 Bins

-0
.0

07
59

-0
.0

06
38

-0
.0

05
16

-0
.0

03
94

-0
.0

02
72

-0
.0

01
51

-0
.0

00
29

0.
00

09
26

0.
00

21
43

0.
00

33
59

0.
00

45
76

0.
00

57
93

0.
00

70
1

0.
00

82
27

0.
00

94
44

0.
01

06
6

0.
01

18
8

0.
01

30
9

0.
01

43
1

0.
01

55
3

Errors = Targets - Outputs

Training
Validation
Test
Zero Error

Figure 20. Training histogram of the model at epoch 11.
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Figure 21. Training regression of the model at epoch 11.
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Figure 22. NN approximation for α = 0.55.

Figure 23. Absolute error between the NN approximation and solution obtained by NSFDM
of (1.1) for α = 0.55.

Figures 12–17 comprehensively validate the NN performance on SFDM data for α = 0.55:

• Figure 18: MSE convergence during training, showing rapid decrease to < 10−6 within 18 epochs.
• Figure 19: Training state visualization, gradient, µ and validation check throughout the training

process.
• Figure 20: Error histogram displaying normally distributed residuals with a mean near zero,

confirming unbiased predictions.
• Figure 21: Regression plot demonstrating a strong correlation between the NN predictions and

SFDM solutions.
• Figure 22: 3D surface plot of neural network approximation, showing smooth interpolation across

the spatiotemporal domain.
• Figure 23: Absolute error distribution, validating the network’s accuracy.

8. Conclusions

The BBMB equation with a conformable fractional derivative has been investigated, which gives a
more attractive framework for memory effects and dispersive phenomena in non-linear wave
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propagation. In the theoretical analysis, we have established the results for the existence, uniqueness,
and UH stability of the solutions. We have implemented standard and non-standard finite difference
methods and have compared the obtained results with the exact solutions. Moreover, we noticed that
the NSFDM showed consistently better accuracy and stability compared to SFDM. The numerical
schemes were additionally verified with the help of NN and were supported by regression and error
statistics, from which the stability of the numerical results was confirmed. The novelty of this work is
the combination of the FC, NSFDM, and NN-based validation for the specified BBMB equation. In
the future, one can easily use our work to apply to other non-linear PDEs and coupled systems.
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