Research article Topical Sections

Neutrosophic primal structure with closure and proximity operators

  • Published: 08 January 2026
  • MSC : 03E72, 54A40

  • This paper aimed to introduce novel neutrosophic primal and neutrosophic proximity operators, derived from a new abstract framework called "neutrosophic primal topology". We began by examining the core properties of neutrosophic primal operators. Next, we defined a neutrosophic primal closure operator derived from the neutrosophic primal operator and explored the relationships between them. Based on this neutrosophic primal closure operator, we constructed a neutrosophic topology and identified the conditions under which the image of a neutrosophic primal remained a neutrosophic primal. In the next stage, we defined the neutrosophic point-primal proximity operator and explored a range of fundamental properties characterizing neutrosophic primal proximity topological spaces derived from this operator. We also introduced the concept of neutrosophic proximal closed sets and demonstrated that the collection of complements of neutrosophic primal closed sets constituted a neutrosophic topology. Finally, we defined a neutrosophic operator on a neutrosophic primal proximity topological space that satisfies the neutrosophic Kuratowski closure axioms and used it to construct a neutrosophic topology. All results established in this study were thoroughly supported and clarified through illustrative examples.

    Citation: Mesfer H. Alqahtani. Neutrosophic primal structure with closure and proximity operators[J]. AIMS Mathematics, 2026, 11(1): 644-660. doi: 10.3934/math.2026028

    Related Papers:

