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1. Introduction

In this paper, we focus our attention on solving nonlinear system

F(x) = 0, x = (x1, x2, · · · , xN)T ∈ RN , (1.1)

where F = (F1, F2, · · · , FN)T , Fi : RN → R(i = 1, 2, · · · ,N) are continuously differentiable and the
Jacobian is symmetric, i.e.,

J(x) =


∂F1
∂x1

∂F1
∂x2

· · ·
∂F1
∂xN

∂F2
∂x1

∂F2
∂x2

· · ·
∂F2
∂xN

...
...
. . .

...
∂FN
∂x1

∂FN
∂x2

· · ·
∂FN
∂xN

 = JT (x).
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From an optimization perspective, the problem of solving nonlinear system (1.1) can be formulated
as the following minimization problem: min

x∈RN
f (x)

f (x) =
1
2
∥F(x)∥2, (1.2)

and the line search iterative method

xk+1 = xk + αkdk, (1.3)

where αk ∈ R, dk
∈ RN are stepsize and search direction on step k, respectively.

The classic Newton’s method is efficient and possesses quadratic convergence rate for solving
nonlinear equations when the size is not too large. The main drawback of the Newton direction
is the need for the Hessian ∇2 f (x). Explicit computation of this matrix of second derivatives can
sometimes be a cumbersome, error-prone, and expensive process. And the pure Newton iteration
is not guaranteed to produce descent directions when the current iterate is not close to a solution.
Quasi-Newton methods are recognized as one of the most powerful methods with locally superlinear
convergence and need not compute the Hessian for solving deterministic optimization problems, these
methods build quadratic models of the objective information using only gradient information. Among
the various quasi-Newton update schemes, the BFGS formula (named for its discoverers Broyden,
Fletcher, Goldfarb, and Shanno) stands out as the most effective [1–3]. For some unconstrained
stochastic optimization problems with no available gradient information, which arise in settings from
derivative-free simulation optimization to reinforcement learning, adaptive sampling quasi-Newton
method was employed to estimate the gradients by using finite differences of stochastic function
evaluations within a common random number framework [5]. For large-scale problems, derivative-free
type methods, the limited memory L-BFGS, truncated Newton method, or Conjugate Gradient methods
would be more effective. Derivative-free optimization (DFO) is vital in solving complex optimization
problems where only noisy function evaluations are available through an oracle or black-box interface.
For example, based on DFO methods to optimize many machine learning models and complex systems,
Google Vizier has executed millions of optimizations, accelerating numerous research and production
systems at Google [6, 7]. A fully derivative-free conjugate residual method is invoked to solve general
large-scale nonlinear equations and obtain the global linear rate of convergence by means of some
secant conditions and backtracking type line search method [4]. Zhang et al. [8] build a new quasi-
Newton equation and provide the local and superlinear convergence. Zhou [13] present an inexact
Modified BFGS method with line search for solving symmetric nonlinear equations and its global
convergence. Wan et al. [14] study the BFGS method by modifying the Armijo line search technique
and deduce a global convergence. Yuan et al. [15, 16] propose a BFGS method with modified weak
Wolfe-Powell line search, and obtain a global convergence under suitable conditions for general
functions. Upadhavay et al. [17] give two nonmonotone quasi-Newton algorithms with Wolfe line
searches for unconstrained multiobjective optimization problems and leads to a global convergence.
Cheng et al. and Zhang et al. [18, 19] consider the memoryless BFGS quasi-Newton method to solve
the unconstrained optimization problem.

Comparing with the computational challenge of Hessian ∇2 f (xk) and its inverse matrix ∇2 f (xk)−1

in Newton iterative method

xk+1 = xk − ∇2 f (xk)−1∇ f (xk), (1.4)
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the quasi-Newton method is a class of methods which need not compute the Hessian, but generates
a series of Hessian approximations, and at the same time maintains a fast rate of convergence. The
classic BFGS quasi-Newton iterative method approximates the Hessian ∇2 f (xk) and its inverse matrix
∇2 f (xk)−1 by a symmetric matrix Bk ∈ RN×N and Hk ∈ RN×N respectively, from the updating Rank-two
formula

Bk+1 = Bk +
yk(yk)T

(sk)T yk −
Bksk(Bksk)T

(sk)T Bksk , (1.5)

Hk+1 = (Vk)T HkVk + tksk(sk)T , (1.6)

where tk = 1
(sk)T ŷk ,Vk = I − tk ŷk(sk)T , and

Bk+1sk = yk, sk = xk+1 − xk, yk = ∇ f (xk+1) − ∇ f (xk).

In order to obtain a better approximation of Bk+1, we construct a new quasi-Newton secant equation

Bk+1sk = ỹk, (1.7)

where ỹk is to be determined by the following section, and then investigate its theoretical properties
and practical implementation.

The rest of this paper is organized as follows. In section 2, we construct a new quasi-Newton secant
equation. Some properties of the new quasi-Newton secant equation and the Algorithm are presented
in section 3. In section 4, the local and superlinear rate of convergence is described. Several numerical
tests are performed to demonstrate the accuracy and efficiency of the proposed method in section 5.
The paper is concluded in section 6.

2. New quasi-Newton secant equation

Based on the symmetric system (1.1) and the first-order Taylor expansion, we have

∂F(x + tαF(x))
∂t

= J(x + tαF(x))αF(x), (2.1)

when ∥αF(x)∥ is arbitrarily small, it yields

F(x + αF(x)) − F(x)
α

=

∫ 1

0
J(x + tαF(x))dtF(x)

≈ J(x)F(x) = ∇ f (x). (2.2)

Let

x(τ) = xk + τ
sk

∥sk∥
, g(x) = ∇ f (x),

then x(0) = xk, x(∥sk∥) = xk+1. To simplify the formulation, we set

f k = f (xk), gk = g(xk) = ∇ f (xk), (2.3)
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notice that d g(x(τ))
dτ = ∇2 f (x(τ)) sk

∥sk∥
, we have

∇2 f (xk+1)sk = ∥sk∥
d g(x(τ))

dτ

∣∣∣∣∣
τ=∥sk∥

. (2.4)

It reveals that the construction of g(x(τ)) plays an important role in the approximation of Hessian
∇2 f (xk+1).

To approximate g(x(τ)), we set

g̃(τ) = a + beτ + ce2τ, (2.5)

where a, b, c ∈ RN satisfy the following conditions
g̃(0) = g(x(0)) = gk,

g̃(∥sk∥) = g(x(∥sk∥)) = gk+1,∫ ∥sk∥

0
g̃T (τ)

dx(τ)
dτ

dτ = f k+1 − f k,

it yields 
a + b + c = gk,

a + be∥s
k∥ + ce2∥sk∥ = gk+1,(

a∥sk∥ + b(e∥s
k∥ − 1) +

c
2

(e2∥sk∥ − 1)
)T

sk = ( f k+1 − f k)∥sk∥.

(2.6)

Benifits from (2.4)

∇2 f (xk+1)sk ≈ ∥sk∥
d g̃(τ)

dτ

∣∣∣∣∣
τ=∥sk∥

= ∥sk∥
(
be∥s

k∥ + 2ce2∥sk∥
)
,

and after a simple algebraic calculation from the linear system (2.6), we obtain

(
gk + ce∥s

k∥ −
c(e2∥sk∥ − 1)

2∥sk∥
−

yk

e∥sk∥ − 1
+

yk

∥sk∥

)T
sk = f k+1 − f k, (2.7)

(be∥s
k∥)T sk =

e∥s
k∥

e∥sk∥ − 1
(yk)T sk − e∥s

k∥(e∥s
k∥ + 1)cT sk, (2.8)

(2ce2∥sk∥)T sk =
4∥sk∥e2∥sk∥( f k+1 − f k)
2∥sk∥e∥sk∥ − e2∥sk∥ + 1

−
( 4∥sk∥e2∥sk∥

2∥sk∥e∥sk∥ − e2∥sk∥ + 1
gk

+
4e2∥sk∥(e∥s

k∥ − 1 − ∥sk∥)
(2∥sk∥e∥sk∥ − e2∥sk∥ + 1)(e∥sk∥ − 1)

yk
)T

sk, (2.9)

and finally we have

∥sk∥
(
be∥s

k∥ + 2ce2∥sk∥
)T

sk = (yk)T sk + γ,
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where

γ = A(gk+1)T sk + B(gk)T sk + C( f k+1 − f k), (2.10)

A =
(1 − 3∥sk∥)e3∥sk∥ + (4∥sk∥

2
+ 2∥sk∥ − 1)e2∥sk∥ + (−2∥sk∥

2
+ ∥sk∥ − 1)e∥s

k∥ + 1
(e∥sk∥ − 1)(2∥sk∥e∥sk∥ − e2∥sk∥ + 1)

, (2.11)

B =
(−2∥sk∥

2
+ 3∥sk∥ − 1)e3∥sk∥ + (1 − 2∥sk∥)e2∥sk∥ + (1 − ∥sk∥)e∥s

k∥ − 1
(e∥sk∥ − 1)(2∥sk∥e∥sk∥ − e2∥sk∥ + 1)

, (2.12)

C =
2∥sk∥

2(e2∥sk∥ − e∥s
k∥)

2∥sk∥e∥sk∥ − e2∥sk∥ + 1
, (2.13)

andA + B + C = 0.
Therefore, we obtain our new quasi-Newton secant equation as follows

Bk+1sk = ỹk, (2.14)

ỹk = yk + γ
sk

∥sk∥
2 . (2.15)

3. Properties and algorithm

In this section, we will at first show that ỹk defined by (2.15) in the new quasi-Newton secant
equation (2.14) is a better approximation to ∇2 f (xk+1)sk than yk, and then we will present the modified
quasi-Newton algorithm.

Lemma 1. [8, Lemma 3.1] If the function f is smooth enough, then

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − yk) =

∥sk∥
2

2

N∑
i, j,l=1

∂3 f (xk + ξ sk

∥sk∥
)

∂xi∂x j∂xl

si

∥sk∥

s j

∥sk∥

sl

∥sk∥
,

where ξ ∈ (0, ∥sk∥), and xi, si are the ith elements of vector xk and sk on the step k, respectively.

Theorem 1. If the function f is smooth enough, let φ(τ) = f (x(τ)), then we have

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − ỹk) =

(2B + C)∥sk∥

2
φ′′(∥sk∥) +

(3 − 3B − C)∥sk∥
2

6
φ′′′(∥sk∥)

+
(B − 1)∥sk∥

3

3!
φ(4)(ξ1) +

C∥sk∥
3

4!
φ(4)(ξ2),

where ξ1, ξ2 ∈ (0, ∥sk∥).

Proof. Since

x(τ) = xk + τ
sk

∥sk∥
, g(x) = ∇ f (x), φ(τ) = f (x(τ)), (3.1)

and the function φ(τ) is smooth enough too, we obtain

φ′(τ) = (
sk

∥sk∥
)T g(xk + τ

sk

∥sk∥
) =

N∑
i=1

∂ f (xk + τ sk

∥sk∥
)

∂xi

si

∥sk∥
, (3.2)

AIMS Mathematics Volume 11, Issue 1, 767–784.



772

φ′′(τ) = (
sk

∥sk∥
2 )T∇2 f (xk + τ

sk

∥sk∥
)sk =

N∑
i, j=1

∂2 f (xk + τ sk

∥sk∥
)

∂xi∂x j

si

∥sk∥

s j

∥sk∥
, (3.3)

φ′′′(τ) =
N∑

i, j,l=1

∂3 f (xk + τ sk

∥sk∥
)

∂xi∂x j∂xl

si

∥sk∥

s j

∥sk∥

sl

∥sk∥
, (3.4)

φ(4)(τ) =
N∑

i, j,l,m=1

∂4 f (xk + τ sk

∥sk∥
)

∂xi∂x j∂xl∂xm

si

∥sk∥

s j

∥sk∥

sl

∥sk∥

sm

∥sk∥
. (3.5)

and

φ(∥sk∥) − φ(0) = f k+1 − f k, φ′(0) =
(sk)T gk

∥sk∥
, φ′(∥sk∥) =

(sk)T gk+1

∥sk∥
,

φ′′(0) =
(sk)T∇2 f (xk)sk

∥sk∥
2 , φ′′(∥sk∥) =

(sk)T∇2 f (xk+1)sk

∥sk∥
2 ,

According to the Taylor expansion, there exists ξ1, ξ2 ∈ (0, ∥sk∥), such that

φ′(0) = φ′(∥sk∥) − ∥sk∥φ′′(∥sk∥) +
∥sk∥

2

2
φ′′′(∥sk∥) −

∥sk∥
3

3!
φ(4)(ξ1), (3.6)

φ(0) = φ(∥sk∥) − ∥sk∥φ′(∥sk∥) +
∥sk∥

2

2
φ′′(∥sk∥) −

∥sk∥
3

3!
φ(3)(∥sk∥) +

∥sk∥
4

4!
φ(4)(ξ2). (3.7)

It yields from the new quasi-Newton secant equation (2.15), Lemma 1 and (3.6-3.7)

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − ỹk) = (

sk

∥sk∥
)T (∇2 f (xk+1)sk − yk − γ

sk

∥sk∥
2 )

= ∥sk∥φ′′(∥sk∥) − (A + 1)φ′(∥sk∥) − (B − 1)φ′(0) −
C(φ(∥sk∥) − φ(0))

∥sk∥

=
C(φ(0) − φ(∥sk∥))

∥sk∥
− (A + B)φ′(∥sk∥) + B∥sk∥φ′′(∥sk∥)

+
∥sk∥

2

2
(1 − B)φ′′′(∥sk∥) −

∥sk∥
3

3!
(1 − B)φ(4)(ξ1)

=
(2B + C)∥sk∥

2
φ′′(∥sk∥) +

(3 − 3B − C)∥sk∥
2

6
φ′′′(∥sk∥)

+
(B − 1)∥sk∥

3

3!
φ(4)(ξ1) +

C∥sk∥
3

4!
φ(4)(ξ2). (3.8)

and the proof is completed. □

Remark 1. The advantages of new algorithm (2.14)-(2.15) are not sensitive obviously from Theorem
1. In the light of six-order Taylor expansion of the coefficientsA,B,C, Theorem 1 becomes

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − ỹk) =∥sk∥

3{(1
6
+
∥sk∥

20
+
∥sk∥

2

180
+ o(∥sk∥

2
)
)
φ′′(∥sk∥)
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−
(1
4
+

17∥sk∥

120
+
∥sk∥

2

30
+ o(∥sk∥

2
)
)
φ′′′(∥sk∥)

+
(1
3
+
∥sk∥

4
+

31∥sk∥
2

360
+ o(∥sk∥

2
)
)
φ(4)(ξ1)

−
(1
4
+
∥sk∥

8
+

7∥sk∥
2

240
+ o(∥sk∥

2
)
)
φ(4)(ξ2)

}
. (3.9)

Therefore, if the function f is smooth enough, we observe that

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − yk) = O(∥sk∥

2
), (3.10)

(
sk

∥sk∥
)T (∇2 f (xk+1)sk − ỹk) = O(∥sk∥

3
). (3.11)

It reveals that the projection ỹk on the direction sk is of a higher-order precision approximation to
∇2 f (xk+1)sk than yk does as ∥sk∥ approaches to zero.

The modified quasi-Newton method to solve the nonlinear system (1.1) is presented as follows.

Algorithm 1. Given a initial point x0 ∈ RN , a symmetric and positive definite matrix B0 ∈ RN×N or
H0 ∈ RN×N , several constants α ∈ (0, 1

2 ), β ∈ (α, 1) and a sufficiently small positive constant ϵ > 0, let
k = 0.

Step 1. Calculate gk by (2.2). If ∥gk∥ = 0, then stop. Otherwise, go to Step 2.
Step 2. Solve the search direction sk by Bksk = −gk or sk = −Hk gk.
Step 3. Compute xk+1 = xk + λksk for λk > 0 with initial number λ = 1, such that the strong Wolfe

conditions

f k+1 ≤ f k + αλk(gk)T sk, (3.12)
|(gk+1)T sk| ≤ β|(gk)T sk|. (3.13)

Step 4. Update Bk or Hk by the following Rank-two formula:

Bk+1 = Bk +
(ŷk − Bksk)(uk)T + uk(ŷk − Bksk)T

(uk)T sk −
(sk)T (ŷk − Bksk)uk(uk)T

((uk)T sk)2 , (3.14)

Hk+1 = Hk +
(sk − Hk ŷk)(vk)T + vk(sk − Hk ŷk)T

(vk)T ŷk −
(ŷk)T (sk − Hk ŷk)vk(vk)T

((vk)T ŷk)2
, (3.15)

where ŷk = yk + γ̂ sk

∥sk∥
2 , and

γ̂ =

γ, if (yk)T sk + γ ≥ ϵ∥sk∥
2
,

0, otherwise.
(3.16)

and γ is defined by (2.10), parameter vectors uk and vk are not orthogonal to sk and ŷk, respectively.
Step 5. Let k = k + 1 and go to Step 1.
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Remark 2. It is interesting to note that the curvature condition (yk)T sk > 0 is an important property
to ensure Bk+1 is positive definite in the quasi-Newton method. The setting γ̂ in (3.16) will guarantee
the curvature condition (ŷk)T sk > 0 when (yk)T sk > 0. Moreover, if ŷk = yk, then B-update formula
(3.14) is called General PSB update and H-update formula (3.15) is Greenstadt update. In particular,
B-update (3.14) becomes Rank-one SR1 update as uk = ŷk − Bksk, and (3.14) becomes DFP update
as uk = ŷk, and (3.14) becomes PSB update as uk = sk, and (3.14) becomes BFGS update (1.5) as

uk = 1
1+wk ŷk + wk

1+wk Bksk, where wk =

√
(ŷk)T sk

(sk)T Bk sk . About the details of General PSB update (3.14), we
refer the reader to textbooks on optimization, such as [1, Chapter 5], [3, Chapter 6].

4. Local convergence analysis

Without loss of generality, we will discuss the local and superlinear convergence of the modified
quasi-Newton method with λk = 1.

Lemma 2. [9, Lemma 3.1] Assume that function f (x) is twice differentiable over a convex open set
D, and x∗ ∈ D be the stationary point of function f (x), namely ∇ f (x∗) = g(x∗) = 0, and ∇2 f (x∗) is
nonsingular and ∇2 f (x) is continuous at the stationary point x∗, and there exist positive constants ρ
and K, for all x ∈ D such that

∥∇2 f (x) − ∇2 f (x∗)∥ ≤ K∥x − x∗∥ρ, (4.1)

then, it leads to

∥g(p) − g(q) − ∇2 f (x∗)(p− q)∥ ≤ K max{∥p− x∗∥ρ, ∥q − x∗∥ρ}∥p− q∥, ∀p, q ∈ D, (4.2)

and there exist positive constants ϵ̄, L, and a closed neighborhood X̄(x∗, ϵ̄) ⊆ D, such that

1
L
∥p− q∥ ≤ ∥g(p) − g(q)∥ ≤ L∥p− q∥, ∀p, q ∈ X̄(x∗, ϵ̄). (4.3)

Lemma 3. [9, Theorem 3.2 – Corollary 3.5] For any B-update formula in the quasi-Newton algorithm,
for all (xk, Bk) in a neighborhood of (x∗,∇2 f (x∗)), if

∥Bk+1 − ∇2 f (x∗)∥M ≤
(
1 + α1 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}

)
∥Bk − ∇2 f (x∗)∥M

+ α2 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}, (4.4)

where nonnegative constants α1, α2 > 0, and M is a nonsingular symmetric matrix, define the matrix
norm ∥ · ∥M by ∥Q∥M = ∥MQM∥ and the initial (x0, B0) is close enough to (x∗,∇2 f (x∗)). Then the
sequence xk+1 = xk − (Bk)−1∇ f (x) from quasi-Newton method is locally convergent at x∗. And the
iterative sequence {Bk} and {(Bk)−1} are uniformly bounded and there exists σ ∈ (0, 1), ∥xk+1 − x∗∥ ≤
σ∥xk − x∗∥ for all k ≥ 0. Furthermore, if some subsequence of {∥Bk − ∇2 f (x∗)∥M} converges to zero,
then {xk} converges Q-superlinearly at x∗. Namely, lim

k→+∞

∥xk+1−x∗∥
∥xk−x∗∥ = 0.

There is a similar result regarding H-update formula. More precisely, if

∥Hk+1 − ∇2 f (x∗)−1∥M ≤
(
1 + α1 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}

)
∥Hk − ∇2 f (x∗)−1∥M
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+ α2 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}, (4.5)

then {xk} is locally convergent at x∗, the iterative sequence {Hk} and {(Hk)−1} are uniformly bounded
and ∥xk+1 − x∗∥ ≤ σ∥xk − x∗∥. And moreover if some subsequence of {∥Hk − ∇2 f (x∗)−1∥M} converges
to zero, then {xk} converges Q-superlinearly to x∗.

Hereafter, we suppose that function f satisfies all of the assumptions of Lemma 2, and then depict
some properties of ŷk in Algorithm 1 by the following propositions.

Proposition 1. There exists K̄ > 0, for all xk+1, xk ∈ D, it comes

∥ŷk − ∇2 f (x∗)sk∥ ≤ K̄ max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}∥sk∥. (4.6)

Proof. In view of the definition ŷk = yk+γ̂ sk

∥sk∥
2 and γ̂ (3.16), we know ŷk = yk when (yk)T sk+γ < ϵ∥sk∥

2.
It yields further (4.6) holds by combining (4.2).

In other case, if (yk)T sk + γ ≥ ϵ∥sk∥
2, then we have ŷk = ỹk, it gives

∥ŷk − ∇2 f (x∗)sk∥ ≤ ∥yk − ∇2 f (x∗)sk∥ + ∥γ
sk

∥sk∥
2 ∥

≤ ∥yk − ∇2 f (x∗)sk∥ +
∥A(gk+1)T sk + B(gk)T sk + C( f k+1 − f k)∥

∥sk∥
. (4.7)

By virtue of the Taylor expansion, there exist ξ, η ∈ (0, 1), such that

f k+1 − f k =
1
2

(gk+1 + gk)T −
1
4

(sk)T (∇2 f (xξ) − ∇2 f (xη))sk, (4.8)

where xξ = ξxk + (1 − ξ)xk+1, xη = ηxk + (1 − η)xk+1.
Since ∇2 f (x) is continuous at x∗, then there exists K1 > 0, ∥∇2 f (x∗)∥ ≤ K1. It yields by invoking

(4.2)

∥∇2 f (xξ) − ∇2 f (xη)∥ ≤ 2K max{∥xξ − x∗∥ρ, ∥xη − x∗∥ρ}, (4.9)

and there exist K2 > 0, such that

(yk)T sk ≤ (∥∇2 f (x∗)∥ + K max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ})∥sk∥
2

≤ K2 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}∥sk∥
2
, (4.10)

and therefore we obtain (4.6) by combining (4.7)-(4.10) and taking K̄ = K(1+|C|)
2 + K2|A +

C

2 |. □

Proposition 2. There exists ϵ̃, L̃ > 0, for all xk+1, xk ∈ X̄(x∗, ϵ̃), we have

1
L
∥sk∥ ≤ ∥ŷk∥ ≤ L̃∥sk∥. (4.11)

Proof. If (yk)T sk + γ < ϵ∥sk∥
2, then (4.11) holds obviously from (4.3).

Otherwise, ŷk = ỹk, and then

∥ỹk∥ ≤ ∥yk∥ + ∥γ
sk

∥sk∥
2 ∥
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≤
(
L + (

K|C|
2
+ K2|A +

C

2
|) max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}

)
∥sk∥, (4.12)

it derives the upper boundary of (4.11) by taking ϵ1 = max{∥xk+1 − x∗∥, ∥xk − x∗∥}, L̃ = L + ( K|C|
2 +

K2|A +
C

2 |)ϵ
ρ
1 .

About the lower boundary of (4.11), by using the continuity of ∇2 f (x) at x∗, there exist ϵ2 > 0, for
all x ∈ X̄(x∗, ϵ2),

∥∇2 f (x) − ∇2 f (x∗)∥ ≤
1

9∥∇2 f (x∗)−1∥
, (4.13)

K∥x − x∗∥ρ ≤
1

3∥∇2 f (x∗)−1∥
, (4.14)

and then for all xk+1, xk ∈ X̄(x∗, ϵ2), we have

∥∇2 f (xξ) − ∇2 f (xη)∥ ≤
2

9∥∇2 f (x∗)−1∥
, (4.15)

K2 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ} ≤
2K2

3K∥∇2 f (x∗)−1∥
. (4.16)

At the same time,

∥γ
sk

∥sk∥
2 ∥ =

1
∥sk∥
∥(A +

C

2
)(yk)T sk −

C

4
(sk)T (∇2 f (xξ) − ∇2 f (xη))sk∥

≤
(2K2|A +

C

2 |

3K
+
C

18
) ∥sk∥

∥∇2 f (x∗)−1∥
, (4.17)

and

∥yk∥ ≥ ∥∇2 f (x∗)sk∥ − ∥gk+1 − gk − ∇2 f (x∗)sk∥ ≥
2∥sk∥

3∥∇2 f (x∗)−1∥
,

then

∥ŷk∥ ≥

∣∣∣∣23 − 2K2|A +
C

2 |

3K
−
C

18

∣∣∣∣ ∥sk∥

∥∇2 f (x∗)−1∥
,

and (4.11) holds with ϵ̃ = min{ϵ1, ϵ2} and L̃ = max
{
∥∇2 f (x∗)−1∥∣∣∣ 23− 2K2 |A+

C
2 |

3K − C18

∣∣∣ , L + ( K|C|
2 + K2|A +

C

2 |)ϵ̃
ρ
}
. □

Proposition 3. For k ≥ 1, σ ∈ (0, 1), suppose ∥xk+1 − x∗∥ ≤ σ∥xk − x∗∥ and both {Hk} and {(Hk)−1} are
bounded, then

lim
k→+∞

∥(Hk − ∇2 f (x∗)−1)ŷk∥

∥ŷk∥
= 0,

implies that {xk} superlinearly converges to x∗.
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Proof. If (yk)T sk + γ < ϵ∥sk∥
2, then ŷk = yk and Proposition 3 holds obviously from [9]. Otherwise,

ŷk = ỹk. From Algorithm 1, Hk gk = −sk then we have Hkyk = Hk gk+1 + sk and

(Hk − ∇2 f (x∗)−1)ŷk = Hk gk+1 + sk − ∇2 f (x∗)−1yk + γ
(Hk − ∇2 f (x∗)−1)sk

∥sk∥
2 . (4.18)

Let ∥Hk∥ ≤ r, ∥(Hk)−1∥ ≤ r̃, then

∥gk+1∥ ≤ ∥(Hk)−1∥∥(Hk − ∇2 f (x∗)−1)ỹk + ∇2 f (x∗)−1(ỹk − ∇2 f (x∗)sk) − γ
Hksk

∥sk∥
2 ∥

≤ r̃(∥(Hk − ∇2 f (x∗)−1)ỹk∥ + ∥∇2 f (x∗)−1∥∥ỹk − ∇2 f (x∗)sk∥ +
γr
∥sk∥

),

and it reveals after relating to Proposition 1-2,

lim
k→+∞

∥gk+1∥

∥sk∥
= 0,

and

lim
k→+∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0,

this completes the proof. □

Proposition 4. If ∇2 f (x∗) is positive definite and the sequence {xk} generated by Algorithm 1 converges
to x∗, then there exists k0 > 0, (sk)T ŷk > 0 holds for all k ≥ k0.

Proof. In view of the positive definiteness of ∇2 f (x∗), let

δ = min
w∈R,w,0

wT∇2 f (x∗)w
wT w

> 0

then link with Proposition 1, we obtain

(sk)T ŷk

(sk)T sk =
(sk)T (ŷk − ∇2 f (x∗)sk)

(sk)T sk +
(sk)T∇2 f (x∗)sk

(sk)T sk

≥ −K̄ max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ} + δ.

By using lim
k→+∞

xk = x∗, there exists k0 > 0, for all k ≥ k0, such that max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ} < δ
K̄ .

This concludes the proof. □
By combining Lemma 2-3 and Proposition 1-4, we could end up with the following Theorems to

establish the local and superlinear convergence for our modified quasi-Newton algorithm.

Theorem 2. Suppose that function f possesses the hypotheses of Lemma 3, if there exist a constant
µ1 ≥ 0, a nonsingular symmetric matrix M, for all (xk, Bk) in a neighborhood of (x∗,∇2 f (x∗)) such that

∥Muk − M−1sk∥

∥M−1sk∥
≤ µ1∥sk∥

ρ
, (4.19)

then sequence {xk} generated by the B-update formula (3.14) of the modified quasi-Newton algorithm
is locally and Q-superlinearly convergent at x∗.

AIMS Mathematics Volume 11, Issue 1, 767–784.



778

Proof. If (yk)T sk + γ < ϵ∥sk∥
2, then ŷk = yk and Theorem 2 holds directly from [9, Theorem 5.3]. Now

let’s consider only the case ŷk = ỹk = yk + γ sk

∥sk∥
2 for the B-update formula (3.14).

Assume that 0 < µ1∥sk∥
ρ
≤ 1

3 and set A = ∇2 f (x∗), after invoking [9, Lemma 5.2], (4.6) and (4.19),
we have

∥Bk+1 − ∇2 f (x∗)∥M ≤
(√

1 − αθ2 +
5

2(1 − β)
∥Muk − M−1sk∥

∥M−1sk∥

)
∥Bk − ∇2 f (x∗)∥M

+ 2(1 + 2
√

N)∥M∥
∥ỹk − ∇2 f (x∗)sk∥

∥M−1sk∥

≤
(√

1 − αθ2 + α1 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}
)
∥Bk − ∇2 f (x∗)∥M

+ α2 max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}, (4.20)

where β ∈ [0, 1
3 ], α = 1−2β

1−β2 ∈ [3
8 , 1], θk = ∥M(Bk−∇2 f (x∗))sk∥

∥Bk−∇2 f (x∗)∥M∥M−1 sk∥
∈ [0, 1], α1 =

5µ12ρ

2(1−β) , α2 = 2K̄(1+2
√

N∥M∥2).
It implies that the B-update formula (3.14) with iteration xk+1 = xk − (Bk)−1∇ f (x) satisfies the

hypotheses of Lemma 3 and therefore, the sequence {xk} is locally convergent at x∗, {Bk} and {(Bk)−1}

are uniformly bounded and there exists σ ∈ (0, 1), ∥xk+1 − x∗∥ ≤ σ∥xk − x∗∥ for all k ≥ 0.
To prove the Q-superlinear convergence, we can rewrite (4.20) as

∥Bk+1 − ∇2 f (x∗)∥M ≤
√

1 −
3
8

(θk)2∥Bk − ∇2 f (x∗)∥M

+max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}(α1∥Bk − ∇2 f (x∗)∥M + α2). (4.21)

If there is a subsequence of {Bk}which converges to∇2 f (x∗), Lemma 3 will give the desired conclusion.
Otherwise, the sequence ∥Bk+1 − ∇2 f (x∗)∥M is bounded away from zero. After by using

√
1 − α ≤

1 − α2 , (4.21) is equivalent to

3(θk)2

16
∥Bk − ∇2 f (x∗)∥M ≤∥B

k − ∇2 f (x∗)∥M − ∥B
k+1 − ∇2 f (x∗)∥M

+max{∥xk+1 − x∗∥ρ, ∥xk − x∗∥ρ}(α1∥Bk − ∇2 f (x∗)∥M + α2). (4.22)

Therefore
+∞∑
k=1

(θk)2∥Bk − ∇2 f (x∗)∥M < +∞,

and

lim
k→+∞

∥(Bk − ∇2 f (x∗))sk∥

∥sk∥
= 0. (4.23)

By taking advantage of Proposition 1-2, we observe

∥(Bk − ∇2 f (x∗))sk∥ ≥∥gk+1∥ − ∥gk+1 − gk − ∇2 f (x∗)∥

≥
1
L
∥xk+1 − x∗∥ − K̄∥xk − x∗∥ρ∥sk∥, (4.24)
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and thus

∥xk+1 − x∗∥
∥xk − x∗∥

≤
2L∥(Bk − ∇2 f (x∗))sk∥

∥sk∥
+ 2LK̄∥xk − x∗∥ρ

together with the convergence of {xk} and (4.23), it yields

lim
k→+∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

This completes the proof. □
We just report the local superlinear convergence theorem about the H-update formula as follows,

since the proof is very similar to that of Theorem 2.

Theorem 3. Suppose that function f possesses the assumptions of Lemma 2, if there exist a constant
µ2 ≥ 0, a nonsingular symmetric matrix M, for all (xk,Hk) in a neighborhood of (x∗,∇2 f (x∗)−1) such
that

∥Mvk − M−1 ŷk∥

∥M−1 ŷk∥
≤ µ1∥ŷk∥

ρ
, ∀ŷk , 0,

then sequence {xk} generated by the H-update formula (3.15) of the modified quasi-Newton algorithm
is locally and Q-superlinearly convergent at x∗.

5. Numerical experiments

To compare the computational performance between the classic BFGS updates (1.5) and our

Algorithm as uk = 1
1+wk ŷk + wk

1+wk Bksk in (3.14), where wk =

√
(ŷk)T sk

(sk)T Bk sk , we take the following four
test functions for examples with initial points x0 ∈ RN (e.g., the bold number 1 = (1, 1, · · · , 1)T ∈ RN),
and parameters B0 = I, α = 10−4, β = 0.9, ϵ = 10−10, and terminate the routine once iterations exceed
its limit k = 1000 or ∥F(x)∥ ≤ 10−6. The numerical results are listed in Table 1–4, where Kiter

denotes iteration times, KF , ∥F(x)∥ are the number of function evaluations and the norm of F(x) at the
stopping point, respectively. CPU time is the total amount of time the CPU spends in seconds. We
examine empirical characteristics of our proposed algorithm in both symmetric Hessian(Test 1-3) and
nonsymmetric (Test 4) settings.

Test 1. The discretized Chandrasekhar’s H-equation [10]: (i = 1, 2, · · · ,N)

Fi(x) = xi − (1 −
σ

2N

N∑
j=1

tix j

ti + t j
)−1,

where σ ∈ [0, 1], ti =
i−0.5

N , and take σ = 0.9.

Test 2. The gradient function of the Engval function [11]: (i = 2, 3, · · · ,N − 1)

F1(x) = x1(x2
1 + x2

2) − 1,
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Fi(x) = xi(x2
i−1 + 2x2

i + x2
i+1) − 1,

FN(x) = xN(x2
N−1 + x2

N).

Test 3. The function F is given by [12]:

F(x) =


2 −1

−1 2 . . .
. . .
. . . −1
−1 2



x1

x2
...

xN

 +

ex1 − 1
ex2 − 1
...

exN − 1

 .

Test 4. The function F is given by [13]: (i = 1, 2, · · · ,N − 1)

Fi(x) = 2xi − xi+1 + sin(xi) − 1,
FN(x) = 2xN + sin(xN) − 1.

Table 1. Numerical results for Test 1.

x0 N
BFGS New Algorithm 1

Kiter NF ∥F(x)∥ CPU time Kiter KF ∥F(x)∥ CPU time

1

10 1000 100 1.002818e-01 0.691437 61 7 1.491093e-07 0.066236
50 737 74 4.103267e-08 1.450943 57 6 9.678603e-07 0.094702

100 1000 102 3.167766e-01 5.941363 81 9 4.859871e-07 0.259126
500 1000 100 6.734134e-03 146.157723 22 3 8.709973e-07 1.505249

−10

10 1000 101 9.236783e-02 0.307169 47 5 4.953654e-07 0.027917
50 284 29 8.074406e-08 0.457444 130 13 1.288553e-08 0.140885

100 1000 100 1.325485e+02 6.129278 49 5 3.985216e-07 0.189592
500 851 88 8.125466e-07 114.946035 85 9 5.585781e-07 5.961022

−100

10 1000 100 3.634384e+01 0.342612 128 18 3.190402e-07 0.086090
50 1000 101 2.220825e-01 1.752874 111 12 5.135561e-07 0.140591

100 1000 101 4.458655e+00 5.450797 222 23 7.428437e-07 0.804041
500 167 17 4.246196e-07 21.457026 238 24 7.531092e-07 16.692411

10
10 1000 101 1.319797e+00 0.242842 37 4 7.478728e-07 0.027177
50 1000 100 2.766506e+00 1.728747 80 8 5.345034e-07 0.243167

100 128 16 2.408735e-10 0.695889 435 44 5.562306e-07 4.770006

−10
N

10 1000 100 1.235471e+00 0.261892 25 3 4.983473e-07 0.015856
50 1000 101 9.458086e+01 2.213521 15 2 4.268824e-07 0.031304

100 1000 101 3.549297e-01 7.079332 202 21 3.319002e-07 0.770231
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Table 2. Numerical results for Test 2.

x0 N
BFGS New Algorithm 1

Kiter NF ∥F(x)∥ CPU time Kiter KF ∥F(x)∥ CPU time

1

10 80 2 NaN / 116 12 9.229853e-07 0.043482
50 113 12 9.081388e-07 0.135634 208 21 9.202787e-07 0.252628

100 111 12 8.892927e-07 0.260747 156 16 9.734373e-07 0.357513
500 202 21 9.879407e-07 18.138592 170 17 8.923980e-07 9.839334

