Research article

On generalized $ f $-projection and generalized $ f $-prox-regularity on Banach spaces

  • Published: 09 January 2026
  • MSC : 34A60, 49J53

  • This paper investigates the connection between the generalized projection $ \pi_S $ and the generalized $ f $-projection $ \pi_S^f $. By introducing an $ f $-proximal normal cone, defined via the generalized $ f $-projection, we derive key properties of this set, generalizing established results on the classical $ V $-proximal normal cone to Banach spaces. Additionally, we propose and examine a new regularity condition called uniform $ f $-prox-regularity, which extends the standard notion of prox-regularity by leveraging the adaptability of $ f $-projections.

    Citation: Ali Al-Tane, See Keong Lee, Messaoud Bounkhel. On generalized $ f $-projection and generalized $ f $-prox-regularity on Banach spaces[J]. AIMS Mathematics, 2026, 11(1): 661-683. doi: 10.3934/math.2026029

    Related Papers:

  • This paper investigates the connection between the generalized projection $ \pi_S $ and the generalized $ f $-projection $ \pi_S^f $. By introducing an $ f $-proximal normal cone, defined via the generalized $ f $-projection, we derive key properties of this set, generalizing established results on the classical $ V $-proximal normal cone to Banach spaces. Additionally, we propose and examine a new regularity condition called uniform $ f $-prox-regularity, which extends the standard notion of prox-regularity by leveraging the adaptability of $ f $-projections.



    加载中


    [1] Y. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, 1993. Available from: https://arXiv.org/abs/funct-an/9311001.
    [2] M. Bounkhel, R. Al-Yusof, Proximal Analysis in reflexive smooth Banach spaces, Nonlinear Anal.: Theory, Methods Appl., 73 (2010), 1921–1939. http://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077
    [3] M. Bounkhel, M. Bachar, Generalised-prox-regularity in reflexive smooth Banach spaces with smooth dual norm, J. Math. Anal. Appl., 475 (2019), 699–729. http://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064
    [4] M. Bounkhel, M. Bachar, Primal lower nice functions in smooth Banach spaces, Mathematics, 8 (2020), 2066. http://doi.org/10.3390/math8112066 doi: 10.3390/math8112066
    [5] M. Bounkhel, Regularity Concepts in Nonsmooth Analysis, Theory and Applications, Springer, 2012.
    [6] M. Bounkhel, Generalized Projections on closed nonconvex sets in uniformly convex and uniformly smooth Banach spaces, J. Function Spaces, 2015 (2015), 478437. http://doi.org/10.1155/2015/478437 doi: 10.1155/2015/478437
    [7] M. Bounkhel, Calculus rules for V-proximal subdifferentials in smooth Banach spaces, J. Function Spaces, 2016 (2016), 1917387. http://doi.org/10.1155/2016/1917387 doi: 10.1155/2016/1917387
    [8] M. Bounkhel, Generalized $(f, \lambda)$-projection operator on closed nonconvex sets and its applications in reflexive smooth Banach spaces, AIMS Mathematics, 8 (2023), 29555–29568. http://doi.org/10.3934/math.20231513 doi: 10.3934/math.20231513
    [9] M. Bounkhel, V-Moreau envelope of nonconvex functions on smooth Banach spaces, AIMS Mathematics, 9 (2024), 28589–28610. http://doi.org/10.3934/math.20241387 doi: 10.3934/math.20241387
    [10] F. H. Clarke, Optimization and nonsmooth analysis, New York: John Wiley & Sons Inc., 1983.
    [11] F. H. Clarke, Y. Ledyaev, R. Stern, R. Wolenski, Nonsmooth analysis and control theory, Springer, 2008.
    [12] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Harlow: Longman Scientific Technical, 1993.
    [13] J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Mathematics, vol. 485, Springer-Verlag, 1975.
    [14] J. Li, The generalized projection operator on reflexive Banach spaces and its applications, J. Math. Anal. Appl., 306 (2005), 55–71. http://doi.org/10.1016/j.jmaa.2004.11.007 doi: 10.1016/j.jmaa.2004.11.007
    [15] K. Wu, N. Huang, The generalised $f$-projection operator with an application, Bull. Austr. Math. Soc., 73 (2006), 307–317. http://doi.org/10.1017/S0004972700038892 doi: 10.1017/S0004972700038892
    [16] K. Wu, N. Huang, Properties of the generalized $f$-projection operator and its applications in Banach spaces, Comput. Math. Appl., 54 (2007), 399–406. http://doi.org/10.1007/BF03022673 doi: 10.1007/BF03022673
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(208) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog