In this paper, a susceptible–infectious–recovered infectious disease model with the game inoculation process is established. First, the basic regeneration number $ R_0 $ of the model is obtained, and the positive and bounded connections of the system are proved. second, the stability of each equilibrium point is discussed by analyzing the characteristic equations of the system. Next, by taking $ \omega $ as the parameter, the conditions for the occurrence of Hopf bifurcation are obtained. Furthermore, we use the method of parameter estimation to analyze the influence of each parameter on this system. Finally, through a numerical simulation, we verify all previous conclusions. Of course, symmetry provides a tractable framework for analyzing vaccination games but may overlook heterogeneity-driven phenomena.
Citation: Fengjun Li, Tao Zhang, Qimin Zhang. Dynamical analysis of an SIR epidemic model with game-theoretic vaccination behavior[J]. AIMS Mathematics, 2026, 11(1): 684-716. doi: 10.3934/math.2026030
In this paper, a susceptible–infectious–recovered infectious disease model with the game inoculation process is established. First, the basic regeneration number $ R_0 $ of the model is obtained, and the positive and bounded connections of the system are proved. second, the stability of each equilibrium point is discussed by analyzing the characteristic equations of the system. Next, by taking $ \omega $ as the parameter, the conditions for the occurrence of Hopf bifurcation are obtained. Furthermore, we use the method of parameter estimation to analyze the influence of each parameter on this system. Finally, through a numerical simulation, we verify all previous conclusions. Of course, symmetry provides a tractable framework for analyzing vaccination games but may overlook heterogeneity-driven phenomena.
| [1] |
A. N. Ifati, R. Herdiana, R. H. Utomo, A. H. Permatasari, Analysis of a mathematical model in the spread of tuberculosis epidemic with vaccination and relapse effect, J. Phys.: Conf. Ser., 1943 (2021), 012131. http://doi.org/10.1088/1742-6596/1943/1/012131 doi: 10.1088/1742-6596/1943/1/012131
|
| [2] |
X. Wang, J. Li, J. Liu, X. Wu, Dynamical vaccination behavior with risk perception and vaccination rewards, Chaos, 34 (2024), 033109. https://doi.org/10.1063/5.0186899 doi: 10.1063/5.0186899
|
| [3] |
S. Mungkasi, Variational iteration and successive approximation methods for an SIR epidemic model with constant vaccination strategy, Appl. Math. Model., 90 (2021), 1–10. https://doi.org/10.1016/j.apm.2020.08.058 doi: 10.1016/j.apm.2020.08.058
|
| [4] |
K. H. Lavail, A. M. Kennedy, The role of attitudes about vaccine safety, efficacy, and value in explaining parents' reported vaccination behavior, Health Educ. Behav., 40 (2013), 544–551. https://doi.org/10.1177/1090198112463022 doi: 10.1177/1090198112463022
|
| [5] |
X. Chen, F. Fu, Imperfect vaccine and hysteresis, Proc. Biol. Sci., 286 (2019), 20182406. https://doi.org/10.1098/rspb.2018.2406 doi: 10.1098/rspb.2018.2406
|
| [6] |
G. Guan, Z. Guo, Y. Xiao, Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination, Commun. Nonlinear Sci. Numer. Simul., 137 (2024), 108097. https://doi.org/10.1016/j.cnsns.2024.108097 doi: 10.1016/j.cnsns.2024.108097
|
| [7] |
F. M. Burkle, Declining public health protections within autocratic regimes: Impact on global public health security, infectious disease outbreaks, epidemics, and pandemics, Prehosp. Disaster Med., 35 (2020), 237–246. https://doi.org/10.1017/S1049023X20000424 doi: 10.1017/S1049023X20000424
|
| [8] | A. Chhabra, Covid-19 vaccination, Int. J. Innov. Res. Technol., 8 (2021), 1–5. |