  • This paper aimed to introduce novel neutrosophic primal and neutrosophic proximity operators, derived from a new abstract framework called "neutrosophic primal topology". We began by examining the core properties of neutrosophic primal operators. Next, we defined a neutrosophic primal closure operator derived from the neutrosophic primal operator and explored the relationships between them. Based on this neutrosophic primal closure operator, we constructed a neutrosophic topology and identified the conditions under which the image of a neutrosophic primal remained a neutrosophic primal. In the next stage, we defined the neutrosophic point-primal proximity operator and explored a range of fundamental properties characterizing neutrosophic primal proximity topological spaces derived from this operator. We also introduced the concept of neutrosophic proximal closed sets and demonstrated that the collection of complements of neutrosophic primal closed sets constituted a neutrosophic topology. Finally, we defined a neutrosophic operator on a neutrosophic primal proximity topological space that satisfies the neutrosophic Kuratowski closure axioms and used it to construct a neutrosophic topology. All results established in this study were thoroughly supported and clarified through illustrative examples.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96.
    [3] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [4] D. Sarkar, Fuzzy ideal theory fuzzy local function and generated fuzzy topology, Fuzzy Sets Syst., 87 (1997), 117–123. https://doi.org/10.1016/S0165-0114(96)00032-2 doi: 10.1016/S0165-0114(96)00032-2
    [5] A. N. A. Koam, I. Ibedou, S. E. Abbas, Fuzzy ideal topological spaces, J. Intell. Fuzzy Syst., 36 (2019), 5919–5928.
    [6] W. Gähler, The general fuzzy filter approach to fuzzy topology, Ⅱ, Fuzzy Sets Syst., 76 (1995), 225–246. https://doi.org/10.1016/0165-0114(95)00057-R doi: 10.1016/0165-0114(95)00057-R
    [7] K. K. Azad, Fuzzy grills and a characterization of fuzzy proximity, J. Math. Anal. Appl., 79 (1981), 13–17.
    [8] M. N. Mukherjee, S. Das, Fuzzy grills and induced fuzzy topology, Mat. Vesnik, 62 (2010), 285–297.
    [9] S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, Bol. Soc. Parana. Mat., 43 (2025), 1–9. https://doi.org/10.5269/bspm.66792 doi: 10.5269/bspm.66792
    [10] A. Al-Omari, M. H. Alqahtani, Primal structure with closure operators and their applications, Mathematics, 11 (2023), 1–13. https://doi.org/10.3390/math11244946 doi: 10.3390/math11244946
    [11] A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. https://doi.org/10.24193/mathcluj.2023.2.03 doi: 10.24193/mathcluj.2023.2.03
    [12] O. Alghamdi, A. Al-Omari, M. H. Alqahtani, Novel operators in the frame of primal topological spaces, AIMS Math., 9 (2024), 25792–25808. https://doi.org/10.3934/math.20241260 doi: 10.3934/math.20241260
    [13] T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 1–15. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329
    [14] A. Al-Omari, M. H. Alqahtani, Some operators in soft primal spaces, AIMS Math., 9 (2024), 10756–10774. https://doi.org/10.3934/math.2024525 doi: 10.3934/math.2024525
    [15] R. A. Hosny, Remarks on soft topological spaces with soft grill, Far East J. Math. Sci., 86 (2014), 111–128.
    [16] Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comput. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
    [17] Z. A. Ameen, M. H. Alqahtani, O. F. Alghamdi, Lower density soft operators and density soft topologies, Heliyon, 10 (2024), e35280.
    [18] Z. A. Ameen, O. F. Alghamdi, Soft topologies induced by almost lower density soft operators, Eng. Lett., 33 (2025), 712–720.
    [19] V. A. Efremovich, The geometry of proximity. I (in Russian), Mat. Sb. (N.S.), 73 (1952), 189–200.
    [20] A. Kandil, O. A. Tantawy, S. A. El-Sheikh, A. Zakaria, Multiset proximity spaces, J. Egyptian Math. Soc., 24 (2016), 562–567. https://doi.org/10.1016/j.joems.2015.12.002
    [21] A. Kandil, O. A. Tantawy, S. A. El-Sheikh, A. Zakaria, $I$-proximity spaces, Jökull J., 63 (2013), 237–245.
    [22] M. N. Mukherjee, D. Mandal, D. Dey, Proximity structure on generalized topological spaces, Afr. Mat., 30 (2019), 91–100. https://doi.org/10.1007/s13370-018-0629-6 doi: 10.1007/s13370-018-0629-6
    [23] E. Yıldırım, $\mu$-proximity structure via hereditary classes, Maejo Int. J. Sci. Technol., 15 (2021), 129–136.
    [24] E. F. Steiner, The relation between quasi-proximities and topological spaces, Math. Ann., 155 (1964), 194–195. https://doi.org/10.1007/BF01344159 doi: 10.1007/BF01344159
    [25] A. Al-Omari, M. Özkoc, S. Acharjee, Primal-proximity spaces, Mathematica, 66 (2024), 151–167. https://doi.org/10.24193/mathcluj.2024.2.01 doi: 10.24193/mathcluj.2024.2.01
    [26] F. Smarandache, A unifying field in logics, neutrosophy: neutrosophic probability, set and logic, Reheboth: American Research Press, 1999.
    [27] A. A. Salama, S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31–35.
    [28] S. Jafari, G. Nordo, S. S. Thakur, More on neutrosophic topology, Neutrosophic Sets Syst., 73 (2024), 584–591.
    [29] A. A. Salama, F. Smarandache, Filters via neutrosophic crisp sets, Neutros. Sets Sys., 1 (2013), 34–37. https://doi.org/10.5281/zenodo.30168 doi: 10.5281/zenodo.30168
    [30] L. Zedam, S. Milles, A. Bennoui, Ideals and filters on a lattice in neutrosophic setting, Appl. Appl. Math., 16 (2021), 1140–1154.
    [31] A. Bennoui, L. Zedam, S. Milles, Several types of single-valued neutrosophic ideals and filters on a lattice, TWMS J. Appl. Eng. Math., 13 (2023), 175–188.
    [32] G. Pal, R. Dhar, B. C. Tripathy, Minimal structures and grill in neutrosophic topological spaces, Neutrosophic Sets Syst., 51 (2022), 134–145.
    [33] S. Ganesan, Neutrosophic grill topological spaces, Int. Res. J. Educ. Technol., 2 (2021), 1–16.
    [34] R. Dhavaseelan, S. Jafari, C. Ozel, M. A. Al-Shumrani, Generalized neutrosophic contra-continuity, In: New trends in neutrosophic theory and applications. Volume Ⅱ, 2018,355–370. https://doi.org/10.6084/m9.figshare.6205283.v1
    [35] K. Kuratowski, Topology: Volume I, New York: Academic Press, 1966.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(186) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog