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Finally, through a numerical simulation, we verify all previous conclusions. Of course, symmetry
provides a tractable framework for analyzing vaccination games but may overlook heterogeneity-driven
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1. Introduction

Infectious diseases have been a persistent threat to human health and societal stability throughout
history. Epidemic outbreaks not only generate substantial morbidity and mortality, but also impose
profound disruptions on economic and social systems. To counter these challenges, a diverse arsenal
of control strategies has been devised, among which vaccination is widely regarded as one of the most
efficacious public health interventions [1-4].

However, the decision to vaccinate transcends purely biomedical considerations; it is profoundly
shaped by individual cognition, social behavior, and economic incentives. The bidirectional coupling
between an epidemic’s dynamics and human decision-making has therefore prompted researchers to
invoke game-theoretic frameworks in vaccination studies, with the aim of elucidating how individual
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strategic choices modulate disease transmission [5—7]. In our setting, the “game” consists of parents
deciding whether to vaccinate newborns. The players are the parents, the strategies are “vaccinate”
or “not vaccinate”, and their payoffs depend on the perceived infection risk and the perceived vaccine
risk, evolving over time via imitation.

Existing studies have made substantial advances in elucidating the dynamics of vaccination and
disease transmission. For instance, Chhabra [8] highlighted manufacturing issues and the effects of
vaccines by analyzing surveys conducted in India, where the respondents were asked about their
views and concerns regarding the national vaccination programme. They carried out a mathematical
analysis of adverse events following immunization (AEFI ) and vaccine adverse events reporting
system (VAERS). For a non-zero proportion of vaccinated individuals, their model predicts a new
state in which the disease spreads but eventually becomes extinct. A new state occurs when the
proportion of vaccinated individuals exceeds a certain critical value; this critical value increases with
the infection rate, up to an asymptotic value strictly less than unity. Beyond this value, disease
extinction occurs regardless of the infection rate.

Nunuvero [9] explored the effects of adherence to vaccination and health protocols on an
epidemic’s dynamics using an extended susceptible—infectious—recovered model framework. Their
model incorporated critical factors such as birth and death rates, infection and recovery rates,
vaccination uptake, and limited immunity. By analyzing various scenarios, the study revealed two key
findings. First, strict adherence to health protocols can significantly reduce disease transmission and,
as a result, lessen the dependency on mass vaccination program; second, robust vaccination strategies
can compensate for lower adherence to health protocols.

Deka and Bhattacharyya [10] investigated the public health implications of pathogen competition
under social interaction and individual choice.  Their results suggest that appropriate risk
communication about disease severity is crucial for reducing the chances of strains’ invasion.
Consequently, understanding pathogen competition in the presence of social behaviour and strategic
choice can be an important component of decision-makers’ strategies.

Joe and Bauch [11] showed that adaptive social behaviour can allow mutant strains to invade in
realistic epidemiological scenarios, even if the basic reproduction number of the mutant strain is lower
than that of the resident strain. Surprisingly, in some cases, increasing the perceived severity of resident
strains may actually promote the invasion of more deadly mutant strains. These insights suggest that
for some applications, adaptive social behaviors must be incorporated into models of viral pathogens’
emergence in order to better inform public health control strategies.

Beyond these contributions, there has also been important work on epidemic models with waning
immunity and information-dependent vaccination. For example, Saade et al. [12] proposed delay
epidemic models that explicitly a incorporate loss of immunity over time, while Buonomo et al. [13]
analyzed the global stability of an SIR model in which the vaccination rate depends on information
about the disease’s spread. In contrast to these studies, which typically focus either on waning
immunity or on information-driven vaccination, the present work simultaneously combines waning
immunity with imitation-based vaccination behaviour and nonlinear (saturated) incidence, thereby
bridging these two lines of research within a unified framework.

In parallel, several works have analyzed behavioural vaccination in game-theoretic or information-
dependent frameworks, including Buonomo et al. [13], while Xiao and Ruan [23] studied an SIR model
with nonmonotone (saturated) incidence. Compared with these contributions, our model differs in three
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main aspects:

(i) A the incidence level, we combine saturated transmission with an explicit behavioural feedback;

(i1) we incorporate waning immunity and imitation dynamics simultaneously, rather than treating
them in separate models;

(ii1) Imitation dynamics are coupled to the epidemiological variables through decisions regarding
vaccination of newborns, so that parental strategies directly determine whether newborns enter the
susceptible or recovered class.

Recent years have also witnessed a rapidly growing body of work on information and awareness
diffusion and their impact on epidemic thresholds. These studies show that the spread of risk
awareness, media-driven information, and behaviourally adaptive responses can substantially modify
classical SIR-type predictions by altering effective contact rates and generating new threshold
phenomena. For example, some models explicitly couple awareness propagation with disease
transmission on multiplex or temporal networks, demonstrating that awareness-induced behavioural
changes may delay, suppress, or reshape epidemic outbreaks [14-18]. Such awareness-based
frameworks enrich the traditional epidemic modelling paradigm and provide a complementary
perspective to imitation-based vaccination behaviour.

These findings collectively underscore the critical role of behavioral compliance and vaccination
programs in shaping the trajectory of epidemics. Regarding the use of symmetry assumptions in SIR-
type models, it is important to examine how symmetry simplifies the mathematical structure and how
this assumption influences the resulting vaccination strategies. In our vaccination game framework,
symmetry refers to a homogeneous behavior assumption among parents: All individuals face the same
perceived vaccination cost and infection risk and update their decisions according to the same imitation
rule.

Mathematically, this symmetry allows us to describe the behavioural state of the whole population
by a single scalar variable x(#) (the fraction of vaccinating parents), instead of tracking multiple
subgroups xi(?), x»(?), ... with different payoft structures. This reduction from a high-dimensional
system to a four-dimensional one makes it possible to derive explicit formulas for the equilibria and to
obtain analytic Hopf bifurcation conditions. From the viewpoint of vaccination strategies, the
symmetry assumption means that the model predicts a uniform population-level vaccination coverage,
1.e, the same imitation rule and equilibrium strategy apply to all parents.

In heterogeneous populations (e.g. heterogeneity in age, risk, socioeconomic status, or access to
vaccination), one would expect different groups to adopt different vaccination levels. Such
heterogeneity-driven effects are not captured by the present model and are explicitly discussed as a
limitation and a direction for future work. We emphasize that the symmetry applies to the behavioral
imitation part rather than to the epidemiological compartments.

In addition, we explicitly relate this assumption to the standard homogeneous population
framework of evolutionary game theory, in which a symmetric payoff structure and identical update
rules permit the behavioral state to be represented by a single frequency variable x(7); see, for
example, Bauch [19] and the general framework in Hofbauer and Sigmund [20]. Building on this
foundation, our work extends the SIR modelling framework to incorporate game-theoretic approaches
to vaccination behavior. By analyzing how individuals’ decision-making under varying levels of risk
perception and social influence impacts vaccination uptake, this study aims to offer deeper insights
into optimizing epidemic control strategies.
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1.1. Behavioral imitation dynamics

To better capture the adaptive nature of vaccination decisions, we integrate a game-theoretic
imitation dynamic into the classical SIR framework. In this context, parents are treated as strategic
decision-makers who weigh the perceived risks of vaccination against the perceived risks of infection,
and individuals may revise their strategy by imitating those who are perceived to achieve higher
payoffs. Following the formulation of Bauch [19] and the general evolutionary game framework in
Hofbauer and Sigmund [20], we adopt a vaccination function that describes imitation-based
behavioural dynamics.

Specifically, the evolution of the proportion x(¢) of vaccinators is governed by the imitation equation

dx = kx(1 = x)(—=r, + riml),

dt
where k denotes the sampling—imitation rate, i.e, the rate at which individuals sample others and imitate
their strategies. The parameter r, is the perceived vaccine risk, r; is the perceived infection risk, and
m measures sensitivity to prevalence, quantifying how sensitively individuals adjust their vaccinating
behaviour in response to changes in the disease prevalence /(7).

More precisely, we write

-r,+riml = rv(—l + @1) and define w := ﬂ,
rV rV
absorbing the prefactor r, into the imitation rate k (or into a rescaling of time). Following Bauch [19]
and subsequent work on imitation dynamics, we normalize the perceived disutility of vaccination to 1,
while the infection-related perceived loss is taken to be proportional to the prevalence /(¢) and scaled
by the sensitivity parameter w. Thus, by absorbing the product r;m into a single parameter w, the payoff
difference between vaccinating and not vaccinating can be written as

Uvaccinate - Unon-vaccinate =-1+wl.

In particular, when w/ < 1, the perceived vaccination cost dominates and non-vaccination is favoured,
whereas when wl > 1, the perceived infection risk dominates and vaccination becomes individually
beneficial. This leads to the rescaled imitation equation

% =kx(1 — x)(-1 + wl),
which is the behavioural component coupled to the SIR epidemic dynamics in our model.

The prevalence () is determined by a compartmental SIR epidemic model with births and
deaths [21, 22]. Compartmental models divide the population into mutually exclusive categories
according to their epidemiological status and define ordinary differential equations that govern the
flow between compartments. Here, we make the standard assumption that the rate at which newly
infected individuals arise is proportional to the product of the densities of susceptible and infected
individuals.

The advantage of using game theory in this epidemiological setting lies in its ability to incorporate
human behavioral responses into disease dynamics. While traditional models typically treat
vaccination as a fixed-rate intervention, game-theoretic models allow vaccination uptake to evolve
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adaptively according to individuals’ risk perception and social influence. This
behavioural-epidemiological coupling can reveal threshold effects, oscillatory dynamics, and
bifurcation phenomena that purely biological models cannot capture, thereby providing more realistic
insights into optimal epidemic control strategies.

The vaccination game with imitation dynamics is described by the system of ordinary differential
equations (ODEs)

ds

— = A—pux—puS —BSI,

i px —pS —f

d/

— =B8S1—pul —vl,

g; (1.1)
— =yl 4+ ux—uR

q = Y+ pux—pR,

% = kx(1 — x)(—1 + wl).

While these studies have advanced the field, they often rely on simplifying assumptions that do
not fully capture the complexities of real-world epidemics and human behaviour. Specifically, many
models assume bilinear incidence rates and lifelong immunity, which are not applicable to diseases
with waning immunity or transmission saturation effects. Moreover, the interaction between social
imitation in vaccination decisions, and these realistic epidemiological features remains underexplored.

Building upon previous analyses and motivated by the considerations above, we incorporate the
nonmonotone (saturated) incidence rate proposed by Xiao and Ruan [23] to obtain a more realistic
transmission function. Accordingly, we propose the following modified model:

ds BS1

—:A— — R_

dr HX =S +0 1 +al’

d/ BS1

— = —ul —vyl,

dd 1+al (1.2)

—dR I+ R — 0R '
= x— — ,

dr YL+ U M

dx

— =kx(1 — x)(-1 + wl),

m x(1 = x)( wl)

with the initial conditions S (0) > 0, [ ((?9) > 0, R(0) > 0, and x(0) > 0.
I

In the nonlinear incidence term

, the parameter @ > 0 measures the saturation strength of

transmission when the number of infectious individuals / becomes large. Biologically, this means that
the effective contact rate does not grow indefinitely with 7 but is reduced by contact saturation, limited
medical or public health resources, and behavioral avoidance (e.g, individuals voluntarily reducing
contacts or keeping distance from infectious cases). Following Xiao and Ruan [23], this saturated form
provides a bounded and more realistic infection rate in the high-prevalence regime, in contrast to the
standard bilinear incidence S I, which may overestimate transmission when / is large.

The formulation of Systems (1.1) and (1.2) is based on the following biological and epidemiological
assumptions:

e The total population is divided into four mutually exclusive classes: Susceptible individuals S (7),
infectious individuals I(¢), recovered individuals with temporary immunity R(f), and the
proportion of vaccinators x(¢).
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¢ Births occur at a constant rate A, and natural deaths occur at a rate u in all epidemiological classes.
e Recovered individuals lose immunity at a rate 6 and return to the susceptible class, representing
waning immunity.

e Disease transmission follows the saturated (nonmonotone) incidence rate 1 7 discussed above,

+
which accounts for contact saturation, behavioral changes, and resource constraints when the

number of infectious individuals is large.
e Vaccination is modelled as a game-theoretic imitation process: Parents decide whether to

vaccinate newborns according on the perceived payoffs, leading to the imitation dynamics

dx
m =kx(1 — x)(-1 + wl).

e Vaccination affects the flow of newborns: A proportion x(f) of newborns are vaccinated
immediately upon birth, contributing directly to the recovered class R, while the remaining

proportion (1 — x(¢)) enters the susceptible class S'.

For convenience, we summarize the biological interpretation and units of the main parameters used
in the model in Table 1.

Table 1. Biological interpretation and units of the parameters used in the model. Time is
measured in days, and S, I, R denote fractions of the population.

Parameter Description Units Typical range
A Recruitment/birth rate day! 1073-107"

U Natural death rate day~! 1073-107"

B Transmission rate day™! 10721

y Recovery rate from infection day™! 1021

) Waning immunity rate (R — S)  day™! 1074-1072

a Saturation parameter in incidence dimensionless 107#~107!

k Sampling—imitation rate day™! 10741072

w Sensitivity to prevalence dimensionless 10°-10°

Compared with the classical framework in [23], our model incorporates three key modifications:

e We extend the SIR model of [23], which assumes permanent immunity, by introducing a waning
immunity mechanism (R — S at rate 9).

e We integrate game theoretic imitation dynamics into the vaccination decision process via the
variable x(¢), which is absent in [23].

e We allow the vaccination decision x(f) to dynamically interact with the epidemiological variables
through the recruitment terms A — ux and ux in the S and R equations, respectively, thereby
coupling behavioral and epidemiological dynamics.

These modifications enable the joint analysis of an epidemic’s progression and adaptive vaccination
behaviour, revealing bifurcation and oscillatory dynamics that cannot arise in the model of [23].
A standard next-generation matrix calculation (see Section 2) shows that the basic reproduction
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number of System (1.2) is
BS° B A
0= = K
u+y p+yp
where S® = A/u is the susceptible level at the disease-free equilibrium. Since at this equilibrium the
nonlinear incidence term

R

oAy
1+al

degenerates to the bilinear form S I (because I = 0), the expression of R, coincides with that of the
classical SIR model and does not explicitly depend on the waning immunity rate ¢ or on the saturation
parameter . These parameters influence the long-term dynamics (such as the existence and stability
of endemic equilibria and possible oscillations), but they do not modify the initial invasion threshold
encoded in R.

The inclusion of these features is motivated by several gaps in the current literature. Traditional
SIR models often oversimplify transmission dynamics and immunity mechanisms, potentially leading
to inaccurate predictions of the disease’s spread and control measures. By incorporating a
nonmonotone incidence rate and waning immunity, our model better mirrors the complexities of
real-world epidemics.

Vaccination is not only a public health intervention but also a social behaviour influenced by
individual and collective decision-making. While previous studies have applied game theory to
vaccination, few have simultaneously considered social imitation and realistic epidemiological
dynamics. Our model addresses this by embedding imitation dynamics within a more nuanced
epidemiological framework.

Understanding the combined influence of behavioural and epidemiological factors is crucial for
designing effective vaccination campaigns and disease control policies. Our analysis aims to uncover
critical thresholds and nonlinear phenomena that can guide the optimization of intervention strategies.

1.2. Main contributions and organization of the paper

The main contributions of this work are summarized as follows.

