Research article

A modified BFGS quasi-Newton method with Wolfe line search for unconstrained optimization

  • Published: 12 January 2026
  • MSC : 49J35, 49M15, 49M37, 90C53

  • In this article, we construct a modified BFGS quasi-Newton method with Wolfe line search to solve a nonlinear equations. Firstly, we propose a new quasi-Newton secant equation and the corresponding practical implementation algorithm by combining the classic BFGS with the strong Wolfe conditions. Furthermore, the local and superlinear rate of convergence of the modified quasi-Newton updates are derived theoretically. Lastly, numerical examples illustrate the effectiveness and stability of the proposed method.

    Citation: Wen Zhang, Tingting Guo, Junfeng Wu, Zhousheng Ruan, Shufang Qiu. A modified BFGS quasi-Newton method with Wolfe line search for unconstrained optimization[J]. AIMS Mathematics, 2026, 11(1): 767-784. doi: 10.3934/math.2026033

    Related Papers:

  • In this article, we construct a modified BFGS quasi-Newton method with Wolfe line search to solve a nonlinear equations. Firstly, we propose a new quasi-Newton secant equation and the corresponding practical implementation algorithm by combining the classic BFGS with the strong Wolfe conditions. Furthermore, the local and superlinear rate of convergence of the modified quasi-Newton updates are derived theoretically. Lastly, numerical examples illustrate the effectiveness and stability of the proposed method.



    加载中


    [1] W. Y. Sun, Y. X. Yuan, Optimization theory and methods: Nonlinear programming, New York: Springer Science+Business Media, LLC, 2006.
    [2] H. Y. Liu, J. Hu, Y. F. Li, Z. W. Wen, Optimization: Modeling, algorithm and theory, Beijing: Higher Education Press, 2020.
    [3] J. Nocedal, S. J. Wright, Numerical optimization, 2 Eds., New York: Springer, 2006.
    [4] L. Zhang, A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations, shape Numerical Algorithms, 83 (2020), 1277–1293. https://doi.org/10.1007/s11075-019-00725-7 doi: 10.1007/s11075-019-00725-7
    [5] R. Bollapragada, S. M. Wild, Adaptive sampling quasi-Newton methods for zeroth-order stochastic optimization, shape Math. Program. Comput., 15 (2023), 327–364. https://doi.org/10.1007/s12532-023-00233-9 doi: 10.1007/s12532-023-00233-9
    [6] X. Y. Song, Q. Y. Zhang, C. Lee, E. Fertig, T. K. Huang, L. Belenki, et al., The vizier gaussian process bandit algorithm, arXiv preprint arXiv: 2408.11527, 2024.
    [7] D. Y. Wang, G. Liang, G. W. Liu, K. Zhang, Derivative-free optimization via finite difference approximation: An experimental study, Asia Pac. J. Oper. Res. (APJOR), 42 (2025), 1–23. https://doi.org/10.1142/S0217595925400056 doi: 10.1142/S0217595925400056
    [8] J. Z. Zhang, N. Y. Deng, L. H. Chen, New quasi-Newton equation and related methods for unconstrained optimization, shape J. Optimiz. Theory Appl., 102 (1999), 147–167. https://doi.org/10.1023/A:1021898630001 doi: 10.1023/A:1021898630001
    [9] C. G. Broyden, J. E. Dennis, J. J. More, On the local and superlinear convergence of quasi-Newton methods, shape IMA J. Appl. Math., 12 (1973), 223–245. https://doi.org/10.1093/imamat/12.3.223 doi: 10.1093/imamat/12.3.223
    [10] C. T. Kelley, Iterative methods for linear and nonlinear equations, Philadelphia: SIAM, 1995.
    [11] W. J. Zhou, F. Wang, A PRP-based residual method for large-scale monotone nonlinear equations, shape Appl. Math. Comput., 261 (2015), 1–7. https://doi.org/10.1016/j.amc.2015.03.069 doi: 10.1016/j.amc.2015.03.069
    [12] W. J. Zhou, D. M. Shen, Convergence properties of an iterative method for solving symmetric non-linear equations, shape J. Optimiz. Theory Appl., 164 (2015), 277–289. https://doi.org/10.1007/s10957-014-0547-1 doi: 10.1007/s10957-014-0547-1
    [13] W. J. Zhou, A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems, shape J. Comput. Appl. Math., 367 (2020), 112454. https://doi.org/10.1016/j.cam.2019.112454 doi: 10.1016/j.cam.2019.112454
    [14] Z. Wan, K. L. Teo, X. L. Shen, C. M. Hu, New BFGS method for unconstrained optimization problem based on modified Armijo line search, shape Optimization, 63 (2014), 285–304. https://doi.org/10.1080/02331934.2011.644284 doi: 10.1080/02331934.2011.644284
    [15] G. L. Yuan, Z. Sheng, B. P. Wang, W. J. Hu, C. N. Li, The global convergence of a modified BFGS method for nonconvex functions, shape J. Comput. Appl. Math., 327 (2018), 274–294. https://doi.org/10.1016/j.cam.2017.05.030 doi: 10.1016/j.cam.2017.05.030
    [16] G. L. Yuan, P. Y. Li, J. Y. Lu, The global convergence of the BFGS method with a modified WWP line search for nonconvex functions, shape Numerical Algorithms, 91 (2022), 353–365. https://doi.org/10.1007/s11075-022-01265-3 doi: 10.1007/s11075-022-01265-3
    [17] A. Upadhayay, D. Ghosh, K. Kumar, Nonmonotone Wolfe-type quasi-Newton methods for multiobjective optimization problems, shape Optimization, Preprint (2025), 1–33. https://doi.org/10.1080/02331934.2025.2475203 doi: 10.1080/02331934.2025.2475203
    [18] Y. L. Cheng, J. Gao, An efficient augmented memoryless quasi-Newton method for solving large-scale unconstrained optimization problems, shape AIMS Mathematics, 9 (2024), 25232–25252. https://doi.org/10.3934/math.20241231 doi: 10.3934/math.20241231
    [19] X. Y. Zhang, Y. T. Yang, A new hybrid conjugate gradient method close to the memoryless BFGS quasi-Newton method and its application in image restoration and machine learning, shape AIMS Mathematics, 9 (2024), 27535–27556. https://doi.org/10.3934/math.20241337 doi: 10.3934/math.20241337
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(189) PDF downloads(9) Cited by(0)

Article outline

Figures and Tables

Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog