This paper investigates the connection between the generalized projection $ \pi_S $ and the generalized $ f $-projection $ \pi_S^f $. By introducing an $ f $-proximal normal cone, defined via the generalized $ f $-projection, we derive key properties of this set, generalizing established results on the classical $ V $-proximal normal cone to Banach spaces. Additionally, we propose and examine a new regularity condition called uniform $ f $-prox-regularity, which extends the standard notion of prox-regularity by leveraging the adaptability of $ f $-projections.
Citation: Ali Al-Tane, See Keong Lee, Messaoud Bounkhel. On generalized $ f $-projection and generalized $ f $-prox-regularity on Banach spaces[J]. AIMS Mathematics, 2026, 11(1): 661-683. doi: 10.3934/math.2026029
This paper investigates the connection between the generalized projection $ \pi_S $ and the generalized $ f $-projection $ \pi_S^f $. By introducing an $ f $-proximal normal cone, defined via the generalized $ f $-projection, we derive key properties of this set, generalizing established results on the classical $ V $-proximal normal cone to Banach spaces. Additionally, we propose and examine a new regularity condition called uniform $ f $-prox-regularity, which extends the standard notion of prox-regularity by leveraging the adaptability of $ f $-projections.
| [1] | Y. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, 1993. Available from: https://arXiv.org/abs/funct-an/9311001. |
| [2] |
M. Bounkhel, R. Al-Yusof, Proximal Analysis in reflexive smooth Banach spaces, Nonlinear Anal.: Theory, Methods Appl., 73 (2010), 1921–1939. http://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077
|
| [3] |
M. Bounkhel, M. Bachar, Generalised-prox-regularity in reflexive smooth Banach spaces with smooth dual norm, J. Math. Anal. Appl., 475 (2019), 699–729. http://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064
|
| [4] |
M. Bounkhel, M. Bachar, Primal lower nice functions in smooth Banach spaces, Mathematics, 8 (2020), 2066. http://doi.org/10.3390/math8112066 doi: 10.3390/math8112066
|
| [5] | M. Bounkhel, Regularity Concepts in Nonsmooth Analysis, Theory and Applications, Springer, 2012. |
| [6] |
M. Bounkhel, Generalized Projections on closed nonconvex sets in uniformly convex and uniformly smooth Banach spaces, J. Function Spaces, 2015 (2015), 478437. http://doi.org/10.1155/2015/478437 doi: 10.1155/2015/478437
|
| [7] |
M. Bounkhel, Calculus rules for V-proximal subdifferentials in smooth Banach spaces, J. Function Spaces, 2016 (2016), 1917387. http://doi.org/10.1155/2016/1917387 doi: 10.1155/2016/1917387
|
| [8] |
M. Bounkhel, Generalized $(f, \lambda)$-projection operator on closed nonconvex sets and its applications in reflexive smooth Banach spaces, AIMS Mathematics, 8 (2023), 29555–29568. http://doi.org/10.3934/math.20231513 doi: 10.3934/math.20231513
|
| [9] |
M. Bounkhel, V-Moreau envelope of nonconvex functions on smooth Banach spaces, AIMS Mathematics, 9 (2024), 28589–28610. http://doi.org/10.3934/math.20241387 doi: 10.3934/math.20241387
|
| [10] | F. H. Clarke, Optimization and nonsmooth analysis, New York: John Wiley & Sons Inc., 1983. |
| [11] | F. H. Clarke, Y. Ledyaev, R. Stern, R. Wolenski, Nonsmooth analysis and control theory, Springer, 2008. |
| [12] | R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Harlow: Longman Scientific Technical, 1993. |
| [13] | J. Diestel, Geometry of Banach Spaces-Selected Topics, Lecture Notes in Mathematics, vol. 485, Springer-Verlag, 1975. |
| [14] |
J. Li, The generalized projection operator on reflexive Banach spaces and its applications, J. Math. Anal. Appl., 306 (2005), 55–71. http://doi.org/10.1016/j.jmaa.2004.11.007 doi: 10.1016/j.jmaa.2004.11.007
|
| [15] |
K. Wu, N. Huang, The generalised $f$-projection operator with an application, Bull. Austr. Math. Soc., 73 (2006), 307–317. http://doi.org/10.1017/S0004972700038892 doi: 10.1017/S0004972700038892
|
| [16] |
K. Wu, N. Huang, Properties of the generalized $f$-projection operator and its applications in Banach spaces, Comput. Math. Appl., 54 (2007), 399–406. http://doi.org/10.1007/BF03022673 doi: 10.1007/BF03022673
|