(1) We develop a novel epidemic—game theoretic framework that incorporates a nonmonotone
incidence rate, waning immunity, and vaccination behavior driven by social imitation. In
particular, newborns are dynamically allocated between the susceptible and recovered classes
according to the behavioral variable x(¢), thus creating a birth—vaccination coupling between
parental strategies and epidemiological compartments. This formulation enables a more realistic
description of the transmission dynamics and behavioral responses in the context of vaccination.

(2) We conduct a comprehensive qualitative analysis of the proposed model. This includes proving
the positivity and boundedness of solutions, identifying all possible equilibria, and establishing
their local and global stability. In particular, Lyapunov functions are explicitly constructed to
demonstrate the global asymptotic stability of certain equilibria, and Hopf bifurcation conditions
at the interior equilibrium are derived, revealing the potential for sustained oscillatory behaviour
in both the infection’s prevalence and vaccination uptake.

(3) We perform numerical simulations and a global sensitivity analysis (via Latin hypercube
sampling and partial rank correlation coefficients) to assess the influence of key epidemiological
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and behavioural parameters. The numerical results confirm the theoretical predictions and
illustrate how parameter variations can modulate the amplitude and persistence of epidemic

outbreaks, thereby providing qualitative insights for optimizing disease control strategies.

The remainder of the paper is organized as follows. In Section 2, we discuss the positivity of
solutions and establish a uniformly bounded invariant region for System (1.2). In Section 3, we derive
all equilibria of the system and analyse the local stability of each equilibrium; Lyapunov functions are
constructed for the boundary equilibria E5 and E4, and their global stability is proven. In Section 4,
we analyze the local stability of the interior equilibrium E5 and show that the system can undergo a
Hopf bifurcation at this point. In Section 5, we present numerical simulations and the global sensitivity
analysis to illustrate and support the theoretical results. Finally, in Section 6, we summarize our main

findings and outline several directions for future research.
2. Basic properties of the model

Equilibria of System (1.2)

Equilibria are points (S *, I*, R*, x*) at which the right-hand sides of (1.2) vanish. Thus we require

0=A- —uS* + oR" — ,
px —H 1+ al*
BS'I’ .
0= - (u+yr,
1+ al* W+y)

0=yl"+ux" — (u+0)R",
0=kx"(1 = x")(—1 + wI").

Equation (2.4) implies that at an equilibrium, one of the following holds:
x" =0, X' =1, or I'=—.
w
We treat these three cases separately.

Disease-free equilibria (DFE), I* = 0.
Set I* = 01in (2.2) and (2.3). From (2.3), we obtain
Hx

R = .
u+0o

Substituting I* = 0 and this R* into (2.1) yields

*

* * l‘l'x
0=A- —uS*+46 ,
HE A u+0o
hence A
st=o - H oy
Mo p+o

Because (2.4) with I* = 0 allows x* = 0 or x* = 1, we obtain two disease-free equilibria

Epro = (2, 0, 0, 0),

2.1)

(2.2)

(2.3)
(2.4)

(2.5)
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Epry = (A -0, £ 1), (2.6)

u u+o’ u+o’

provided that the components are non-negative (in particular, one needs
S* > 0). Note that §* + R* = A/u at both DFEs.

A o
" > pv; for Epp; to have

Endemic candidates with /* > 0 and x* = 0 or x* = 1.
Assume [* > 0. From (2.2), we obtain

BS*

1+ al*

+
=u+y = S*:'L%(1+al*).

From (2.3), we have
oyl +px’

u+o

k

Substitute S * and R* into (2.1). After rearrangement, one obtains a linear expression for /* (for a fixed
x):
_ ABG + ) — BuPx — p(Sy + Sp + yp + 1)

r .
p(Sy + 0+ yu + p2) + B +y + )

2.7)

Hence, for the two cases x* = 0 and x* = 1, we get two possible endemic equilibria (call them EY
and E\") with
+ I + ux*
B H+0

and 7" is given by (x) with x* = 0 or x* = 1. These equilibria exist (and are biologically admissible)
only if the right hand side of (x) is positive and produces S* > 0, R* > 0.

To link these existence conditions with the threshold quantity of the model, we recall that the basic
reproduction number is computed via the next generation matrix at the DEF

Epro = (2,0,0,0).

At this point we have I* = 0, so the nonlinear incidence term

BS1
1+ al

reduces to the bilinear form S 1. Consequently, the basic reproduction number 1s

_BSY B A

RO - - R
pH+y H+Y W

where S° = A/u is the level at of susceptibility Eprg. In particular, the waning immunity rate &
does not enter the next generation matrix and therefore does not affect Ry. If we normalize the total
population so that S® = A/u = 1 (i.e, we work with proportions), this reduces to the classical form

_ B
u+y

Ry
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and the condition R, > 1 is typically necessary for the existence of an endemic solution with x* = 0.

1
Interior endemic with I* = — and x* € (0, 1).
)
If I* = 1/w, then (2.4) permits any x* € [0, 1]. To find an admissible x*, one substitutes I* = 1/w
into (2.2) and (2.1). From (2.2), we obtain

« _MHTY a
ST = I+—).
(1+2)
From (2.3), we have
. Yo+ px
R ="—«——.
u+o

Substituting into (2.1) yields a linear equation for x*; solving this equation gives

o = DB +pw — po(Sy + u@ +y + ) — aldyp + O + i + i)
Brw '
An interior endemic equilibrium with /* = 1/w exists if and only if the computed x* lies in (0, 1) and
the corresponding S, R* are non-negative.
According to the equilibrium computations above, we classify all equilibria according to whether
all components are strictly positive (positive equilibria) or whether at least one component lies on the
boundary (boundary equilibria):

e The DFEs

Epro = (4, 0,0, 0),
Eppy = (2 - 2.0, £, 1),

HoopEs? p+s’
are boundary equilibria, since the infectious class satisfies I* = 0.
e The endemic equilibria E*(0) (with x* = 0) and E*(1) (with x* = 1) have I* > 0 but the vaccination
variable x lies on the boundary (x = 0 or x = 1), hence these are also boundary equilibria.
e The interior endemic equilibrium (with /" = 1/w and x* € (0, 1)) satisfies

S >0, I >0, R >0, x>0,

i.e., all components are strictly positive, and is therefore the unique positive equilibrium of the
system.

In summary, the model admits a single positive equilibrium arising from the coupling of behavioral
dynamics with epidemiological transmission, whereas all other equilibria lie on the boundary of the
feasible region.

In natural ecology, positiveness means that the population can survive, and boundedness means
that the resources of the population are limited. Therefore, we will discuss the positiveness and
boundedness of System (1.2).

Theorem 2.1. All solutions of System (1.2) with non-negative initial data remain in R* for all t > 0.

Moreover, if
S(0) >0, 1(0) > 0, R(0) > 0, x(0) > 0,

then I(t), R(t), and x(t) stay strictly positive for all t > 0.
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Proof. We show that each component of the solution of the model (1.2) cannot become negative, and
that strictly positive initial data for /, R, and x remain strictly positive for all # > 0.

Positivity of /(7). The equation for / can be written as
d/ BS
— =7
dr (1 + al

When I = 0, the right-hand side vanishes. Hence, the hyperplane I = 0 is invariant and, by the
uniqueness of the solutions, we have /() > O for all # > 0 whenever /(0) > 0. Moreover, since

BS

1+ al

- (u+).

—wt+y) 2 —(u+y),

we obtain

(u+vyl.