−1

10 30 3 4.149480e-07 0.011782 77 8 5.385229e-07 0.018419
50 61 7 2.599932e-07 0.063876 152 16 9.436380e-07 0.145193

100 66 7 5.261260e-07 0.176674 286 29 7.199529e-07 0.652808
500 65 7 8.279229e-07 5.219468 199 20 6.498353e-07 11.225447

1
N

10 30 457 8.707093e-07 0.178206 96 464 9.160651e-07 0.187356
50 65 5067 8.659048e-07 6.462482 114 5072 9.029144e-07 5.012703

500 63 7 7.057961e-07 5.208877 120 12 9.670329e-07 6.602308

− 1
N

10 34 4 5.573255e-07 0.493004 52 6 7.849099e-07 0.639780
50 138 20 7.614608e-07 23.180269 86 9 8.245071e-07 0.098294

100 658 66 9.766928e-07 84.362569 149 15 9.919319e-07 72.960420

10
N

10 80 2 NaN / 116 12 9.229853e-07 0.023389
50 51 6 8.319896e-07 0.058299 144 15 8.920610e-07 0.125570

100 70 450 8.706823e-07 1.474716 98 453 9.478277e-07 1.889281
500 150 5072 9.476521e-07 632.372397 186 5076 9.603845e-07 467.089217

Table 3. Numerical results for Test 3.

x0 N
BFGS New Algorithm 1

Kiter NF ∥F(x)∥ CPU time Kiter KF ∥F(x)∥ CPU time

−50

10 141 15 1.216419e-06 0.280529 50 5 6.712844e-07 0.066971
20 289 29 3.348452e-07 0.374504 109 11 8.229254e-07 0.156077
30 594 60 2.921977e-07 0.992670 198 20 5.910921e-07 0.337214
100 1000 100 1.022180e+01 6.126605 694 70 7.985341e-07 5.177154

−100

10 120 49 NaN / 75 8 9.849854e-07 0.078148
20 449 45 5.128064e-07 0.627262 138 15 5.450494e-07 0.191452
30 567 57 6.160162e-07 1.026790 276 28 8.909035e-07 0.473574
50 1000 100 8.627459e+00 2.514872 717 72 7.986347e-07 2.462645

−10

20 309 31 6.116347e-07 0.347280 114 13 7.089407e-07 0.184445
30 298 30 3.312465e-07 0.538713 208 21 8.466287e-07 0.415286
50 519 52 1.813603e-07 1.341700 253 26 9.311691e-07 0.774297
100 1000 100 7.617593e+00 6.162504 355 36 7.219017e-07 2.840285

5

10 216 22 7.037623e-07 0.127426 167 17 6.258216e-07 0.156327
20 421 43 8.108269e-07 0.522406 184 19 5.406795e-07 0.243489
39 1000 100 1.800895e+01 1.887971 596 60 8.097367e-07 1.439646
49 1000 100 1.558516e+01 2.578864 826 83 6.960628e-07 2.449176
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Table 4. Numerical results for Test 4.

x0 N
BFGS New Algorithm 1

Kiter NF ∥F(x)∥ CPU time Kiter KF ∥F(x)∥ CPU time

10
59 1000 107 5.550772e+05 1.855848 1000 100 9.865474e-03 1.044976
69 1000 110 1.072615e+08 2.191505 659 66 8.710266e-07 0.733924
99 1000 111 8.862006e+04 3.701440 675 68 9.735961e-07 1.058931

−10

30 1000 105 5.569634e+05 0.687643 740 74 8.757998e-07 0.469053
50 1000 113 2.212649e+04 1.461766 1000 101 8.082762e-03 0.835354
79 1000 109 3.080223e+04 2.498293 692 70 9.384950e-07 0.861929
99 1000 113 8.054627e+05 3.881890 1000 100 9.210557e-03 1.539297

100 1000 103 3.603290e+05 3.694832 659 66 9.089866e-07 1.047995

50 20 1000 110 5.216235e+01 0.490500 1000 100 5.732373e-05 0.490532
40 1000 106 7.676800e+06 0.949262 1000 101 7.887017e-04 0.657374

−50 39 1000 109 1.827236e+05 1.011190 1000 100 2.082736e-03 0.680466
59 1000 109 2.952795e+06 1.769789 680 68 6.906835e-07 0.646690

−1

10 1000 100 3.512951e+01 0.265638 261 27 9.980125e-07 0.125660
29 1000 100 8.197235e+00 0.683372 766 77 9.100291e-07 0.426080
39 1000 100 9.067728e+00 0.855453 591 60 9.402869e-07 0.455313
59 1000 100 1.033973e+01 1.393942 877 88 8.623849e-07 0.883676

As reported in Table 4 for the nonsymmetric problem, the new Algorithm performs better than
the classic BFGS updates. In fact, there is a little numerically instable for the latter method and
without any instability for the new Algorithm. Numerical experiments from Tables 1–4 illustrate that
the new Algorithm is in good agreement with the theoretical results, and performs well even for high-
dimensional cases. Further more, the new Algorithm behaves more efficiently than the classic BFGS
method since it requires less function calculations for most initial points.

6. Conclusions

We propose a modified quasi-Newton method based on the classic BFGS updates and Wolfe line
search technique to solve a unconstrained optimization problem, and attain the local and superlinear
rate of convergence of the modified quasi-Newton updates. Some numerical experiments well verified
the theoretical results, and confirmed the efficiency to solve nonlinear equations not only for small-
medium dimensions but also even for large-scale or nonsymmetric problems.
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