| [9] | J. Nunuvero, A. Santiago, Modeling the effects of adherence to vaccination and health protocols in epidemic dynamics by means of an SIR model, preprint paper, 2023. https://doi.org/10.48550/arXiv.2308.01038 |
| [10] |
A. Deka, S. Bhattacharyya, The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach, Theoret. Popul. Biol., 143 (2022), 62–76. https://doi.org/10.1016/j.tpb.2021.12.001 doi: 10.1016/j.tpb.2021.12.001
|
| [11] | P. Joe, C. T. Bauch, The influence of social behavior on selection and spread of virulent pathogen strains, J. Theoret. Biol., 455 (2018), 47–53. |
| [12] |
M. Saade, S. Ghosh, M. Banerjee, V. Volpert, Delay epidemic models determined by latency, infection, and immunity duration, Math. Biosci., 370 (2024), 109155. https://doi.org/10.1016/j.mbs.2024.109155 doi: 10.1016/j.mbs.2024.109155
|
| [13] |
B. Buonomo, A. d'Onofrio, D. Lacitignola, Global stability of an SIR epidemic model with information-dependent vaccination, Math. Biosci., 216 (2008), 9–16. https://doi.org/10.1016/j.mbs.2008.07.011 doi: 10.1016/j.mbs.2008.07.011
|
| [14] |
J. Tang, Y. Yao, M. Xie, M. Feng, SIS epidemic modelling on homogeneous networked system: General recovering process and mean-field perspective, Appl. Math. Model., 146 (2025), 116188. https://doi.org/10.1016/j.apm.2025.116188 doi: 10.1016/j.apm.2025.116188
|
| [15] |
X. Yuan, Y. Yao, X. Li, M. Feng, Impact of time-dependent infection rate and self-isolation awareness on networked epidemic propagation, Nonlinear Dyn., 112 (2024), 15653–15669. https://doi.org/10.1007/s11071-024-09832-0 doi: 10.1007/s11071-024-09832-0
|
| [16] |
X. Yuan, Y. Yao, H. Wu, M. Feng, Impacts of physical-layer information on epidemic spreading in cyber-physical networked systems, IEEE Trans. Circuits Syst. Ⅰ: Regular Papers, 72 (2025), 5957–5969. https://doi.org/10.1109/TCSI.2025.3550386 doi: 10.1109/TCSI.2025.3550386
|
| [17] |
M. Feng, Z. Zeng, Q. Li, M. Perc, J. Kurths, Information dynamics in evolving networks based on the birth-death process: Random drift and natural selection perspective, IEEE Trans. Syst. Man Cyber.: Syst., 54 (2024), 5123–5136. https://doi.org/10.1109/TSMC.2024.3389095 doi: 10.1109/TSMC.2024.3389095
|
| [18] |
M. Feng, X. Li, Y. Li, Q. Li, The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks, Chaos, 33 (2023), 043112. https://doi.org/10.1063/5.0142386 doi: 10.1063/5.0142386
|
| [19] |
C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. Biol. Sci., 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
|
| [20] | J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998. |
| [21] |
C. T. Bauch, D. J. D. Earn, Vaccination and the theory of games, Proc. National Acad. Sci. USA, 101 (2004), 13391–13394. https://doi.org/10.1073/pnas.0403823101 doi: 10.1073/pnas.0403823101
|
| [22] | R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford: Oxford University Press, 1991. |
| [23] |
S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
|
| [24] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2 Eds., New York: Springer, 1998. |
| [25] |
W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250–256. https://doi.org/10.1006/jmaa.1994.1079 doi: 10.1006/jmaa.1994.1079
|
| [26] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981. |
| [27] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, New York: Springer, 2004. |
| [28] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theoret. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [29] |
M. A. Imron, A. Gergs, U. Berger, Structure and sensitivity analysis of individual-based predator–prey models, Reliab. Eng. Syst. Saf., 107 (2012), 71–81. https://doi.org/10.1016/j.ress.2011.07.005 doi: 10.1016/j.ress.2011.07.005
|