R Z —_
dt
By Gronwall’s inequality it follows that

I(t) > [(0) e W1,

so if 1(0) > O then I(z) > O for all # > 0.
Positivity of x(¢). The behavioural variable satisfies

% = kx(1 — x)(-1 + wl).
Clearly, x = 0 implies x = 0, so the hyperplane x = 0 is invariant and x(¢) > O for all # > 0 whenever
x(0) > 0. To see that x(¢) cannot reach O in finite time if x(0) > 0, we argue by contradiction: Assume
that there is a f, > 0 such that x(#)) = 0 and x(z) > O for all ¢ € [0, ). By continuity, the solution
(S (), I(1), R(t), x(1)) is well-defined on a neighborhood of #,, and the initial value problem for x with
the data x(zy) = O has the trivial solution x = 0. By uniqueness of solutions to System (1.2), this would
imply x(#) = 0 on [0, y], contradicting x(0) > 0. Hence x(¢) > O for all # > 0.

Positivity of R(7). For R, we have

dR
Ezyl+,ux—(y+5)R.

If R = 0 with I, x > 0, then R = yI + ux > 0, so the boundary R = 0 cannot be crossed to negative
values. Moreover

dR >—(u+0)R

dr — ’
since yI + pux > 0. By Gronwall’s inequality

R(t) > R(0)e™“+",

so R(t) > 0 for all ¢+ > 0 and, in particular, R(¢) > O for all > 0 if R(0) > O.
Positivity of S (7). Consider the total population

N(@) =S+ 1(t) + R@).
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Summing the first three equations of (1.2) gives

with the explicit solution
A
N(t) = — + (N(0) = £)e™,
i) H

which is non-negative (and in fact is strictly positive for ¢ > 0 if N(0) > 0). Since we have already
shown that I(¢) > 0 and R(r) > 0, it follows that

S@=N@-1(t) -R(t) 20 forallz > 0.

Therefore, S (f) cannot become negative.

Combining the arguments above, we conclude that any solution with non-negative initial data
remains in Rﬁ for all + > 0, and that I(¢), R(#) and x(¢) remain strictly positive for all # > 0 whenever
1(0), R(0), and x(0) are strictly positive. This proves the theorem. O

Theorem 2.2 (Boundedness and positive invariance). For System (1.2), if the initial data satisfy
S0)=0, 1(0)=0, RO)=0, x(0)e€]l0,1],
then the corresponding solution remains non-negative for all t > 0. Moreover, the total population
N(t) :=S@) + I(t) + R(?)
satisfies the scalar linear equation

— = A —uN,
dr H

whose solution is uniformly bounded and converges to AJ/u ast — oo. In particular, M > 0 exists such
that 0 < N(t) < M for all t > 0, and the set

Q:={S,LRRx)eR*: §>0,1>20,R>0,0<x<1,0<N < A/u}

is a positively invariant bounded region for System (1.2).
Proof. Summing the first three equations of System (1.2) gives

dN
= = (N -px—pS +0R — L5y + (L — (u+ ) + (yI + px — (u + 6)R)

=A-uS +1+R)=A-puN,
a linear ODE with explicit solution
A
N = =+ (N©0) - 2)e ™,
u u
which shows that lim sup,_, ., N(t) < A/pu.
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Next, for x we note
X =kx(1 — x)(-1 + wI).

At the boundary x = 0 or x = 1, the derivative vanishes, so by uniqueness, the flow cannot cross these
boundaries. Thus if x(0) € [0, 1], then x(¢) € [0, 1] for all # > O.

Finally, Theorem 2.1 already guarantees that S, /, R remain non-negative for no-nnegative initial
data (and strictly positive if strictly positive initially). Combining these facts shows that

Q={S,LR,x):5$>20,1>0,R>0,0<x<1,0<N<A/u}

is positively invariant and bounded. O
3. Exisetence and local stability of equilibria

In this section, we will discuss the existence and local stability of System (1.2). By some calculation,
System (1.2) have five equilibria as follows.

Theorem 3.1. (Local stability of DEFs (1.2) and the DEFs

Epro =(2,0,0,0),  Eppi = (2 - 5,0, 45,1),

; - u+o’ u+o’

(the latter exists whenever & > L=
M pto

so that §* > 0). Let Ry = L Then
u+y

(1) Eprp is locally asymptotically stable if Ry < 1 and unstable if Ry > 1;
(2) Epp, is unstable (in particular, the vaccination direction x is unstable when I = 0).

Proof. Compute the Jacobian J of System (1.2). Evaluating the derivatives at

Epro=(S° 1% R’ x°) = (A/u,0,0,0)

yields
A
—H wm 0 —H
A
JEppoy = | Pemwry 0 0
Y —(u+9d) u
0 0 0 —k

The Jacobian can be rearranged into a block upper triangular form, and its eigenvalues are given by the
diagonal elements of each block. Its eigenvalues are the diagonal entries

A
A4 = —U, Ay :,8;—(/1+’y), /13:—(/14-5), /14:—16.

Hence all eigenvalues have a negative real part if and only if /3% - (u+7vy)<0,i.e.

B A

—< 1.
Hty p

AIMS Mathematics Volume 11, Issue 1, 684-716.



697

Under the common normalization A/u = 1 (proportions), this condition is exactly Ry < 1. Thus Epgg
is locally asymptotically stable when Ry < 1 and unstable when Ry > 1.

For Epr, evaluate the Jacobian at x* = 1, I" =0, R* = u/(u + 6),and S* = AJu — u/(u + 6). The
partial derivative of the right-hand side of the x—equation with respect to x is

%(kx(l - x)(—1 + wl)) = k(1 =2x") (=1 + wl") . =k>0,

Epr. 1,I=0

so the linearization has a positive eigenvalue +k, and therefore, Epp; is unstable (at least in the
vaccination direction). This completes the proof. O

Theorem 3.2. Let E5 = (S*, I, R*, x* = 0) be an endemic equilibrium of system (1.2), i.e., I* > 0 and
(8™, I", R*) satisfy the equilibrium relations. Let J(E3) denote the Jacobian of System (1.2) evaluated
at E5. Then the characteristic polynomial of J(E3) factors as

det(A - J(E3)) = (A = k(wI” = 1)) p(),

where
(3) _ 33 2
Ps D=2 +A1°+A1+A;

is the characteristic polynomial of the S —I—R block. In particular:

(1) A necessary condition for local asymptotic stability is k(wl* — 1) <0, i.e., wI* < 1.
(2) If; in addition, the Routh—Hurwitz conditions

A1 > 0, A3 > 0, A1A2 > A3

hold for the coefficients Ay, A,, A3 computed below, then all eigenvalues have a negative real part
and E5 is locally asymptotically stable.

Proof. The Jacobian of the S —/—R subsystem at E3 has the form
ap dpz dap
A=lay an 0|,
0 an asx

with the explicit entries (evaluated at E3)

=—U-—-, = - , =0,
M= T T T A s aly s
BI* BS*
= —, =—— - (u+vy), =7,
as 1+ al an» (1 +al" ) w+y), an=vy
aszz = —(/.l +0).

From the standard determinant identities for a 3 X 3 matrix, the coefficients of pgz’)(/l) =L +A L2+
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ArA + Az are:

pr___ps

Ap=—(an +an+ =3u+y+d+ - ,
1 =—(an +an+axn)=3u+y T+al" (tal')

Az = (an1axn — anay) + (anass) + (a»as)
=(-pu- l+(ll*)((l+al )2 —(u+y)+ (fia/jl)*
g )= Gt ) + (s — G+ )= (a4 ),
Az = —det(A) = —(ai1a2a33 — anax ass + a13a21a3)

=~(~p- 1+a1*)((1+a]*)2 (:“ + Y= W +9)
+ BB+ §) — 5L

(1+al*)?

1+a1* Y-

Because the vaccination equation decouples at x* = 0, its eigenvalue is k(wl* — 1). The Jacobian is
block triangular, and hence the full characteristic polynomial is the product of the vaccination
eigenvalue factor (1 — k(wl* — 1)) and p(3)(/l). Applying the Routh—Hurwitz conditions for the cubic
pf)(/l) together with k(wl™ — 1) < 0 yields the desired local asymptotic stability criterion. O

Theorem 3.3 (Boundary equilibrium E, and local stability). Assume that the parameter set is such that
System (1.2) admits the boundary equilibrium

E4 = (S*’I*7R*9 x*) = (S*’I*7R*5 1)’
where

I'=

WAYWHOR=W=0B o _FTY oy g2 ER
BSy = pa(u +06) =Bl +6)(u +7) B H+o

and I, > 0,5 >0, R* > 0. Let J* be the Jacobian of system (1.2) at E4. Use
P = 2 + B2 + Byd + Bs
the characteristic polynomial of its 3 X 3 epidemiological block, and
¢y = k(1 —wl,)

the eigenvalue corresponding to the vaccination direction. Then E, is locally asymptotically stable if
and only if

cu <0 (e wl,>1)

and the Routh—Hurwitz conditions for p( ) hold:
B, > 0, B; > 0, BB, > Bs.
In this case all eigenvalues of J* have negative real parts.
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Proof. Directly compute the partial derivatives of the right-hand sides of System (1.2) to obtain the
Jacobian and evaluate it at E4. The epidemiological 3 X 3 block A has the form

ap dpp ags
A=lay an 0],
0 axn asx

where (with all quantities evaluated at E,)

a = —Md— , a = ’ a =0
W= T e T T valy 13
BI BS”
= —, =—— - (u+vy), =7,
as 1+ al" an» (1 +al" w+y), an=vy
asz = —(/J + 5)

From the standard determinant identities for a 3 X 3 matrix, the coefficients of p(4)(/l) =L +BA%+
B,A + Bj are

pr___ps

By = —(a;1 +an + =3u+y+o+ - ,

B, = (anax - 61126121) + (anazs) + (axasz)
_ BS*BI”
=(-u- 1+a/I )((l+al ol (s )+ (1+al" )P

+(—,Lt 1+a/I )( (/J+6)) +((l+al )2 (/J+Y))(_(/J+6)),
B3 = —det(A) = —(0116122033 — 1201033 + A1302103))

= (- ) (e - (P-4 0)

BS*pI*
* ary (u+06) — 5

1+aI Y-

The vaccination direction derivative is
O (kx(1 = x)(-1 + a)l))|E4 = k(1 =2x)(=1+wl) = k(1 — wl") = cua4.

Because J* is block upper triangular, its characteristic polynomial factors into the product of the linear
factor (1 — c44) and the cubic characteristic polynomial p(34)(/l) of A. By the Routh—Hurwitz criterion
for a cubic, the three inequalities B; > 0, B; > 0,and BB, > Bj; are necessary and sufficient for all
roots of pé‘” to have negative real parts. Together with c44 < 0, this implies that all four eigenvalues of
J* have negative real parts. Hence, E, is locally asymptotically stable under the stated conditions. O

Lemma 3.1 (Routh—-Hurwitz data for the S—I-R block). Let E* = (S*, I*,R*, x*) be the interior
equilibrium of System (1.2) given in Lemma 4.1. Consider the following Jacobian of the S—I-R
subsystem evaluated at E*
ap dpp a3
A=lay an 0],
0 an asx
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where, with D = 1 + al*

_ BI’ _BST _
au =—p=" 4= =5 a3 =0,
_pr _BS” _
an = s an ="y W+7y), an=y,

asz = —(,Ll + 5)

The characteristic polynomial of A is
() _ 3 2
Py (D) =4 +CA° + Cod + Gy,

with coefficients

Cy = —(an + axn + as),

C> = anaxn — apay; + anas; + anass,

C3 = azz(anaxn — anas) + a;3a as.
Moreover, for the admissible parameter region considered in this paper, these coefficients satisfy

Cc, > 0, Cs > 0, C,Cy > Cs.
In particular, the Routh—Hurwitz conditions for pg*) hold, and all eigenvalues of the S—I-R
linearization at E* have negative real parts.
Theorem 3.4 (Local stability of the interior equilibrium). Let E* = (S*,I",R*, x*) be an admissible

interior equilibrium of System (1.2) with

I'=—, 0<x" <1, S*>0, R">0.
w

Let A be the Jacobian matrix of the S —I-R subsystem evaluated at E* and let
() _ 3 2
Py (D)= +CiA" + Cd+ (s

be its characteristic polynomial as in Lemma 3.1. For the admissible parameter region considered in
this paper, Lemma 3.1 ensures that

C] > 0, C3 > 0, C]C2 > C3,

so all eigenvalues of the S —I-R linearization have negative real parts. Then E* is locally asymptotically
stable: there is a neighborhood U of E* such that any solution of (1.2) with the initial condition in U
converges to E* as t — oo.

Proof. We first outline the strategy of the proof. We construct a Lyapunov function that combines a
Volterra-type term for the epidemiological variables (S, I, R) with a quadratic term in the behavioural
variable x. We then show that under the Routh—Hurwitz conditions on the S—/—R linearization, the
time derivative of this Lyapunov function along the solutions is negative definite in a neighbourhood
of E*, which implies the local asymptotic stability of the interior equilibrium.
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Introduce the deviations
s =5-S5", i=1-TI, r:=R-R", yi=x-—x",

and let z = (s,1,r,y). We construct a Lyapunov function of Volterra type for (S, 7, R) together with a

quadratic term in Xx.
Define

)
ViS,LR):=(S -S"=S"In&)+(I-I'-I'ln£)+ —(R-R - R'In &),
4

and, for a constant ¢ > 0 to be chosen later
V(S,I,R,x) := Vi(S,I,R) + cy*.

By the convexity of the function u +— u — u* — u* In(u/u*), V| is C? near (S*,I*, R*), vanishes at the
equilibrium and is positive definite. Hence, the constants m;, m, > 0 and a radius py > 0 exist such that

mills, i, DIF < Vi(S, I,R) < myll(s, i, )P whenever [|(s, i, )| < po.

Differentiating V; the solutions of (1.2) and using the equilibrium relations (i.e. substituting the
right-hand sides and subtracting the linear part at £*), one obtains the standard decomposition

Vi ==0C(s,i,r) +i DG, y),
where
e ((s,i,r)is a quadratic form in (s, i, r), given by
O(s,i,r) = (s,i,r) M (s,i,r)",

with M begin equal to the symmetric part of the S —/—R linearization weighted by the Hessian of
V1 at E*,

e ®O(i,y) is a smooth function collecting the higher-order terms and the coupling with y, with
®(0,0) = 0.

Since all eigenvalues of the S —/-R linearization have negative real parts (by Lemma 3.1), the symmetric
matrix M is positive definite. Hence, 1o > 0 and p; € (0, po] exist such that

O(s, i, r) = Apll(s, i, IP forall [I(s, i, Il < pr.

Moreover, by the smoothness of @ and the fact that ®(0,0) = 0, the constants C; > 0 and p; € (0, p{]
exist such that
DG < Ci(lil+1yl)  whenever [I(s, i, r, )| < pa.

It follows that in this neighborhood
i0G,y) < C1(@ +lily) < Ci( + 562 +7) < @ +y7)
for some constant C, > 0.
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Next, we estimate the contribution of the x-equation. From
X =kx(1 =x)(-1+ wl)
and the equilibrium condition —1 + wI* = 0, we obtain
y=k(x*+y)(1 —x"—y)wi.

Hence, for ¢ > 0
d
- —2cvi
) =2cyy
= 2ckwy(x* + y)(1 —x" —y)i.

Since the function (x* + y)(1 — x* — y) is smooth and bounded near y = 0, the constants C; > 0 and
o3 € (0, p,] such that

|4 (ey)| < 2¢Calyllil < cC5(* +y*)  for l|(s, i, r, )| < ps.

Combining the estimates above for V, and %(cyz), we find that for ||(s, i, , y)|| < o3,

. . d . . )
V= Vi+ (@) < =agll(s, i, NI + Coi® +37) + G5 + 7).
Thus the constants C4 > 0 and the (possibly smaller) neighborhood radius p € (0, p3] exist such that
V< =2ll(s, i, NIP + Ca(@® +57), el < p.

Since i < ||(s, i, 7)|*, by choosing ¢ > 0 sufficiently small (and, if needed, reducing p), we can ensure
that

V < =a(l(s, i, DI +¥?) = =zl

for some A > 0 and all ||z|| < p. On the other hand, the bounds on V; together with the term cy? imply
that V is positive definite and radially bounded in this small neighborhood:

~ 2 ~ 2
mllzll” < V(z) < il

for a suitable 771, 771, > 0.
Standard Lyapunov theory now yields local asymptotic stability of the equilibrium E*: there exists

a neighbourhood U of E* such that any solution starting in U remains in U and converges to E* as
t — oo, O

For the reader’s convenience, here we summarize all THE equilibria of System (1.2) together with
their existence conditions and a brief biological interpretation. Detailed coordinate formulas are given
in Section 3.
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Table 2. Existence conditions and biological meaning of the equilibria of System (1.2).

Equilibrium Existence condition Biological interpretation
Eprp Always feasible for A > 0, u > 0 Disease-free equilibrium with 7* = 0 and x* =
0; no vaccination is adopted and all newborns
enter the susceptible class.
A . oy .
Epr — 2> ':l_d (so that §* > 0) Disease-free equilibrium with /* = 0 and x* =
HoH . .
1; all newborns are vaccinated at birth and
enter the immune class.
E; Endemic equilibrium with x* = Oexists Endemic equilibrium in the absence of
iff vaccination (x = 0); the disease can persist
BA only when the basic reproduction number Ry
>0 & Ry:= > 1
3 w(+7y) exceeds 1.
E, Endemic equilibrium with x* = 1 Endemic equilibrium with full newborn
exists if the steady-state components vaccination (x = 1); infection persists at a
8,1, R, determined in Section 3 reduced level despite universal vaccination at
satisfy birth.
§;>0, I;>0, R;>0.
Es Interior equilibrium with 0 < x* < 1 Positive interior equilibrium with coexistence
exists if of infection and vaccination behaviour (0 <
1 x* < 1); vaccination coverage and infection
* —_— * * . .y .
r= w >0, §°>0, R >0, prevalence co-evolve, and this equilibrium
. may lose stability via a Hopf bifurcation.
0<x" <1, Y y p

where S*,R*,x* are given explicitly
in Section 3. These inequalities
impose  explicit constraints on

B, v, 1, 0,a, w, A).

4. Hopf bifurcation

Before presenting the analytical Hopf bifurcation result, we first illustrate the behavior of solutions
near the interior equilibrium E* by numerical simulations. Throughout this section, we regard w as
the bifurcation parameter. For the baseline parameter set listed in Table 1, we compute the interior
equilibrium E* by solving the steady-state equations with MATLAB’s fsolve, evaluate the Jacobian
matrix J(E*, w) symbolically, and track its eigenvalues as w varies. The critical value w = w* at
which a complex conjugate pair of eigenvalues crosses the imaginary axis is consistent with the Hopf
condition derived in Theorem 4.1.
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In addition, we integrate System (1.2) numerically using the stiff solver ode15s on a finite time
interval (with tolerances RelTol = le-3, AbsTol = le-6), starting from the initial data in a
neighbourhood of E*. For a w slightly larger than w*, the time series of /(f) converges to a stable
periodic oscillation around E*, as illustrated in Figure 1, which corroborates the occurrence of a Hopf
bifurcation predicted by our theoretical analysis.

1 25
0.8 2
0.6 15
= =
m —
0.4 1
0.2 05
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
(a) (b)
0.6 1
0.5 0.8
0.4
0.6~
= >
Zos g
0.4
0.2
5 0.2
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000
(c) (d)

Figure 1. Numerical illustration of a Hopf bifurcation at the interior equilibrium E* of
System (1.2). The plot shows the time evolution of the infectious class I(¢) for the baseline
parameter set in Table 1, with w chosen slightly above the critical value w* predicted by
Theorem 4.1. The system is integrated on the time interval [0, 100] using MATLAB’s solver
odel5s with the tolerances RelTol = le-3, AbsTol = le-6, and the initial data taken
near E*. After a transient, the solution converges to a stable periodic orbit, in agreement with
the Hopf bifurcation analysis.

In this section, we investigate the existence of a Hopf bifurcation around the positive equilibrium E*
of System (1.2) by taking w as the bifurcation parameter. On the basis of the general Hopf bifurcation
theory of Kuznetsov [24] and the algebraic criterion of Liu [25], we obtain the following result.

Lemma 4.1 (Existence and uniqueness of an interior equilibrium). Assume that all parameters of
System (1.2) are strictly positive. Then System (1.2) admits at most one interior equilibrium

E'=S"I'R,x") with S, I')R">0,0<x" <1

Moreover, such an interior equilibrium exists if and only if the unique value x* obtained from the
equilibrium equations in Section 2 (case I = 1/w) satisfies 0 < x* < 1 and the associated

+ I + ux*
r=— s =2"Yutar), r=1T£"
w B u+o
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is positive, i.e, R* > 0.

Proof. The equilibrium equations of System (1.2) are solved explicitly in Section 2; in particular, see
the paragraph “Interior endemic with /* = 1/w and x* € (0, 1)” in the subsection on the equilibria of
System (1.2).
In that case, the fourth equation of (1.2) implies
* * 1

“l+wl =0 = I'=—.
w
The second equation then gives

u+y
S ="—=(+al).
B

The third equation yields

*

oyl +px”
 u+6

and the first equation reduces to a linear equation in x* with a unique solution. This shows that, for
fixed parameters, there is at most one quadruple (S*, I*, R*, x*) with S*, I*,R* > 0 and 0 < x* < 1, i.e.
at most one interior equilibrium.

The admissibility conditions 0 < x* < 1 and R* > 0 are exactly the positivity requirements on this
unique solution. Hence, an interior equilibrium exists if and only if these inequalities are satisfied.
This proves the lemma. O

Theorem 4.1. Consider System (1.2) and assume that it admits a positive interior equilibrium
E*=(S*,I",R", x"), r'=+i 0<x' <1
Let J(w) denote the Jacobian matrix of System (1.2) at E* and let
p(A, w) = det (A — J(w))
= A" + D1(w)A’ + Dy(w)A* + D3(w)A + Da(w)

be its characteristic polynomial, where for j = 1,2,3,4 the functions D j(w) denote the real-valued
coefficient functions of p(-, w), obtained by expanding det(Al — J(w)). For convenience, set

’ dD;
Dj(w) =2
and define
®(w) := D3(w)* — Di(w)Da(w)D3(w) + Dy(w)* Dy(w),
¥(w) := —=D;D, + DiD,D} + D{D,Ds — DD, D,D; — 2D,D; D), + 2D’ D3,

where each D, I, is evaluated at the corresponding value of w.
Assume that w* > 0 exists such that

(i) (Purely imaginary roots)

D;(w") S
Dy (w")

d(w") =0, Di(w") #0,
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Then one can define

V= Dsy(w’) >0,
D (w*)

and p(A, w") has a pair of simple purely imaginary roots 1 = +iv".
(ii) (Spectral separation) The other two roots of p(A, w*) have nonzero real parts.
(iii) (Transversality)
Y(w") # 0,

- hiwen) # 0

where p, := 0p/0Ad and p,, := Op/dw.

which is equivalent to

Then, as the parameter w passes through w*, System (1.2) undergoes a simple Hopf bifurcation at
E*. More precisely, € > 0 and a smooth family of nontrivial periodic solutions I'(w) of System (1.2) for
w € (W' — &, w" + &) exist, such that I'(w) bifurcates from E* and its minimal period T (w) satisfies

2
lim T(w) = =

w—ow* yv* )
Moreover, the stability of E* changes as w crosses w*.

