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1. Introduction

In this paper, we focus our attention on solving nonlinear system
F(x)=0, x=(x;,x, - ,xy)" €RY, (1.1)

where F = (F|,Fy,--- ,Fy)',F; : R¥ — R(i = 1,2,---,N) are continuously differentiable and the
Jacobian is symmetric, i.e.,
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From an optimization perspective, the problem of solving nonlinear system (1.1) can be formulated
as the following minimization problem: mig f(x)
xeR:

1
fx) = EIIF(x)Ilz, (1.2)
and the line search iterative method
xKH = xk 4 okdt, (1.3)

where of € R, d“ € RY are stepsize and search direction on step k, respectively.

The classic Newton’s method is efficient and possesses quadratic convergence rate for solving
nonlinear equations when the size is not too large. The main drawback of the Newton direction
is the need for the Hessian V2f(x). Explicit computation of this matrix of second derivatives can
sometimes be a cumbersome, error-prone, and expensive process. And the pure Newton iteration
is not guaranteed to produce descent directions when the current iterate is not close to a solution.
Quasi-Newton methods are recognized as one of the most powerful methods with locally superlinear
convergence and need not compute the Hessian for solving deterministic optimization problems, these
methods build quadratic models of the objective information using only gradient information. Among
the various quasi-Newton update schemes, the BFGS formula (named for its discoverers Broyden,
Fletcher, Goldfarb, and Shanno) stands out as the most effective [1-3]. For some unconstrained
stochastic optimization problems with no available gradient information, which arise in settings from
derivative-free simulation optimization to reinforcement learning, adaptive sampling quasi-Newton
method was employed to estimate the gradients by using finite differences of stochastic function
evaluations within a common random number framework [5]. For large-scale problems, derivative-free
type methods, the limited memory L-BFGS, truncated Newton method, or Conjugate Gradient methods
would be more effective. Derivative-free optimization (DFO) is vital in solving complex optimization
problems where only noisy function evaluations are available through an oracle or black-box interface.
For example, based on DFO methods to optimize many machine learning models and complex systems,
Google Vizier has executed millions of optimizations, accelerating numerous research and production
systems at Google [6,7]. A fully derivative-free conjugate residual method is invoked to solve general
large-scale nonlinear equations and obtain the global linear rate of convergence by means of some
secant conditions and backtracking type line search method [4]. Zhang et al. [8] build a new quasi-
Newton equation and provide the local and superlinear convergence. Zhou [13] present an inexact
Modified BFGS method with line search for solving symmetric nonlinear equations and its global
convergence. Wan et al. [14] study the BFGS method by modifying the Armijo line search technique
and deduce a global convergence. Yuan et al. [15, 16] propose a BFGS method with modified weak
Wolfe-Powell line search, and obtain a global convergence under suitable conditions for general
functions. Upadhavay et al. [17] give two nonmonotone quasi-Newton algorithms with Wolfe line
searches for unconstrained multiobjective optimization problems and leads to a global convergence.
Cheng et al. and Zhang et al. [18, 19] consider the memoryless BEFGS quasi-Newton method to solve
the unconstrained optimization problem.

Comparing with the computational challenge of Hessian V2 f(x*) and its inverse matrix V2 f(x*)™!
in Newton iterative method

= X - VR TIV £, (1.4)
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the quasi-Newton method is a class of methods which need not compute the Hessian, but generates
a series of Hessian approximations, and at the same time maintains a fast rate of convergence. The
classic BFGS quasi-Newton iterative method approximates the Hessian V2 f(x*) and its inverse matrix
V2 £(x*)~! by a symmetric matrix B¢ € RV and H* € RV respectively, from the updating Rank-two
formula

yk(yk)T ~ Bksk(Bksk)T
(Sk)Tyk (sk)TBksk ’
H' = (VAT HRVE 4 sk (shyT | (1.6)

Bk+1 — Bk +

(1.5)

where * = #Tik’ VE =T - 9%(s")7, and
Bk = yk gk = xk gk gk =y ey C v f(xhy.
In order to obtain a better approximation of B!, we construct a new quasi-Newton secant equation
Brrlgh — yk, (1.7)

where 7* is to be determined by the following section, and then investigate its theoretical properties
and practical implementation.

The rest of this paper is organized as follows. In section 2, we construct a new quasi-Newton secant
equation. Some properties of the new quasi-Newton secant equation and the Algorithm are presented
in section 3. In section 4, the local and superlinear rate of convergence is described. Several numerical
tests are performed to demonstrate the accuracy and efficiency of the proposed method in section 5.
The paper is concluded in section 6.

2. New quasi-Newton secant equation

Based on the symmetric system (1.1) and the first-order Taylor expansion, we have

O0F(x + taF(x))
ot

= J(x + taF(x))aF(x), (2.1

when || F(x)|| is arbitrarily small, it yields

F(x + aF(x)) - F(x) _
a

1
f J(x + taF(x))dtF(x)
0
~ J(x)F(x) = Vf(x). (2.2)

Let

sk

x(7) = x* + TM, g(x) = Vf(x),

then x(0) = x*,  x(||s*|]) = x**!. To simplify the formulation, we set
= fxh, g =g(x") =Vruh, (2.3)
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notice that dg(x(T)) = V2f (x(r))ﬁ, we have

dg(x(7))

V2 (s = (5" .
dr e

(2.4)

It reveals that the construction of g(x(7)) plays an important role in the approximation of Hessian
sz(xk”).
To approximate g(x(7)), we set

2(1) = a + be™ + ce™, (2.5)
where a, b, ¢ € RY satisfy the following conditions

2(0) = g(x(0)) = g,
2(lIs“l) = gx(Is“D) =

fO”s I o )dx(‘r)d _ ek

it yields
a + b +C = gk,
a+bell 4+ ce?Wl = ght!, 06
- )
(allskll + b - 1) + g(ez”sk” _ 1)) §€ = (1 Z s
Benifits from (2.4)
d~ -
Vst~ i) Bt (e 4 2 )
dt s

and after a simple algebraic calculation from the linear system (2.6), we obtain

254 _ 1) k kg

ko gl _ CLe __7 Y\ = phet _ 57

(g “ 2||s|] elskl — 1 ||s’<||) s =f f (2.7)
el all

(b gk = T (y) Ko W 4 1) s, (2.8)

2eesh gk =

4||s"||e2”sk”(f"“—f") ( 4|5k |2

2||sk||ells I — 20l 4 1 2||sk|[ells I — 2l 4 1
gl

e L 1% o T T k) gk
" Qs T — 2+ 1T — 1) )4 -

and finally we have
e\ T
Is*11 (Be!™1 + 2¢e™1)" 5% = (397" +,
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where

y = A" + B(gH'sh + e - 1, (2.10)
A = (1 = 3lIs4De 1 + (4lIsH” + 2lls4l = DT+ (=2[s*| + [Is4]) = el + 1 2.11
- (el — 1)(2]|sk||ells"I — e2ls*l 4 1) ’ (2.11)

(=2s"1 + 3listll = De + (1 = 2lls D™ + (1 — [ls‘{De*" 1

8= (els“I — 1)(2||s¥||ells“Il — e2lIs"l 4 1) ’ (2.12)
215 (281 — plis“l
_ 2l (ke ke ) , (2.13)
2] el — e2s*l 4 1
and A+B+C=0.
Therefore, we obtain our new quasi-Newton secant equation as follows
B lsk = 3k, (2.14)
<k _ k sk
y =Yy +7”sk||2‘ (2.15)

3. Properties and algorithm

In this section, we will at first show that * defined by (2.15) in the new quasi-Newton secant
equation (2.14) is a better approximation to V2 f(x**1)s* than y*, and then we will present the modified
quasi-Newton algorithm.

Lemma 1. [8, Lemma 3.1] If the function f is smooth enough, then

2 N 53 k sk
(_) (VZf(xk+l)Sk _yk) — ”sk” d f(x + é‘:||S'I"||) S Sj Sy
s 2 44 omdndx SIS

where & € (0, |s¥)), and x;, s; are the ith elements of vector x* and s* on the step k, respectively.

Theorem 1. If the function f is smooth enough, let o(t) = f(x(7)), then we have

28 k 3-38-0O)Is"II’
(s k”> L e
B _ 1 k k
¢ 3!>||s ¥ S + cn || S,
where £1,& € (0, |Is*|)).
Proof. Since
k
x(1)=x +7—, gx)=Vf(x), @)= f(x()), 3.1

lIs“Il’

and the function ¢(7) is smooth enough too, we obtain

ZN: Af(xk + Tni—:”) s

_ _ , 32
o0 = (e T S T R G:2)

sl
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k
N (')zf(xk +T||::_k”) S Sj

k
77 _ s T2 —
¢ = (o) Ve nw” D ¥ TR TR G-
” ” i,j=1 ! J
NP f(xk+ T ) ‘
" ||sk|| Si Sj i
(1) = ; (3.4)
i le Ax;0x;0x;  |Is*|| [Is*|l |l |l
4
(4)(T) ZN: 4 f(x +T\|Sk||) Si Sj S1 Sm (3 5)
L 0xi0xj0x10%y, [ls%11 1s® 11 s*[] l1s*)1”
and
, (sk)T k , (k)T k+1
Qs = g0) = 11 = 5 0 = st = S
., (Sk)TVZf(xk)Sk ., . (Sk)Tv2f(xk+l)Sk
¢"(0) = ———————,  ¢"(lIs"ID =
s s
According to the Taylor expansion, there exists &;, &, € (0, ||s¥||), such that
TN — (1K Ky 77 (1 ok s k” mr ok ||sk|| o
@' (0) = ¢"(lIs"ID = lIs"ll” Is") + ——¢lIs"ID) — (&), (3.6)
_ k ki, 7 k “ k” ” k ” ” (3) k ” k” (4)
@(0) = @(lIs"(1) = lIs"lle"(lIs"ID + ——¢"(Is"[)) — (71D + (&2). (3.7)

It yields from the new quasi-Newton secant equation (2.15), Lemma 1 and (3.6-3.7)
k

s
) (VZ ( k+1 vk _
sl I Y y||sk||2

= lIs"lle” (Is“I) = (A + D' (lIs“ID) = (B = D' (0) ~

_ Cle(0) — o(lis“ID)
lIs“]

IIS"II

(— >W%(“l 7 = (—

)

sl

Cle(lis*l) = ¢(0))
sl

— (A +B)¢'(IIs“I) + Blis“lle"” ls“Il)

k
(h@”m%'”W—@W@)

@B+cmﬁnn . 6—3B—cmﬁw
= (sl + ;

— DlIs* K3
L8 31')||S I CII ||

" (IIs“I)

eP(E) + ¢W(&). (3.8)

and the proof is completed. O

Remark 1. The advantages of new algorithm (2.14)-(2.15) are not sensitive obviously from Theorem
1. In the light of six-order Taylor expansion of the coefficients A, B, C, Theorem 1 becomes

2
IIS"II s

k2 17 k
>0 180 +o(lIs"117)¢” (Is"1))

(

”kw<wﬂﬂ“n ~6—HWK
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17lls"| ||s'<|| 40 (5"
- (el B ot st
”sk” 31||Sk|| k2 )
e
||s’<|| L st
- B T o)), (3.9)

Therefore, if the function f is smooth enough, we observe that

(o ) TV F st = y9) = 0qIs ), (3.10)

lls "II

T F s - 7 = OIS, (3.11)

lls“l

It reveals that the projection ¥ on the direction s* is of a higher-order precision approximation to
V2 f(x**V)s* than y* does as ||s*|| approaches to zero.

The modified quasi-Newton method to solve the nonlinear system (1.1) is presented as follows.

Algorithm 1. Given a initial point x’ € R", a symmetric and positive definite matrix B® € R¥*" or
H® e RV several constants a € (0, %), B € (a, 1) and a sufficiently small positive constant € > 0, let

k=0.
Step 1. Calculate g* by (2.2). If ||g"|| = 0, then stop Otherwise, go to Step 2.

Step 2. Solve the search direction s* by Bfs* = —gk or s = —H*gk.
Step 3. Compute x**! = x* + Aks* for A¥ > 0 with initial number A = 1, such that the strong Wolfe
conditions

F < g @l (ghT sk, (3.12)
(g7 's" < Bl(g")"s"). (3.13)

Step 4. Update B* or H* by the following Rank-two formula:

(j’k _ Bksk)(uk)T + uk@k _ Bksk)T (sk)T(j\,k _ Bksk)uk(uk)T

Bl = B 4 T - ((uk)Tsk)z , (3.14)
where $* = y* + yw, and
5 {y, it st +y 2 ellstIl, 3.16)
0, otherwise.

and vy is defined by (2.10), parameter vectors #* and v* are not orthogonal to s* and §*, respectively.
Step 5. Let k = k + 1 and go to Step 1.
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Remark 2. It is interesting to note that the curvature condition (y*)"s* > 0 is an important property
to ensure B! is positive definite in the quasi-Newton method. The setting ¥ in (3.16) will guarantee
the curvature condition (5*)'s* > 0 when (y*)"s* > 0. Moreover, if $* = y*, then B-update formula
(3.14) is called General PSB update and H-update formula (3.15) is Greenstadt update. In particular,
B-update (3.14) becomes Rank-one SRI update as u* = $* — B's*, and (3.14) becomes DFP update
as u* = $*, and (3.14) becomes PSB update as u* = s*, and (3.14) becomes BFGS update (1.5) as

uk = 9% + 2 Bksk where wk = ,/(S({A)ICT)—T;,{I;,(. About the details of General PSB update (3.14), we

14wk 1+wk

refer the reader to textbooks on optimization, such as [1, Chapter 5], [3, Chapter 6].
4. Local convergence analysis
Without loss of generality, we will discuss the local and superlinear convergence of the modified

quasi-Newton method with A* = 1.

Lemma 2. [9, Lemma 3.1] Assume that function f(x) is twice differentiable over a convex open set
D, and x* € D be the stationary point of function f(x), namely Vf(x*) = g(x*) = 0, and V*f(x*) is
nonsingular and V*f(x) is continuous at the stationary point x*, and there exist positive constants p
and K, for all x € D such that

IV2f(x) = V2 f(x")]l < Kllx — x*|F, 4.1)
then, it leads to

llg(p) — g(q) - V2 f(x")(p— @Il < Kmax{llp — x*|I’,llg — x*IF}llp — qll. Vp.q € D, 4.2)

and there exist positive constants €, L, and a closed neighborhood X(x*,€) C D, such that

1 v P
lep —qll<llgp)— gl <Llp-qll, VYp .geXx",é. (4.3)

Lemma 3. [9, Theorem 3.2 — Corollary 3.5] For any B-update formula in the quasi-Newton algorithm,
for all (x*, BX) in a neighborhood of (x*, V*f(x*)), if

1B = V2 £y <(1+ @y max ([l = x7I, ek = x*I)IB* = V2 £l

k+1 O k 4
+ @y max{|lx* — x|, []xF — x|}, 4.4)

where nonnegative constants ai,a, > 0, and M is a nonsingular symmetric matrix, define the matrix
norm ||+ |1y by 1Ol = IIMQOM)|| and the initial (x°, B®) is close enough to (x*,V2f(x*)). Then the
sequence X' = x* — (BY7'Vf(x) from quasi-Newton method is locally convergent at x*. And the
iterative sequence {B*} and {(B*)™'} are uniformly bounded and there exists o € (0, 1), ||x**! — x*|| <

ollxk — x*|| for all k > 0. Furthermore, if some subsequence of {||B* — V2 f(x")|| )} converges to zero,
||xk+l_x*” _ O
[loek—x*]| :

then {x*} converges Q-superlinearly at x*. Namely, klim

—+00

There is a similar result regarding H-update formula. More precisely, if

I = V2 0yl <(1+ a0 max(e™! — I et = 27 I0))IHS — V2 £y
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k+1 O k 4
+ @ max{|lx* — X7, [Ix* — x|}, 4.5)

then {x*} is locally convergent at x*, the iterative sequence {H*} and {(H*)™'} are uniformly bounded
and ||x*! — x*|| < o|lx* — x*||. And moreover if some subsequence of {||H* — V2 f(x*)7!|,,} converges
to zero, then {x*} converges Q-superlinearly to x".

Hereafter, we suppose that function f satisfies all of the assumptions of Lemma 2, and then depict
some properties of §* in Algorithm 1 by the following propositions.

Proposition 1. There exists K > 0, for all x**', x* € D, it comes
15" — V2 £(x)sk|| < K max{|lx*" — x|, Ix* — x|} Is |- (4.6)

Proof. In view of the definition §* = ykw”;f”z and ¥ (3.16), we know $* = y* when (y*)"s*+y < €lls
It yields further (4.6) holds by combining (4.2).

In other case, if (y)7s* +y > €||s"|]’, then we have $* = 3, it gives

2
“I°.

k

9% = V2 £ )l < lly* - V2Fx)shl + ||y”:k”2 [
< — V2 eyst + BT B(ﬁSk A I
By virtue of the Taylor expansion, there exist &, 7 € (0, 1), such that
P = S g 6 () - T @8

where x¢ = &x* + (1 — &)xF1, x" = nx* + (1 — p)x*.
Since V2f(x) is continuous at x*, then there exists K; > 0, |[V2f(x")|| < K,. It yields by invoking
4.2)

IV2£(x) = V2 (x| < 2K max({l|x* — x*|, [Ix" - x*|I"}, 4.9)
and there exist K, > 0, such that

£ £ £ 2
O)'sF < (IV2 ()] + K max{[le*! = x*|F, lIx* = x* [ Dlls*|

% * 2
< Ky max{|[x**! — x|, lx* — x|} IsE), (4.10)

and therefore we obtain (4.6) by combining (4.7)-(4.10) and taking K = m + K| A + g|. O

k+1

Proposition 2. There exists €, L > 0, for all x**', x* € X(x*, &), we have

1 L
zllskll <1191 < LIs"|. 4.11)

Proof. If ()T s* + v < €lIs"|I’, then (4.11) holds obviously from (4.3).
Otherwise, j;" = j}k, and then

Sk

2
sl

1591 < 1y i1+ Iy —— I
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0

<( K|Cl C k1

L+ (—— + KA+ S max{lle™ - x7F, Jlx* - x*llp})llskll, (4.12)

it derives the upper boundary of (4.11) by taking €, = max{||x**' — x*||, |Ix* = x*|l}, L = L + (KICI
Kol A+ €))ef.

About the lower boundary of (4.11), by using the continuity of V2 f(x) at x*, there exist &, > 0, for
all x € X(x*, &),

2 2 * 1
V- f(x) = V2 f(xT)] < W’ (4.13)
K= F < Sz o

k+1

and then for all x**!, x* € X(x*, &), we have

2
VA = VAN < g 4.15
V= f(x*) SEDI STV )T 4.15)
2K
K - B - . 4.1
, max{||x |, 1 = x| < T CITPoRT @.16)
At the same time,
¢ gk _ C T p2 £ 2 k
S
2K2'~7‘+ %l c. st
Ay S U T 4.17
and
Iyl = 1192 fe)s ) = llg™! — g* = V2 f(a)s")| = L
) = 3V
then
541 > %_M__‘ s
3 8111V2 £ ()|’

and (4.11) holds with & = min{e|, &} and L = max{w,L + (X9t Kol A+ g|)z:p}. O
2 C

Proposition 3. Fork > 1,0 € (0, 1), suppose ||x**! — x*|| < ollx* — x*|| and both {H*} and {(H*)"'} are
bounded, then

k _ 2 w\—1\ 8k
m I(H" = V=f )3l

~k -
koo vl

implies that {x*} superlinearly converges to x".
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Proof. If (y*)'s* +y < ells“|’, then * = y* and Proposition 3 holds obviously from [9]. Otherwise,

A

§* = *. From Algorithm 1, H*g* = —s* then we have H*y* = H*g"*! + s* and
(Hk _ sz(x*)‘l)sk

(Hk _ Vlf(x*)—])/\k — Hkgk+1 + sk _ VZf(x*)—]yk + Y || k||2
S

(4.18)

Let ||[H¥|| < r, |I(H™Y| < 7, then

Hksk

2
sl
yr
—)
lIs*]1”

1811 < NG I = V2 £y + V2 () 6F = V2 f)s) — y

[
< FIIHS = V2L PN+ IV )TN = V2 F(e)s || +

and it reveals after relating to Proposition 1-2,

k+1||

llg _o,

im
koo ||sH||

and

this completes the proof. O

Proposition 4. If V2 f(x*) is positive definite and the sequence {x*} generated by Algorithm I converges
to x*, then there exists ko > 0, (s)7$* > 0 holds for all k > k.

Proof. In view of the positive definiteness of V2 f(x*), let

o wIVAf(xtw
0= min ——————
weR,w£0 wlw

>0

then link with Proposition 1, we obtain
(O (O - Vfa)sh)  ($HTVf(x)s
(sk)Ts" - (sk)Tsk (sk)Tsk

> — K max{||x**! — x*|I", |Ix* — x*|"} + 6.

k

By using klim xF = x*, there exists ky > 0, for all k > k, such that max{||x**' — x*|", ||Ix* — x*|I} <

—+00
This concludes the proof. O
By combining Lemma 2-3 and Proposition 1-4, we could end up with the following Theorems to

establish the local and superlinear convergence for our modified quasi-Newton algorithm.

g
i

Theorem 2. Suppose that function f possesses the hypotheses of Lemma 3, if there exist a constant
w1 > 0, a nonsingular symmetric matrix M, for all (x*, BX) in a neighborhood of (x*,V? f(x*)) such that

IMut = MM
||M_1sk|| —ﬂl”s || B

(4.19)

then sequence {x*} generated by the B-update formula (3.14) of the modified quasi-Newton algorithm
is locally and Q-superlinearly convergent at x*.
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Proof. If (y*)Ts* +y < ells*II*, then # = y* and Theorem 2 holds directly from [9, Theorem 5.3]. Now
let’s consider only the case §* = §* = y* +y s for the B-update formula (3.14).

lsk|I*
Assume that 0 < 4|s"/” < 1 and set A = V2f(x*), after invoking [9, Lemma 5.2], (4.6) and (4.19),
we have

5  ||Mu* - MsK|
2(1-p)  |IM1sH|
15 — V2 £ (x*)s"||

1B = V2 (el <(VT - al? + JIB = V2 £l

+2(1 + 2VN)|IM||

1M1
<(V1= a6 + g max{|lx! — x|, e = x"IF})1B* = V2 (")l
+ a max{|le! — x|, [l - XY, (4.20)

— k_ 72 * k —
where 8 € (0,11, @ = 72 € [§, 11.6° = et onr € [0, 11, a1 = 3575, a2 = 2K(1+2VNIM|P).

It implies that the B-update formula (3.14) with iteration x**! = x* — (BX)~'V f(x) satisfies the
hypotheses of Lemma 3 and therefore, the sequence {x*} is locally convergent at x*, {B*} and {(B*)™!}
are uniformly bounded and there exists o € (0, 1), [|x**! — x*|| < o||lx* — x*|| for all k > 0.

To prove the Q-superlinear convergence, we can rewrite (4.20) as

3
|BF — V2 F(xM)l,, < WHE" = V2 f(x)ly

+ max{[x“*! — x|, lIx* = 27| [|B = V2 F ()]l + 2). (4.21)

If there is a subsequence of {B*} which converges to V2 f(x*), Lemma 3 will give the desired conclusion.
Otherwise, the sequence ||[B**! — V2 f(x*)||,, is bounded away from zero. After by using V1 —a <
1 -9, (4.21) is equivalent to

36N 2 & 2 ppo 1 2 pro
g 1B = VAl <IB' = V2 Gy = 1B = V2 f ()l
+ max{[e®! — x|, lIx* = x* | W [|BF = V£ (x|, + @) (4.22)
Therefore

+o0
D EVIB = V2 F(x)lyy < +oo,
k=1

and

I(B" = V2 f e sl _

s

0. (4.23)

By taking advantage of Proposition 1-2, we observe

(B = V2 f(x* sl =gl - 11§ — g" = V2 fx)ll

1 * 7 *
>Z||x"+1 — x| = Kllx* = x|, (4.24)
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and thus

k+1

et — ] 2LI(BE — V2 (x))s]

< + 2LK|Ix* = x*|
[lx* — x| [Is¥]|

together with the convergence of {x*} and (4.23), it yields
k+1

llx
k—teo [lack — x|

—xllzo.

This completes the proof. O
We just report the local superlinear convergence theorem about the H-update formula as follows,
since the proof is very similar to that of Theorem 2.

Theorem 3. Suppose that function f possesses the assumptions of Lemma 2, if there exist a constant
Wy > 0, a nonsingular symmetric matrix M, for all (x*, H*) in a neighborhood of (x*,V*f(x*)™") such
that

My — M3 o

o N
Erg < pully vy #0,

then sequence {x*} generated by the H-update formula (3.15) of the modified quasi-Newton algorithm
is locally and Q-superlinearly convergent at x*.

5. Numerical experiments

To compare the computational performance between the classic BFGS updates (1.5) and our

Algorithm as u* = 5" + %Bksk in (3.14), where w* = w/%, we take the following four
test functions for examples with initial points x° € RY (e.g., the bold number 1 = (1, 1,---,1)T € RV),

and parameters B =10 =10"*8=0.9,e = 107'°, and terminate the routine once iterations exceed
its limit k& = 1000 or ||[F(x)|| < 107%. The numerical results are listed in Table 1-4, where Kj.,
denotes iteration times, Ky, ||[F(x)|| are the number of function evaluations and the norm of F(x) at the
stopping point, respectively. CPU time is the total amount of time the CPU spends in seconds. We
examine empirical characteristics of our proposed algorithm in both symmetric Hessian(Test 1-3) and
nonsymmetric (Test 4) settings.

Test 1. The discretized Chandrasekhar’s H-equation [10]: (i = 1,2,--- ,N)

Fi(x)=x;— (1 - —
() =x—(1- -5 2it+,

)—1
where o € [0,1], 1; = 52, and take o = 0.9.
Test 2. The gradient function of the Engval function [11]: (i = 2,3,--- ,N—-1)

Fi(x) = xl(x% + x%) -1,
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Fi(x) = xi()ciz_1 + 2)61.2 + xfﬂ) -1,

Fyn(x) = xy(xy_, + x3).

Test 3. The function F is given by [12]:

2 -1 X1 e —1
-1 2 - X e —1
F(x) = e
- | : :
-1 2 XN e —1

Test 4. The function F is given by [13]: i =1,2,--- ,N - 1)

Fi(x) = 2x; — xj41 +sin(x;) — 1,

FN(X) = ZXN + sin(xN) - 1.

Table 1. Numerical results for Test 1.

40 N BFGS New Algorithm 1
Kier  Nr lF ol CPU time | Kirer Kr lFCIl CPU time
10 | 1000 100 1.002818e-01  0.691437 61 7 1.491093e-07 0.066236
1 50 | 737 74 4.103267e-08  1.450943 57 6 9.678603e-07 0.094702
100 | 1000 102 3.167766e-01  5.941363 81 9 4.859871e-07 0.259126
500 | 1000 100 6.734134e-03 146.157723 | 22 3  8.709973e-07 1.505249
10 | 1000 101 9.236783e-02  0.307169 | 47 5 4.953654e-07 0.027917
~10 50 | 284 29 8.074406e-08  0.457444 | 130 13 1.288553e-08 0.140885
100 | 1000 100 1.325485e+02  6.129278 49 5 3.985216e-07 0.189592
500 | 851 88  8.125466e-07 114.946035 | 85 9 5.585781e-07 5.961022
10 | 1000 100 3.634384e+01  0.342612 | 128 18 3.190402e-07 0.086090
~100 50 | 1000 101 2.220825e-01  1.752874 | 111 12 5.135561e-07 0.140591
100 | 1000 101 4.458655e+00  5.450797 | 222 23 7.428437e-07 0.804041
500 | 167 17 4.246196e-07 21.457026 | 238 24 7.531092e-07 16.692411
10 | 1000 101 1.319797e+00  0.242842 37 4 7.478728e-07 0.027177
10 50 | 1000 100 2.766506e+00  1.728747 80 8 5.345034e-07 0.243167
100 | 128 16 2.408735e-10  0.695889 | 435 44 5.562306e-07 4.770006
10 | 1000 100 1.235471e+00 0.261892 25 3 4.983473e-07 0.015856
% 50 | 1000 101 9.458086e+01  2.213521 15 2 4268824e-07 0.031304
100 | 1000 101 3.549297e-01  7.079332 | 202 21 3.319002e-07 0.770231
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Table 2. Numerical results for Test 2.

O N BFGS New Algorithm 1
Kier N lF ol CpPU time | Ky  Kp lF Il CPU time
10 | 80 2 NaN / 116 12 9.229853e-07  0.043482
1 50 | 113 12 9.081388e-07 0.135634 | 208 21  9.202787e-07  0.252628
100 | 111 12 8.892927e-07 0.260747 | 156 16  9.734373e-07  0.357513
500 | 202 21  9.879407e-07 18.138592 | 170 17  8.923980e-07  9.839334
10 | 30 3 4.149480e-07 0.011782 | 77 8  5.385229¢-07  0.018419
-1 50 | 61 7 2.599932e-07 0.063876 | 152 16  9.436380e-07  0.145193
100 | 66 7 5.261260e-07 0.176674 | 286 29  7.199529e-07  0.652808
500 | 65 7 8.279229¢-07 5.219468 | 199 20  6.498353e-07 11.225447
10 | 30 457 8.707093e-07 0.178206 | 96 464 9.160651e-07  0.187356
L 50 | 65 5067 8.659048e-07  6.462482 | 114 5072 9.029144e-07  5.012703
500 | 63 7 7.057961e-07  5.208877 | 120 12 9.670329e-07  6.602308
10 | 34 4 5.573255e-07 0.493004 | 52 6 7.849099%-07 0.639780
-+ 50 | 138 20  7.614608e-07 23.180269 | 86 9  8.245071e-07  0.098294
100 | 658 66  9.766928e-07 84.362569 | 149 15  9.919319¢-07  72.960420
10 | 80 2 NaN / 116 12 9.229853e-07  0.023389
0 50| 51 6  8.319896e-07 0.058299 | 144 15 8.920610e-07  0.125570
No100| 70 450 8.706823e-07 1474716 | 98 453 9.478277e-07  1.889281
500 | 150 5072 9.476521e-07 632.372397 | 186 5076 9.603845e-07 467.089217
Table 3. Numerical results for Test 3.
40 N BFGS New Algorithm 1
Kiter  NF [IF G| CPU time | Ki., Kp [LF ol CPU time
10 | 141 15  1.216419¢e-06 0.280529 | 50 5 6.712844e-07 0.066971
50 20 | 289 29 3.348452e-07 0.374504 | 109 11 8.229254e-07 0.156077
30 | 594 60 2.921977e-07 0.992670 | 198 20 5.910921e-07 0.337214
100 | 1000 100 1.022180e+01 6.126605 | 694 70 7.985341e-07 5.177154
10 | 120 49 NaN / 75 8 9.849854e-07 0.078148
~100 20 | 449 45 5.128064e-07 0.627262 | 138 15 5.450494e-07 0.191452
30 | 567 57 6.160162e-07 1.026790 | 276 28 8.909035e-07 0.473574
50 | 1000 100 8.627459e+00 2.514872 | 717 72 7.986347e-07 2.462645
20 | 309 31 6.116347e-07 0.347280 | 114 13 7.089407¢-07 0.184445
_10 30 | 298 30 3.312465e-07 0.538713 | 208 21 8.466287e-07 0.415286
50 | 519 52 1.813603e-07 1.341700 | 253 26 9.311691e-07 0.774297
100 | 1000 100 7.617593e+00 6.162504 | 355 36 7.219017e-07 2.840285
10 | 216 22 7.037623e-07 0.127426 | 167 17 6.258216e-07 0.156327
5 20 | 421 43 8.108269e-07 0.522406 | 184 19 5.406795e-07 0.243489
39 | 1000 100 1.800895e+01 1.887971 | 596 60 8.097367¢-07 1.439646
49 | 1000 100 1.558516e+01 2.578864 | 826 83 6.960628e-07 2.449176
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Table 4. Numerical results for Test 4.

O N BFGS New Algorithm 1
Kier N lFCll CPU time | Kiy, Kp IF @Il CPU time
59 | 1000 107 5.550772e+05 1.855848 | 1000 100 9.865474e-03 1.044976
10 69 | 1000 110 1.072615e+08 2.191505 | 659 66 8.710266e-07 0.733924
99 | 1000 111 8.862006e+04 3.701440 | 675 68 9.735961e-07 1.058931
30 | 1000 105 5.569634e+05 0.687643 | 740 74 8.757998e-07 0.469053
50 | 1000 113 2.212649e+04 1.461766 | 1000 101 8.082762e-03 0.835354
=10 79 | 1000 109 3.080223e+04 2.498293 | 692 70 9.384950e-07 0.861929
99 | 1000 113 8.054627e+05 3.881890 | 1000 100 9.210557e-03 1.539297
100 | 1000 103 3.603290e+05 3.694832 | 659 66 9.089866e-07 1.047995
20 | 1000 110 5.216235e+01 0.490500 | 1000 100 5.732373e-05 0.490532

50 40 | 1000 106 7.676800e+06 0.949262 | 1000 101 7.887017e-04 0.657374
50 39 | 1000 109 1.827236e+05 1.011190 | 1000 100 2.082736e-03 0.680466
59 | 1000 109 2.952795e+06 1.769789 | 680 68 6.906835e-07 0.646690

10 | 1000 100 3.512951e+01 0.265638 | 261 27 9.980125e-07 0.125660

1 29 | 1000 100 8.197235e+00 0.683372 | 766 77 9.100291e-07 0.426080

39 | 1000 100 9.067728e+00 0.855453 | 591 60 9.402869e-07 0.455313
59 | 1000 100 1.033973e+01 1.393942 | 877 88 8.623849e-07 0.883676

As reported in Table 4 for the nonsymmetric problem, the new Algorithm performs better than
the classic BFGS updates. In fact, there is a little numerically instable for the latter method and
without any instability for the new Algorithm. Numerical experiments from Tables 1-4 illustrate that
the new Algorithm is in good agreement with the theoretical results, and performs well even for high-
dimensional cases. Further more, the new Algorithm behaves more efficiently than the classic BFGS
method since it requires less function calculations for most initial points.

6. Conclusions

We propose a modified quasi-Newton method based on the classic BFGS updates and Wolfe line
search technique to solve a unconstrained optimization problem, and attain the local and superlinear
rate of convergence of the modified quasi-Newton updates. Some numerical experiments well verified
the theoretical results, and confirmed the efficiency to solve nonlinear equations not only for small-
medium dimensions but also even for large-scale or nonsymmetric problems.
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