Proof. The Jacobian matrix of System (1.2) at E* has the form

dy dpo 6 -—u

dyy dyp 0 O
J(w) =
(@) 0 v dyz n
0 dpo 0 O
with the entries
B _ w+y)
din=-p- dip =
w+a w+a
a(u +
dy = , dy = —M,
w+a w+a

dy; = —(/J + 5), d42 = a)kx*(l — X*).
Its characteristic polynomial is

P4, w) = 2* + D{(w)A® + Dr(w)A* + D3(w)A + Dy(w),

where the coefficients D ;(w) are expressed in terms of d;; by the usual principal-minor formulas (their
explicit expressions are not needed here, except through D; and D’).

Step 1: Purely imaginary roots and the function ®. Assume that, for some w, p(4, w) has a pair of
purely imaginary roots A = +iv with v > 0. Substituting 4 = iv into p(4, w) and separating real and
Imaginary parts, one obtains the real system

vt =Dy + D, =0,

—D1V3 + D3y = 0.
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For v # 0, the second equation yields
vV = —— D] # 0.

Substituting this into the first equation and multiplying by D7 leads exactly to
®(w) = D3 — D;D,D3 + DD, = 0.

Thus, the condition ®(w*) = 0, together with D;(w*) # 0 and

D3 (w")
Dy (w*) 0

is equivalent to the existence of a pair of purely imaginary roots A = +iv* with

Ds(w*) S
Dy (w*)

*_

Step 2: Simplicity and transversality. A direct differentiation gives

P2, w) =42° + 3D, 2> + 2D,A + D;,
Po(d, w) = D{A* + DyA* + DiA + D).

Evaluating p, at 4 = iv* and using the relations above, one finds that p,(iv*, w*) # 0, so the roots +iv*

are simple.
Differentiating the root relation p(Ad(w), w) = 0 with respect to w gives
da _ po(ivV, W)
dwlw=o pa(ive, w*)’

A straightforward (though tedious) computation shows that

R( - I;jg: :’;) C(w") W(w"),

where C(w*) # 0 is an explicit nonzero factor depending on D;(w"), D3(w*). Hence the transversality
condition .
R(- 20
paiv*, w*)
is equivalent to W(w*) # 0. This proves that as w passes through «*, the simple pair of eigenvalues

A(w), A(w) crosses the imaginary axis with nonzero speed, while, by Assumption (ii), the remaining
two eigenvalues never lie on the imaginary axis.

Step 3: Application of the Hopf bifurcation theorem and the period. By the classical Hopf bifurcation
theorem (see, e.g., Hassard et al. [26] and Kuznetsov [27]), Hypotheses (i)—(iii) imply that System (1.2)
undergoes a simple Hopf bifurcation at w = w*: We then have £ > 0 and a smooth family of nontrivial
periodic solutions I'(w) bifurcating from E* for w € (w* — &, w* + &), and their minimal period 7'(w)
satisfies

T(w) =

+0o(l) asw — W',

2
1T Aw)l
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where A(w) is the eigenvalue branch with A(w*) = iv*. In particular

2
lim T(w) = =

Moreover, the change of sign of R A(w) implied by (iii) guarantees that the stability of E* changes
when w crosses w*. This completes the proof. O

5. Numerical simulations

All numerical experiments in this section were carried out in MATLAB R2018a (MathWorks, Natick,
MA, USA) on a 64-bit macOS system. For the simulation of System (1.2), we used the variable-step
stiff ODE solver odel5s over the time interval [0, 100], with the outputs recorded at integer time
points. Unless otherwise stated, the default MATLAB error tolerances (RelTol = le-3, AbsTol =
le-6) were employed. For the global sensitivity analysis based on partial rank correlation coefficients
(PRCCs), we generated N = 1000 Latin hypercube samples over the parameter ranges listed in Table 3
and computed PRCC values using a MATLAB implementation of the algorithm by Marino et al. [28].

Table 3. Parameter ranges used for the sensitivity analysis of System (1.2).

Parameter Baseline Minimum Maximum

B 0.9 0.7585 0.9633
Yy 0.2 0.1608 0.2398
k 0.002 0.0015 0.0023
7 0.18 0.1381 0.2103
o' 0.004 0.0031 0.0052
w 100 75.473 119.6882

To determine which parameters significantly influence the infectious population in System (1.2), we
conduct a global sensitivity analysis using the PRCC method. Sensitivity analysis based on PRCC and
Latin hypercube sampling has been widely used in systems biology and ecological/epidemiological
modeling; see, for example, Marino et al. [28] and Imron et al. [29]. Since the relationships between
the model’s inputs and outputs are assumed to be nonlinear yet monotonic, the PRCC method is well-
suited for this setting. To implement it, we perform Latin hypercube sampling based on the baseline
parameter ranges specified in Table 3, generating N = 1000 independent simulation samples. For each
sample, we numerically integrate System (1.2) on the time interval [0, 100] with fixed initial conditions
(as specified below in this section) and use the resulting trajectories to compute the PRCC values at
selected time points. The corresponding numerical results are summarized in Figures 2 and 3.

Choice of parameter bounds in Table 3. The baseline values in Table 3 coincide with the parameter
set used in the qualitative analysis of equilibria and Hopf-type dynamics in Sections 3 and 4, for which
the model admits a biologically meaningful interior equilibrium.

The lower and upper bounds were chosen as moderate perturbations around these baseline values,
guided by two criteria: (i) Biological plausibility of the corresponding time scales (infection,
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recovery, waning immunity, and natural mortality), and (ii) numerical simulations indicating that,
throughout the chosen ranges, all state variables remain non-negative and bounded and the system
stays in a qualitatively similar dynamic regime (the existence of an interior equilibrium with possible
oscillations). Concretely, for each parameter, we varied its value by roughly 10-20% around the
baseline, performed test simulations of System (1.2) on the time interval [0, 100], and restricted the
admissible interval to the region where the solutions remained epidemiologically meaningful. The
final minimum and maximum values reported in Table 3 are the endpoints of these numerically
validated intervals.

On the basis of these samples, we obtain an ensemble of infectious trajectories /(¢), which
visualizes the spread of the epidemic’s outcomes under parameter uncertainty. These ensemble
trajectories and the associated parameter—output relationships provide the basis for the PRCC
computations. Together, Figures 2 and 3 summarize the pathway from parameter uncertainty to an
ensemble of epidemic trajectories and then to parameter—output relationships, which form the basis
for the PRCC-based global sensitivity analysis.

Stability and Hopf bifurcation. We now analyze the stability behavior of System (1.2), assuming the
initial conditions S(0) = 0.6, 1(0) = 0.1, R(0) = 0.2, and x(0) = 0.2. From Theorems 2.4 and 2.5, the
local asymptotic stability of the equilibria E5 and E, is confirmed. In addition, Theorem 3.1 shows that
System (1.2) admits a positive equilibrium Es. Using the parameter set y = 0.2, 6 = 0.02, u = 0.18,
a = 0.004, 8 = 0.9, and k = 0.002 and varying the behavioral sensitivity parameter w, we integrate
System (1.2) on the time interval [0, 100] with the initial conditions S (0) = 0.6, 1(0) = 0.1, R(0) = 0.2,
x(0) = 0.2, and observe that a supercritical Hopf bifurcation occurs at w = 1000. In the following
simulations, we therefore set w = 1000 to illustrate a high-sensitivity regime in which behavioural
feedback is strong enough to trigger a Hopf bifurcation. The corresponding numerical simulations are
summarized in Figure 4.

Time

Figure 2. Ensemble of infected individuals /(t) for N = 1000 Latin Hypercube samples
of the parameters in System (1.2). Each thin curve represents the infectious population (¥)
over the time interval [0, 100] for one parameter sample drawn from the ranges in Table 3,
starting from fixed initial conditions (see Section 5). The bundle of trajectories illustrates the
variability in epidemic outcomes induced by parameter uncertainty.
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Figure 3. Scatter plots showing the relationship between the infectious population /(¢)
and the sampled parameters in System (1.2). Each panel compares I(r) (evaluated at a
representative later time during the simulation) with one of the parameters from Table 3.
The approximately monotonic positive or negative trends observed in these plots support

the use of PRCC as a global sensitivity measure for this model.

In particular, for the

behavioural parameters k and w, the scatter plots indicate that increasing these parameters
can substantially modify the amplitude and spread of the infectious trajectories, reflecting
how imitation dynamics and risk sensitivity amplify or attenuate the epidemic burden.
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Figure 4. Numerical simulations illustrating the stability of the boundary equilibria E;
and E, and the interior equilibrium Es, as well as the emergence of a Hopf bifurcation in
System (1.2). Panels (a) and (b) show the time evolution of the epidemiological variables
when the boundary endemic equilibria E5 (no vaccination) and E4 (full vaccination) are
locally asymptotically stable. Panels (c) and (d) present the time series and phase portrait
corresponding to the positive interior equilibrium Es for w below the Hopf threshold w*.
Panels (e) and (f) display the sustained oscillations and the associated limit cycle in the
(1, x)-plane that arise after the supercritical Hopf bifurcation at w = 1000. In all panels, the
horizontal axis represents time ¢ (in days) for the time-series plots, and the vertical axes
denote the fractions of the corresponding compartments. All simulations are performed
with the parameter values given in Section 5 and initial conditions S(0) = 0.6, 1(0) = 0.1,
R(0) = 0.2 and x(0) = 0.2.
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6. Conclusions

In this work, we have developed and analyzed an SIR epidemic model that incorporates adaptive
vaccination behavior through a game-theoretic imitation mechanism. By coupling classical disease
dynamics with behavioral dynamics, our model captures how individuals’ risk perception and social
influence jointly shape vaccination coverage and, in turn, disease prevalence. We provided a rigorous
mathematical analysis of the equilibria and their local stability, identified the conditions under which
Hopf bifurcation may occur, and revealed the possibility of sustained oscillations emerging from the
interaction between epidemiological and behavioral processes.

The main contribution of this study lies in integrating realistic human decision-making into the
epidemic modeling framework in a mathematically tractable way. Compared with traditional models
that treat vaccination as a constant-rate intervention, our approach highlights how strategic decision-
making may produce nontrivial dynamic outcomes such as oscillations and bistability. These findings
provide theoretical insights into the design of vaccination strategies, suggesting that policies should
not only focus on biological control parameters but also account for the adaptive nature of human
behavior (e.g, through risk communication, reductions in the perceived vaccine risk, and stabilization
of vaccination coverage). In particular, our analysis shows that higher perceived vaccine risk can push
the system from a disease-control regime to persistent endemicity, while increasing the behavioral
sensitivity w may destabilize an otherwise stable endemic equilibrium and trigger Hopf bifurcation,
leading to recurrent epidemic oscillations.

From a biological and public health viewpoint, these Hopf bifurcations correspond to the onset of
sustained epidemic oscillations driven by behavioral feedback between vaccination coverage and
disease prevalence. When the prevalence I(¢) is low, individuals perceive a low infection risk,
vaccination willingness x(f) decreases, and overall coverage gradually declines, which allows the
disease to resurge. As I(f) increases again, the perceived infection risk becomes more salient,
imitation dynamics promote higher vaccination uptake among parents, and the system is pushed back
toward disease control. Once the endemic equilibrium loses stability through a Hopf bifurcation, this
negative feedback loop between risk perception, imitation-based vaccination, and disease
transmission can sustain recurrent epidemic waves without any external forcing (such as seasonality),
providing a mechanism for endogenous, behavior-driven epidemic cycles.

Beyond these qualitative mechanisms, our analysis also clarifies how key parameters shape the
overall dynamic behavior. The behavioural sensitivity w acts as a primary bifurcation parameter:
Increasing w can destabilize an otherwise stable endemic equilibrium and give rise to sustained
oscillations. The waning immunity rate ¢ controls how rapidly recovered individuals return to the
susceptible class, thereby modulating both the endemic level of infection and the likelihood of
recurrent outbreaks. The saturation parameter @ weakens transmission at high prevalence, altering the
location and stability of endemic equilibria by limiting the effective force of infection. Finally, the
imitation rate k governs the speed of behavioral adjustment, influencing how quickly vaccination
coverage responds to changes in the disease’s prevalence and thus affecting the transient approach to
equilibrium or to a limit cycle.

From a modeling perspective, our framework generalizes several classical SIR-type formulations.
In particular, we qualitatively compared our results with (i) models with bilinear incidence and no
waning immunity, (ii) models with waning immunity but without imitation-based vaccination, and
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(ii1) models with behavioral or information-dependent vaccination but without saturated incidence or
R — § transitions. This comparison shows that the simultaneous inclusion of saturated incidence,
waning immunity, and imitation dynamics can change the number and type of equilibria, alter the
onset of Hopf bifurcation, and generate endogenous oscillations that do not appear in simpler models.

Despite these advantages, the present study also has several limitations. First, key behavioral
parameters (such as the sensitivity of perceived risk to prevalence) are phenomenological and are not
directly measurable in practice. Second, the model assumes homogeneous mixing and symmetric
behavior across individuals, so heterogeneity in age, risk perception, socioeconomic status, or access
to vaccination is not captured. Third, spatial structure, contact networks, and other forms of
population heterogeneity are not explicitly modeled. These limitations mean that the quantitative
predictions of the model should be interpreted with caution, while the qualitative mechanisms remain
informative.

From the viewpoint of stochastic effects, we also note that our analysis is based on a deterministic
SIR-imitation framework. In realistic settings, however, demographic noise, random variation in
contact patterns, and abrupt changes in risk perception may play a non-negligible role. A natural
extension of the present work would therefore be to formulate stochastic versions of the model, for
example, by introducing stochastic differential equations with noise terms in the infection or imitation
dynamics, or by constructing Markov chain and agent-based formulations in which the vaccination
game is played at the level of discrete individuals. A systematic investigation of such stochastic
extensions lies beyond the scope of this paper and is left as an interesting direction for future research.

Future work may extend the current framework along several directions. For clarity, here we
summarize a few concrete lines of further research.

e Heterogeneous populations: Incorporate multiple behavioral or demographic classes (e.g,
different age groups, risk perceptions, or vaccine access levels) to study how heterogeneity
modifies the imitation dynamics and the resulting epidemic outcomes.

e Network- and space-structured transmission: Replace the homogeneous mixing assumption
with spatial or network-based contact structures, and investigate how local clustering and
community structure affect behavior-driven oscillations and bifurcations.

e Richer payoff and behavioral rules: Consider more detailed psychological or economic payoff
structures, bounded rationality, information delays, and media- or platform-driven changes in
perceived infection and vaccine risks.

e Stochastic extensions: Develop stochastic counterparts of the present model (stochastic
differential equations (SDEs), Markov chain models, or agent-based formulations) to quantify
the impact of demographic and behavioral noise, especially near Hopf bifurcation thresholds.

e Empirical data and calibration: Collect empirical data on perceived infection risk, vaccine
risk, and imitation strength among vaccinated and unvaccinated individuals, and use such data to
calibrate the behavioral parameters and validate the qualitative mechanisms identified here.

These directions would further enhance the predictive and explanatory power of the model and help
bridge the gap between theoretical behavior—epidemic coupling and real-world vaccination policy
design.
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